1
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
Blood parasites (Kinetoplastida: Trypanosomatidae)
infecting birds in the Brazilian Amazon
Pedro Ferreira França1; https://orcid.org/0000-0002-7234-8765
Darlison Chagas-de-Souza2; https://orcid.org/0000-0002-7610-9665
Tássio Alves Coêlho2; https://orcid.org/0000-0002-0264-4526
Edson Varga Lopes1,3; https://orcid.org/0000-0002-8278-5141
Lincoln Lima Corrêa4*; https://orcid.org/0000-0002-6453-4824
1. Programa de Pós-graduação em Biodiversidade (PPGBEES), Universidade Federal do Oeste do Pará, 68015-110,
Santarém, Pará, Brazil; francaornito@hotmail.com, papaformiga@yahoo.com.br
2. Laboratório de Estudos Morfofisiológicos e Parasitários, Universidade Federal do Amapá, 68903-419 Macapá, AP,
Brazil; darlisondcs@hotmail.com, coelho.tassio@gmail.com
3. Laboratório de Ecologia e Conservação, Instituto de Biodiversidade e Florestas (IBEF), Universidade Federal do Oeste
do Pará, 68015-110, Santarém, Pará, Brazil.
4. Instituto de Ciências e Tecnologia das Águas (ICTA), Universidade Federal do Oeste do Pará, 68015-110, Santarém,
Pará, Brazil; lincorre@gmail.com (*Correspondence)
Received 17-IV-2023. Corrected 04-VII-2023. Accepted 26-IX-2023.
ABSTRACT
Introduction: Trypanosomes are hemoparasites that can be observed circulating in the peripheral blood of birds.
Parasitological studies in birds in their natural environment are neglected, but are important for research relat-
ing to transmission, maintenance of the biological cycle, and abundance, among other parasitological aspects.
Objective: To describe infections by Trypanosoma sp. in birds in the Brazilian Amazon, as well as the prevalence,
morphological and morphometric characteristics of this hemoparasite.
Methods: In the Tapajós National Forest, we captured a total of 125 birds, mostly from the order Passeriformes.
We obtained blood samples from the ulnar vein using sterile insulin needles, and aliquots of blood using a
microhematocrit capillary tube. We made blood smears in triplicate and stained with the Giemsa method. We
viewd the morphotypes of the Trypanosoma sp. under the light microscope with objective lenses of 40 X and
100 X. To determine the morphometric characteristics of Trypanosomatidae, we used the Zen Blue Edition 2
software package.
Results: We observed the presence of hemoparasites in the trypomastigote form in specimens of Thamnophilidae,
Dendrocolaptidae and Conopophagidae, with low prevalence. Only one morphotype of Trypanosoma sp. was
detected and measurement.
Conclusions: We report the infection by Trypanosoma sp. in species of ecological importance, such as Phlegopsis
nigromaculata, endangered in Brazil. The morphology and morphometry of the morphotype found could con-
tribute to more detailed descriptions of these hemoparasites.
Key words: hemoparasites; morphology; Trypanosoma; Brazil.
https://doi.org/10.15517/rev.biol.trop..v71i1.54843
VERTEBRATE BIOLOGY
2Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
INTRODUCTION
A large number of parasites can be observed
in the blood of birds (White et al., 1978). These
microscopic organisms have a cosmopolitan
distribution, and have been described in sev-
eral groups of bird hosts in practically every
geographic region of the world (Lisbôa et al.,
2008). Although there are few records of health
changes resulting from trypanosome infection
in birds, there is similarity with the manifes-
tation in mammals, and changes in cardiac
tissue, liver, and spleen have been observed
(Mungomba et al., 1989). In addition, parasitic
infections in birds affect the mechanisms of
sexual selection, migration, reproduction, com-
petition and, in more severe cases, result in the
extinction of certain local bird species (Altizer
et al., 2000; McCallum & Dobson, 1995).
Trypanosomes are flagellated protozoa and
it is the most abundant and most important
genus among kinetoplastids. Trypanosomes are
extensively studied because they cause serious
diseases of humans (Chagas disease, sleeping
sickness) and domestic animals (Taylor et al.,
2007). In contrast to their mammalian relatives,
avian trypanosomes are in most cases harmless
to their hosts and they remain understudied
although they are not less interesting (Baker,
1976). The transmission in birds can occur
through a variety of vectors, such as mites, lice,
culicids, and simuliids (Molyneux, 1977; Svo-
bodová et al., 2017; Votýpka et al., 2012).
