Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://www.revistas.ucr.ac.cr/index.php/rbt/oai
Application of the elliptic Fourier functions to the description of avian egg shape
PDF (Español (España))
HTML (Español (España))

Keywords

birds egg shape
Fourier descriptors
EFD
SHAPE software
forma del huevo
descriptores de Fourier
EFD
programa SHAPE

How to Cite

Denis Ávila, D. (2014). Application of the elliptic Fourier functions to the description of avian egg shape. Revista De Biología Tropical, 62(4), 1469–1480. https://doi.org/10.15517/rbt.v62i4.12992

Abstract

Egg shape is difficult to quantify due to the lack of an exact formula to describe its geometry. Here I described a simple algorithm to characterize and compare egg shapes using Fourier functions. These functions can delineate any closed contour and had been previously applied to describe several biological objects. I described, step by step, the process of data acquisition, processing and the use of the SHAPE software to extract function coefficients in a study case. I compared egg shapes in three birds’ species representing different reproductive strategies: Cuban Parakeet (Aratinga euops), Royal Tern (Thalasseus maximus) and Cuban Blackbird (Dives atroviolaceus). Using 73 digital pictures of eggs kept in Cuban scientific collections, I calculated Fourier descriptors with 4, 6, 8, 16 and 20 harmonics. Descriptors were reduced by a Principal Component Analysis and the scores of the eigenvalues that account for 90% of variance were used in a Lineal Discriminant Function to analyze the possibility to differentiate eggs according to its shapes. Using four harmonics, the first five component accounted for 97% of shape variances; more harmonics diluted the variance increasing to eight the number of components needed to explain most of the variation. Convex polygons in the discriminant space showed a clear separation between species, allowing trustful discrimination (classification errors between 7-15%). Misclassifications were related to specific egg shape variability between species. In the study case, A. euops eggs were perfectly classified, but for the other species, errors ranged from 5 to 29% of misclassifications, in relation to the numbers or harmonics and components used. The proposed algorithm, despite its apparent mathematical complexity, showed many advantages to describe eggs shape allowing a deeper understanding of factors related to this variable.
https://doi.org/10.15517/rbt.v62i4.12992
PDF (Español (España))
HTML (Español (España))

References

Andrade, I. M., Mayo, S. J., Kirkup, D., & Van den Berg, C. (2010). Elliptic Fourier analysis of leaf outline shape in forest fragment populations of Anthurium sinuatum and A. pentaphyllum (Araceae) from northeast Brazil. Kew Bulletin, 65, 1-18.

Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71, 5-16.

Barta, Z. & Székely, T. (1997). The optimal shape of avian eggs. Functional Ecology, 11, 656-662.

Briskie, J. V. & Sealy, S. G. (1990). Variation in size and shape of least flycatcher eggs. Journal of Field Ornithology, 61(2), 180-191.

Carey, C. (1996). Avian energetic and nutritional ecology. New York: Ed. Chapman & Hall.

Coulson, J. C., Potts, G. R., & Horobin, J. (1969). Variation in the eggs of the Shag (Phalacrocorax aristotelis). Auk, 86(2), 232-245.

Denis, D. (2002). Ecología reproductiva de siete especies de garzas (Aves: Ardeidae) en la ciénaga de Birma, Cuba. (Tesis de Doctorado). Universidad de La Habana, Cuba.

Denis, D. & Olavarrieta, U. (2011). ¿Existe isomorfía en los huevos de las garzas (Aves: Ardeidae)? Animal Biodiversity and Conservation, 34.1, 35-45.

Ferson, S., Rohlf, F. J., & Koehn, R. K. (1985). Measuring shape variation of twodimensional outlines. Systematic Zoology, 34, 59-68.

Freeman, H. (1974). Computer processing of line drawing images. Computing. Surveys, 6, 57-97.

Furuta, N., Ninomiya, S., Takahashi, S., Ohmori, H., & Ukai, Y. (1995). Quantitative evaluation of soybean (Glycine max L. Merr.) leaflet shape by principal component scores based on elliptic Fourier descriptor. Breeding Science, 45, 315-320.

Gemperle, M. E. & Preston, F. W. (1955). Variation of shape in the eggs of the common tern in the clutch-sequence. Auk, 72, 184-198.

Gill, F. B. (1998). Ornithology. Nueva York: Ed. Freeman & Co.

Grant, P. R. (1982). Variation in the size and shape of darwin's finch eggs. Auk, 99, 15-23.

Hoyt, D. F. (1976). The effect of shape on the surface-volume relationships of birds’ eggs. Condor, 78, 343-349.

Iwata, H., Nesumi, H., Ninomiya, S., Takano, Y., & Ukai, Y. (2002) Diallel Analysis of Leaf Shape Variations of Citrus Varieties Based on Elliptic Fourier Descriptors. Breeding Science, 52, 89-94

Iwata, H. & Ukai, Y. (2002). SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93, 384-385.

Janiga, M. (1997). Effects of geographic variation and hatching asynchrony on size and shape of eggs of the feral pigeon (Columbia livia). Folia Zoológica, 46(1), 23-32.