Although experimental infections involv-
ing vectors and birds have been performed
(Bennett, 1961; David & Nair, 1955; Votýpka et
al., 2012), aspects of avian trypanosome trans-
mission are poorly understood (Votýpka et al.,
2012). However, some of them are known to
be transmitted by ingestion of infected vectors
or by contamination of the hosts worn skin
or conjunctiva with parasites present in the
vectors feces (the hypphoboscid fly Ornitho-
myia avicularia and the black fly Eusimulium
securiforme) (Desser et al., 1975; Mungomba
et al., 1989; Svobodová et al., 2017; Votýpka &
Svobodová, 2004; Votýpka et al., 2012).
Although some species of the genus Try-
panosoma are etiological agents of diseases
that represent a public health concern, the
vast majority of trypanosomes species remain
neglected by research. There is a lack of
RESUMEN
Parásitos sanguíneos (Kinetoplastida: Trypanosomatidae) que infectan aves en la Amazonía brasileña
Introducción: Los tripanosomas son hemoparásitos que pueden observarse circulando en la sangre periférica
de las aves. Los estudios parasitológicos en aves en el medio natural son escasos, pero son importantes para la
investigación relacionada con la transmisión, el mantenimiento del ciclo biológico y la abundancia, entre otros
aspectos parasitológicos.
Objetivo: Describir infecciones por Trypanosoma sp. en aves de la Amazonia brasileña, así como la prevalencia,
características morfológicas y morfométricas de este hemoparásito.
Métodos: En la Floresta Nacional de Tapajós, capturamos un total de 125 aves, la mayoría del orden Passeriformes.
Obtuvimos muestras de sangre por punción de la vena cubital del ala con agujas estériles de insulina. Con un tubo
capilar microhematocrito, obtuvimos alícuotas de sangre. Realizamos frotis de sangre por triplicado y teñimos
con el método de Giemsa. Visualizamos los morfotipos de Trypanosoma sp. al microscopio óptico con lentes
objetivos de 40 X y 100 X. Para determinar las características morfométricas de Trypanosomatidae, usamos el
paquete informático Zen Blue Edition 2.
Resultados: Observamos la presencia de hemoparásitos en la forma tripomastigote en ejemplares de la familia de
aves Thamnophilidae, Dendrocolaptidae y Conopophagidae, con baja prevalencia. Solo detectamos un morfotipo
de Trypanosoma sp.
Conclusión: Reportamos la infección por Trypanosoma sp. en especies de importancia ecológica, como Phlegopsis
nigromaculata en peligro de extinción en Brasil. La morfología y morfometría del morfotipo encontrado puede
contribuir con descripciones más detalladas de estos hemoparásitos.
Palabras clave: hemoparásitos; morfología; Trypanosoma; Brazil.
3
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
information about aspects of the biological
cycle, hosts and prevalence, morphology, and
morphometry data of bird trypanosomes,
with the Amazon region being the least stud-
ied environment in this respect (Baker, 1976;
Valkiūnas et al., 2011).
In recent years, in Brazil and its different
biomes, including the Amazon, there has been
an increase in studies involving birds and hae-
mosporidians (Anjos et al., 2021; De La Torre
et al., 2021; Fecchio et al., 2007; Fecchio et al.,
2017; Fecchio et al., 2018; Fecchio et al., 2019;
Fecchio, de Faria et al., 2021; Fecchio, Lima et
al., 2021; Fecchio et al., 2022; Ferreira-Junior et
al., 2017; Ferreira-Junior et al., 2018; Ribeiro et
al., 2004; Roos et al., 2015; Sebaio et al., 2012).
However, the focus of these studies, although
very important, has been on the parasite-host
relationships, the life cycles, the vectors and the
consequences of these relationships between
birds and haemosporidians. Nevertheless, stud-
ies on avian trypanosomes remain scarce, espe-
cially when focusing on the Amazon region.
In terms of both area and diversity, the
Amazon region is the most important habitat
for Neotropical birds. About 800 species of
birds have been recorded in the Amazonia
biome, of which about 265 are endemic to
the region (Nores, 2000). The most important
families are Psittacidae, Trochilidae, Rampha-
stidae, Cracidae, Formicariidae, Tyrannidae,
Furnariidae, Cotingidae, Pipridae and Den-
drocolaptidae (Nores, 2000). Furthermore, the
Amazon Basin is highly heterogeneous, with
different phytophysiognomies providing a vari-
ety of habitats (Silva et al., 2005).
Studies of vertebrate biogeography have
shown that the distribution of many species in
the Amazon Basin is not continuous, suggest-
ing that similar distribution patterns of these
vertebrates are from centers of endemism (Silva
& Oren, 1996). Thus, it has been proposed that
there are seven recognized areas of endemism
in the Amazon, including the Western and
Southwestern regions of the State of Pará, in
addition to the Belém area of endemism in the
capital region of Pará, Brazil (Cracraft, 1985;
Silva & Oren, 1996).
In view of the importance of this biome
for the diversity of bird species, it is clear that
research on hemoparasites is of great impor-
tance for the region and can provide relevant
information on the different groups of hemo-
parasites to be studied, as well as the discov-
ery of new parasite species and their vectors.
The present study aims to record infection by
Trypanosoma sp. in wild birds from a locality
in the Brazilian Amazon, in addition to pro-
viding information on the infection intensity,
prevalence and morphometric characteristics
of trypanosomes.
MATERIALS AND METHODS
Location of bird collection: The present
study was carried out in the Floresta Nacional
do Tapajós (FLONA do Tapajós), a sustainable
use Conservation Unit in the Eastern Amazon,
in the West of the state of Pará (3°31’1” S &
55°4’23” W), the area has an elevation range of
~55-220 m.a.s.l. The reserve is 527 319 hectares
in size, and is delineated to the West by the
Tapajós River, to the East by the Santarém-
Cuiabá highway (BR-163), to the North by the
rural zone of the Belterra municipality and to
the South by the Cupari River. In the Tapajós
National Forest, there are two forest typologies:
i) Floresta Ombrófila Densa Aluvial, which are
those located on the banks of the Tapajós River
and its tributaries and streams within the Tapa-
jós National Forest; and ii) Floresta Ombrófila
Densa de terras baixas, where there is a large
occurrence of species of the genus Alchornea,
Handroanthus and Ficus, especially Ficus cestri-
folia Schott ex Spreng. and the species Tapirira
guianensis and Calophyllum brasiliensis (Carv-
alho et al., 2021).
Bird capture: The birds were captured
during June and August 2018 using mist nets
10 m long by 2.5 m high, with a 16 mm mesh.
Ten nets were installed in each of the 16 plots
sampled, which were 1 km apart and at least
500 meters from the edge of the forest. The
nets were set in each plot for two consecutive
days during the morning period. The sampling
4Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
effort was 120 h/net per plot, totaling 1 920
h/net, with inspections carried out at regular
intervals of 30 min. The individuals captured
were identified to the species level and follow-
ing the nomenclature and taxonomy established
in accordance with the Brazilian Committee of
Ornithological Records. The specimens were
identified with metal rings provided by the
National Center for the Research and Con-
servation of Wild Birds (CEMAVE), in order
to prevent the same bird being sampled more
than once.
Blood collection and methods of detec-
tion of hemoparasites and morphometry of
Trypanossoma sp.: Sterile insulin needles were
used to obtain blood samples by puncture of
the ulnar (wing) vein. A heparinized micro-
hematocrit capillary tube was then used to
collect aliquots of blood. A blood sample was
taken from the tube and used to prepare blood
smears in triplicate. The smears were air dried.
The slides were fixed in methanol and stained
with Giemsa stain (RenyLab® Brazil) accord-
ing to the Romanowsky principle. The mor-
photypes of trypanosomatidae were evaluated.
Light microscopy was used to study hemopara-
sites. Parasites were photographed in a Zeiss
Axioplan light microscope with an Axiocam
ERc 5S camera.
Measurements were taken from Trypano-
soma sp., including total body length with
flagellum (TL), body length along the midline
(BL), body width at the center of the nucleus
(BW), free flagellum length (F), nucleus length
(NL), nucleus width in the central portion
(NW), distance from the center of the nucleus
to the anterior extremity (NA), distance from
the center of the nucleus to the posterior
extremity (NP), distance from the center of
the kinetoplast to the center of the nucle-
us (KN), kinetoplast length (KL), kinetoplast
width (KW) and distance from the center of
the kinetoplast to the posterior end (KP). The
Zen Blue Edition 2 software package was used
to determine the morphometric characteristics
of Trypanosomatidae (Baker, 1956; Baker, 1966;
Baker, 1976).
Statistical analysis: To determine the
intensity of infection (expressed in parasites/
ml), the direct method was used, based on the
methodology described by De Carli (2001).