Jover, L., Ruiz, X., & González-Martín, M. (1993). Significance of intraclutch egg size variation in the Purple Heron. Ornis Scandinavica, 24(2), 127-134.

Kendall, D. (1977). The diffusion of shape. Advances in Applied Probability, 9, 428-430.

Kendeigh, S. C. (1975). Effects of parentage on egg characteristics. Auk, 92, 163-164.

Kincaid, D. T. & Schneider, R. B. (1983). Quantification of leaf shape with a microcomputer and Fourier transformation. Canadian Journal of Botany, 61, 2333-2342.

Kim, S. J., Kim, B. W., & Kim, D. P. (2011). Tree recognition for landscape using by combination of features of its leaf, flower and bark. Proceedings of SICE Annual Conference (SICE), 1147-1151.

Kuhl, F. P. & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing, 18, 236-258.

Lack, D. (1947). Darwin's finches. Cambridge: Cambridge Univ. Press.

Lonn, M. & Prentice, H. C. (1995). The structure of allozyme and leaf shape variation in isolated, range-margin populations of the shrub Hippocrepis emerus (Leguminosae). Ecography, 18, 276-285.

Mand, R., Nigul, A., & Sein, E. (1986). Oomorphologya: new method. Auk, 103, 613-617.

Martin, T. E., Bassar, R. D., Bassar, S. K., Fontaine, J. J., Lloyd, P., Mathewson, H. A., Niklison, A. M., & Chalfoun, A. (2006). Life-history and ecological correlates of geographic variation in egg and clutch mass among passerine species. Evolution, 60(2), 390-398.

McLellan, T. & Endler, J. A. (1998). The relative success of some methods for measuring and describing the shape of complex objects. Systematic Biology, 47, 264-281.

Neto, J. C., Meyer, G. E., Jones, D. D., & Samal, A. K. (2006). Plant species identification using Elliptic Fourier leaf shape analysis. Computers and Electronics in Agriculture, 50, 121-134.

Ojanen, M., Orell, M., & Vaisinen, R. A. (1979). Role of heredity in egg size variation in the Great Tit Parus major and the Pied Flycatcher Ficedula hypoleuca. Ornis Scandinavica, 10, 22-28.

Orr, R. T. (1945). A study of captive Galapagos finches of the genus Geospiza. Condor, 47, 177-201.

Otto, C. (1979). Environmental factors affecting egg weight within and between colonies of Fieldfare Turdus pilaris. Ornis Scandinavica, 10, 111-116.

Petersen, M. R. (1992). Intraspecific variation in egg shape among individual emperor geese. Journal of Field Ornithology, 63(3), 344-354.

Preston, F. W. (1968). The shapes of birds' eggs: mathematical aspects. Auk, 85, 454-463.

Preston, F. W. (1969). Shapes of birds' eggs: extant North American families. Auk, 86, 246-264.

Preston, F. W. (1974). The volume of an egg. Auk, 91,132-138.

Preston, F. W. & Preston, E. J. (1953). Variation of birds' eggs within the clutch. Annals of Carnegie Museum, 33, 129-139.

Preston, F. W. (1953). The shapes of birds' eggs. Auk, 70, 160-182.

Ricklefs, R. E. (1984). Variation in the size and composition of eggs of the European Starling. Condor, 86, 1-6.

Rohlf, F. J. & Archie, J. W. (1984). A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). Systematic Zoology, 33, 302-317.

Singh, K., Gupta, I., & Gupta, S. (2013). Classification of Bamboo Species by Fourier and Legendre Moment. International Journal of Advanced Science and Technology, 50, 61-70.

Svensson, B. W. (1978). Clutch dimensions and aspects of the breeding strategy of the Chaffinch Fringilla coelebs in northern Europe: a study based on egg collections. Ornis Scandinavica, 9, 66-83.

Vaisinen, R. A., Hilden, O., Soikkeli, M., & Vuolanto, S. (1972). Egg dimension variation in five wader species: the role of heredity. Ornis Fennica, 49, 25-44.

Van Noordwijk, A. J., Keizer, L. C. P., Van Balen, J. H., & Scharloo, W. (1981). Genetic variation in egg dimensions in natural populations of the Great Tit. Genetica, 55, 221-232.

White, R. J. & Prentice, H. C. (1988). Comparison of shape description methods for biological outlines. In H. H. Bock (Ed.), Classification and Related Methods of Data Analysis (pp. 395-402). Amsterdam: Elsevier Sci. Pub.

Wiebe, K. L. (2007). Hypoxia probably does not explain short incubation periods of woodpeckers. Condor, 109(4), 976-979.

Zhan, Q. B. & Wang, X. L. (2012). Elliptic Fourier Analysis of the Wing Outline Shape of Five Species of Antlion (Neuroptera: Myrmeleontidae: Myrmeleontini). Zoological Studies, 51(3), 399-405.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2014 Revista de Biología Tropical

Downloads

Download data is not yet available.