This consists of counting all the parasites found
in 100 microscopic fields with a magnification
of 1 000X, recorded and calculated as follows:
100 microscopic fields is equivalent to 0.2 μl
of blood (infection intensity = (N°: number
of parasites × 5) × 1 000 = (parasites/ml). The
ecological terms used and the infection param-
eters of prevalence, mean abundance and mean
intensity with respectives confidence interval
(IC) 95 % were calculated following Bush et
al. (1997), using Quantitative Parasitology 3.0
software (Reiczigel & Rózsa, 2005).
To perform the morphometric measure-
ments, due to the low number of trypomastigotes
found, we used an N= 10 of trypomastigotes
found in the hosts. Thus, the mean values
of the morphological regions measured were
used to compare the morphometric similar-
ity described for bird trypanosomes using the
Bray-Curtis method, with the aid of the Past 4.0
statistical program (Hammer et al., 2001).
RESULTS
A total of 125 birds were captured, all of
which belonged to the Passeriformes order,
except Veniliornis affinis (Piciformes) (Table 1).
The analysis identified the presence of trypo-
mastigotes in three species of Thamnophilidae:
Myrmornis torquata (Fig. 1A), Phlegopsis nigro-
maculata (Fig. 1B) and Willisornis poecilinotus
(Fig. 1C); one species of Dendrocolaptidae:
Xiphorhynchus guttatus (Fig. 1D) and one spe-
cies of Conopophagidae: Conopophaga aurita
(Fig. 1E). The overall prevalence was 8.8 %
(IC= 0.044 to 0.152), mean abundance was 0.22
(IC= 0.10 to 0.48), mean intensity was 2.45 (IC=
1.55 to 4.36) and with an intensity of infection
of 27 500 parasites/ml. In this study we identi-
fied only one morphotype of Trypanosoma sp.
The prevalence per bird family sampled was
7.2 % for Thamnophilidae (n = 55), 2.0 % for
Dendrocolaptidae (N = 50) and 50.0 % for
Conopophagidae (N = 2).
5
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
Table 1
Bird species infected by Trypanosoma sp. and prevalence (per species infected) and the infection intensity (expressed in
parasites/mL of blood) in birds from the Tapajós National Forest, Pará, Brazil.
Hosts NInfected
Hosts
Infection intensity
Parasites / mL Prevalence
Picidae
Veniliornis affinis (Swainson, 1821) 1 0 - -
Thamnophilidae
Epinecrophylla leucophthalma (Pelzeln, 1868) 2 0 - -
Myrmotherula axillaris (Vieillot, 1817) 1 0 - -
Myrmotherula longipennis Pelzeln, 1868 1 0 - -
Myrmotherula menetriesii (d’Orbigny, 1837) 6 0 - -
Thamnomanes caesius (Temminck, 1820) 1 0 - -
Thamnophilus schistaceus d’Orbigny, 1835 6 0 - -
Sciaphylax hemimelaena (Sclater, 1857) 1 0 - -
Hypocnemis cantator (Boddaert, 1783) 1 0 - -
Willisornis poecilinotus (Cabanis, 1847) 6 1 20.000 0.167 (0.004 – 0.641)
Phlegopsis nigromaculata (d’Orbigny & Lafresnaye, 1837) 17 5 45.000 0.294 (0.123 – 0.544)
Rhegmatorhina gymnops Ridgway, 1888 5 0 - -
Myrmoborus myotherinus (Spix, 1825) 1 0 - -
Pyriglena leuconota (Spix, 1824) 1 0 - -
Myrmornis torquata (Boddaert, 1783) 6 3 60.000 0.500 (0.153 – 0.846)
Conopophagidae
Conopophaga aurita (Gmelin, 1789) 2 1 5.000 0.500 (0.254 – 0.974)
Formicariidae
Formicarius colma Boddaert, 1783 1 0 - -
Dendrocolaptidae
Dendrocincla fuliginosa (Vieillot, 1818) 23 0 - -
Glyphorynchus spirurus (Vieillot, 1819) 15 0 - -
Dendrocolaptes certhia (Boddaert, 1783) 1 0 - -
Dendrocolaptes hoffmannsi Hellmayr, 1909 2 0 - -
Dendrocolaptes picumnus Lichtenstein, 1820 1 0 - -
Hylexetastes perrotii (Lafresnaye, 1844) 1 0 - -
Xiphorhynchus spixii (Lesson, 1830) 2 0 - -
Xiphorhynchus guttatus (Lichtenstein, 1820) 4 1 5.000 0.250 (0.012 – 0.751)
Pipridae
Manacus manacus (Linnaeus, 1766) 1 0 - -
Onychorhynchidae
Onychorhynchus coronatus (Statius Muller, 1776) 5 0 - -
Tityridae
Schiffornis turdina (Wied, 1831) 1 0 - -
Platyrinchidae
Platyrinchus platyrhynchos (Gmelin, 1788) 2 0 - -
Passerellidae
Arremon taciturnus (Hermann, 1783) 4 0 - -
Cardinalidae
Habia rubica (Vieillot, 1817) 4 0 - -
Values inside the parenthesis represent 95 % confident intervals.
6Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
Morphotype characteristics of
Trypanosoma sp.
Taxonomic Summary
Hosts: Myrmornis torquata, Phlegopsis nigro-
maculata, Willisornis poecilinotus, Xiphorhyn-
chus guttatus, Conopophaga aurita.
Type locality: Tapajós National Forest, Munici-
pality of Belterra, Western Pará, Brazil.
Habitat: Blood.
The morphotype of Trypanosoma sp.
found (Fig. 2A, Fig. 2B) presents an elongated
cell body, predominantly “C” shaped, with two
flexures in the anterior region. Granulations
are present in the cytoplasm and the maximum
width of the body is equal to the maximum
width of the nucleus. The nucleus is spherical
to ovoid in shape with a karyosome present,
an ovoid kinetoplast projecting at the posterior
end. The distance between the kinetoplast and
the posterior end is evident. An undulating
membrane is present and easily recognized,
extending along the body with indistinguish-
able separation from the free flagellum. The
flagellum is about one third the size of the cell
body (Fig. 2C).
Fig. 1. Birds species parasitized by Trypanosoma sp. A.
Myrmornis torquata, B. Phlegopsis nigromaculata, C.
Willisornis poecilinotus, D. Xiphorhynchus guttatus, E.
Conopophaga aurita (Scale bar = 2cm).
7
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
The morphometrics described in the
present study were compared with other vali-
dated species of avian trypanosomes (Table 2).
According to the Bray-Curtis index, a simi-
larity morphometric of 96.15 % with Try-
panosoma ontarioensis was indicated (Fig. 3).
Despite the high morphological similarity,
species determination of the genus Trypano-
soma is impossible without the use of molecu-
lar methods. This is due to the plasticity of
the genus Trypanosoma in other vertebrates,
which does not allow species identification
based on morphology and morphometry
(Spodareva et al., 2018).
DISCUSSION
Various biological and ecological char-
acteristics of the host have been associated
with the prevalence of hemoparasites in birds.
In general, studies on the effects of avian
hemoparasites on the biological and ecological
characteristics of birds have focused on charac-
teristics such as sex, age, body mass, geographic
area, nest type, foraging layers, and feeding
habits. Little is known about the relationship
between feeding habits and hemoparasite sus-
ceptibility, although all positive birds in our
study were insectivorous.
Previous studies on blood-borne para-
sites in birds have shown that species of birds
that belong to insectivorous groups are more
susceptible to infection with Haemoproteus
and Plasmodium (Laurence et al., 2013). Thus,
hemoparasites of the genus Plasmodium sp.
the causative agent of avian malaria, have been
described as a potential cause of extinction
and population decline in many bird species,
reducing host fitness and in some cases causing
death (Cannell et al., 2013, Paxton et al., 2016).
Notably, there are no studies on the prevalence
Fig. 2. A. B. Trypomastigote forms of Trypanosoma sp. identified in the peripheral blood of birds from the Brazilian Amazon
(10µm bar), C. Schematic drawing of the morphotype of Trypanosoma sp. parasite of five species of birds from the Tapajós
National Forest, Brazil.
8Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
aspects of infection with these associations for
the avian trypanosome.
The differential susceptibility of bird
groups, in relation to hematozoans, may derive
from differences in the reproductive biology of
different species and habitat type, as well as fac-
tors such as small sample sizes (for some species
or families) and sampling in different seasons
of the year (Norris et al., 1994). In addition,
infection may depend on biological parameters
such as sex, age, plumage color and body condi-
tion, according to (Norris et al., 1994).
Bird trypanosomes have been described
in approximately 100 species based on mor-
phological features and host-specific factors,
but only a few morphological features have
been sufficiently described, because of inad-
equate illustrations and descriptions (Valkiūnas
et al., 2011). Although the morphometry of
the parasite may vary during the life cycle, its
morphological characteristics (body shape, free
flagellum, undulating membrane, kinetoplast
position and morphology) are well conserved
(Valkiūnas et al., 2011). We found the same
relationship when we performed similarity tests
with T. anguiformis and T. polygranularis that
had been characterized both morphologically
and molecularly by Valkiūnas et al. (2011).
Morphometrically, similarities were evi-
denced when we compared the morphotype
analyzed in the present study with T. ontarien-
sis. There was a similarity in the size of the cell
body, the distance from the posterior region
to the center of the nucleus, the distance from
the center of the nucleus to the anterior end,
and in the length of the free flagellum, with
these characteristics differentiating the mor-
phological types of T. avium, T. anguiformis,
Fig. 3. Dendrogram of morphometric similarity between Trypanosoma sp. and species of avian trypanosomes. (*Present
study).
9
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
T. polygranularis, T. irwini, T. naviformis, T.
paddae and T. corvi. Despite the close mor-
phometric similarity, it is not possible to con-
sider identification at the species level only
using the morphometric technique, due to the
notable plasticity of Trypanosoma spp. (Porn-
panom et al., 2019; Spodareva et al., 2018;
Valkiūnas et al., 2003).
The present study corroborates the find-
ings of Woo and Bartlett (1982), in which there
is no parasitic specificity for T. ontariensis, with
infection being observed in five different spe-
cies of hosts. According to Woo and Bartlett
(1982), T. ontariensis biologically resembles
T. corvi and T. avium, and can be transmitted
experimentally to a wide variety of birds, with
low parasitemia being observed in all experi-
mental infections.
The morphometry in the present study was
significant when compared to that of T. avium
and T. corvi. According to (Votýpka et al., 2004;
Votýpka et al., 2012) the species T. corvi and
T. avium belong to the “avium” group where
the large straited trypanosomes of birds are
grouped. These morphological types present
similar forms, described in different hosts in
the New and Old Worlds. Studies carried out by
(Mungomba et al., 1989) stated that the repre-
sentatives of the “avium” group suggest a com-
plex group of species, with robustness in the cell
body and free flagellum, findings corroborated
by the comparison with the morphotype found
in the present study.
Experimental studies of the trypanosome
life cycle of birds show that many Trypanosoma
species can be easily distinguished using mor-
phometry alone during co-infections (Moly-
neux, 1977; Mungomba et al., 1989). In relation
to the variability of morphological forms (par-
ticularly during development in vectors and
in the initial morphogenesis of the metacyclic
forms in birds), the hematozoic trypomastigote
form is relatively fully developed, with a mor-
phology with highly conserved characteristics,
Table 2
Morphometric data of trypomastigote forms and of various species of Trypanosoma spp. parasites of birds
Measurements (µm)
Trypanosoma sp.*
T. avium (A) (Baker, 1956)
T.avium (B) (Baker, 1956)
T. avium (Grewal, 1963)
T. anguiformis
(Valkiūnas et al., 2011)
T. everetti (Molyneux, 1973)
T. polygranularis
(Valkiūnas et al., 2011)
T. irwini
(McInnes et al., 2009)
T. navifor mis
(Sehgal et al., 2015)
T. paddae
(Woo & Bartlett, 1982)
T. ontarioensis
(Woo & Bartlett, 1982)
T. cf. corvi (Slender form)
(Pornpanom et al., 2019)
T. cf. corvi (Intermediate form)
(Pornpanom et al., 2019)
T. cf. corvi (Broad form)
(Pornpanom et al., 2019)
T. avium
(Pornpanom et al., 2019)
TL 25.6 56 51.1 43.5 32.9 22.3 30.6 40.9 22.5 42 26.4 62.8 62.4 67.1 49.4
BL 17.4 52.1 43.7 40.6 28.6 17.4 20.6 30.6 22.5 36.3 18 52.4 50.7 56.3 40.5
KP 0.4 10.7 2.3 0.9 1.8 3.6 1.9 8 1.4 6.8 7.3 9.1 6.3
NP 8.9 24.9 20 19.5 16.2 13.3 0 11.2 19 8.3 21 20.8 24.5 17.2
NA 8.5 11.8 7.7 13.3 11.9 11.1 17.3 9.6 27.2 29.2 30.3 20.8
KN 8.4 14.1 7.9 11.6 10.3 9.2 11 6.6 12.6 13.1 13.6 9.7
FF 8.3 6.2 7.4 7 4.3 7 10 10.3 0 5.7 8.4 10.4 11.7 10.8 8.9
BW 4.4 4.6 4.6 5.2 2 5.2 3.5 3 4.4 3.1 2.6 3.8 5.5 7.2 6.4
*Present study. The references below each Trypanosoma species indicate where measurements were taken to compare.
Morphological location of the measured regions of Trypanosoma spp.: Total body length with flagellum (TL), body length
along the midline (BL), body width at the center of the nucleus (BW), free flagellum length (FF), distance from the center of
the nucleus to the anterior extremity (NA), distance from the center of the nucleus to the posterior extremity (NP), distance
from the center of the kinetoplast to the center of the nucleus (KN) and distance from the center of the kinetoplast to the
posterior end (KP).
10 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
i.e. body shape, body size limits, kinetoplast
position and morphology, characteristics of
the flagellum and undulating membrane, and
morphometric índices (Baker, 1956; Bennett,
2008; Chatterjee & Ray, 1971; Molyneux, 1977;
Votýpka et al., 2004).
The diversity of trypanosome species in
Amazonian birds is still poorly known. This
may be related to logistical difficulties as well as
to technical and structural limitations (molecu-
lar biology laboratories) in the field. In our
study, we provided data on the occurrence of
Trypanosoma sp. and target species, as well as
morphological and morphometric data of one
morphotype, which could be used in more
robust studies using integrative techniques of
morphology, morphometry and molecular
biology methods. Even though the diversity of
trypanosome species is not known, it is sug-
gested that studies involving hematophagous
invertebrates be designed to better elucidate
aspects of the parasite-host relationship in
Amazonian birds.
Ethical statement: the authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are fully
and clearly stated in the acknowledgments sec-
tion. A signed document has been filed in the
journal archives.
ACKNOWLEDGMENTS
Pedro Ferreira França would like to thank
CAPES for the grant received, the Brazilian
Forestry Service for the logistical support and
ICMBio for authorizing the capture of birds.
The author Lincoln Lima Corrêa would like
to express his gratitude for the guaranteed
and financial support granted by the CAPES/
FAPESPA project N. 06/2015-Process n°
88881.160660/2017-01. Darlison Chagas-de-
Souza and Tássio Alves Coêlho would like
to thank Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior for the grant
received (Process #88887.636892/2021-00 and
#88887.598663/2021-00, respectively).
REFERENCES
Anjos, C. C., Chagas, C. R. F., Fecchio, A., Schunck, F.,
Costa-Nascimento, M. J., Monteiro, E. F., Mathias,
B. S., Bell, J. A., Guimarães, L. O., Comiche, K. J. M.,
Valkiūnas, G., & Kirchgatter, K. (2021). Avian malaria
and related parasites from resident and migratory
birds in the Brazilian Atlantic Forest, with description
of a new Haemoproteus species. Pathogens, 10(2), 103.
Altizer, S. M., Oberhauser, K. S., & Brower, L. P. (2000).
Associations between host migration and the preva-
lence of a protozoan parasite in natural populations
of adult monarch butterflies. Ecological Entomology,
25(2), 125–139.
Baker, J. R. (1956). Studies on Trypanosoma avium Dani-
lewsky 1885 III. Life Cycle in vertebrate and inverte-
brate hosts. Parasitology, 46(3-4), 335–352.
Baker, J. R. (1966). Studies on Trypanosoma avium. Parasi-
tology, 56(1), 15–19.
Baker, J. R. (1976). Biology of the trypanosomes of birds.
In W. H. R. Lumsden, & Evans, D. A (Eds.), Biology
of the Kinetoplastida (pp. 131–174). Academic Press.
Bennett, G. F. (1961). On the specificity and transmission
of some avian trypanosomes. Canadian Journal of
Zoology, 39(1), 17–33.
Bennett, G. F. (2008). Development of trypanosomes of the
T. avium complex in the invertebrate host. Canadian
Journal of Zoology, 48(5), 945–957.
Bush, A. O., Lafferty, K. D., Lotz, J. M., & Shostak, A. W.
(1997). Parasitology meets ecology on its own terms:
Margolis et al. Revisited. The Journal of Parasitology,
83(4), 575–583.
Cannell, B. L., Krasnec, K. V., Campbell, K., Jones, H. I.,
Miller, R. D., & Stephens, N. (2013). The pathology
and pathogenicity of a novel Haemoproteus spp.
infection in wild Little Penguins (Eudyptula minor).
Veterinary Parasitology, 197(1-2), 74–84.
Carvalho, J. O. P., Ruschel, A. R., & Castro, T. da C. (2021).
Composição florística e estrutura da comunidade arbó-
rea na Floresta Nacional do Tapajós. In L. L. Giacomin,
& C. R. Brocardo (Eds.), Biodiversidade na Floresta
Nacional do Tapajós e na Reserva Extrativista Tapajós-
Arapiuns (pp. 66–79). Universidade Federal do Oeste
do Pará.
Chatterjee, D. K., & Ray, H. N. (1971). Some observations
on the morphology and developmental stages of
Trypanosorna avium bakeri ssp.nov. from the red-
whiskered bulbul (Otocompsa jocosa Linn.). Parasito-
logy, 62(2), 331–338.
11
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
Cracraft, J. (1985). Historical biogeography and patterns of
differentiation within the South American avifauna:
areas of endemism. In P. A. Buckley, M. S. Foster, E.
S. Morton, R. S. Ridgley, & F. G. Buckley (Eds.), Neo-
tropical Ornithology (pp. 49–84). American Ornitho-
logists Union.
David, A., & Nair, C. P. (1955). Observations on a natu-
ral (cryptic) infection of trypanosomes in sparrows
(Passer domesticus Linnaeus). I. Susceptibility of birds
and mammals to the trypanosomes. Indian Journal of
Malariology, 9(2), 95–98.
De Carli, G. A. (2001). Parasitologia clínica: seleção de
métodos e técnicas de laboratório para o diagnóstico
das parasitoses humanas. Editora Atheneu.
De La Torre, G. M., Campião, K. M., Bell, J. A., Silva, A. M.,
& Fecchio, A. (2021). Avian community composition
affects ornithophilic mosquito and avian malaria
turnover across an interfluvial system in Southern
Amazonia. Journal of Avian Biology, 52(3), e02701.
Desser, S. S., McIver, S. B., & Jez, D. (1975). Observations on
the role of simuliids and culicids in the transmission
of avian and anuran trypanosomes. The International
Journal of Parasitology, 5(5), 507–509.
Fecchio, A., Bell, J. A., Pinheiro, R. B. P., Cueto, V. R.,
Gorositio, C. A., Lutz, H. L., Gaiotti, M. G., Paiva, L.
V., França, L. F., Toledo-Lima, G., Toletino, M., Pinho,
J. B., Fontana, C. S., Grande, J. M., Santillán, M. A.,
Caparroz, R., Roos, A. L., Kohler, G., Bessa, R., ...
Collins, M. D. (2019). Avian host composition, local
speciation, and dispersal drive the regional assembly
of avian malaria parasites in South American birds.
Molecular Ecology, 28(10), 2681–2693.
Fecchio, A., Dias, R. I., Belo, N. O., Ferreira, T. V., Reyes, A.
O., Dispoto, J. H., Weckstein, J. D., Bell, J. A., Tkach,
V. V., & Pinho, J. B. (2022). Host foraging behavior
and nest type influence prevalence of avian haemos-
poridian parasites in Pantanal. Parasitology Research,
121(5), 1407–1417.
Fecchio, A., de Faria, J. P., Bell, J. A., Nunes, R., Alves, T.,
Weckstein, J. D., & Lima, M. R. (2021). Mining increa-
ses the prevalence of avian haemosporidian parasites
in Northeast Amazonia. Parasitology Research, 120(2),
605–613.
Fecchio, A., Ellis, V. A., Bell, J. A., Andretti, C. B., d’Horta,
F. M., da Silva, A. M., Tkach, V. V., & Weckstein,
J. D. (2017). Avian malaria, host life history traits
and mosquito abundance in southeastern Amazonia.
Parasitology, 144(8), 1117–1132.
Fecchio, A., Lima, M. R., Bell, J. A., Schunck, F., Corrêa, A.
H., Beco, R. P., Nucitelli, C., Jahn, A., Fontana, C. S.,
da Silva, T. W., Repenning, M., Braga, E. M., Garcia, J.
E., Lugarini, C., Silva, J. C. R., Andrade, L. H. M., Ellis,
V. A., Weckstein, J. D., Dispoto, J. H., ... De La Torre,
G. M. (2021). Loss of forest cover and host functio-
nal diversity increases prevalence of avian malaria
parasites in the Atlantic Forest. International Journal
of Parasitology, 51(9), 719–728.
Fecchio, A., Marini, M. A., & Braga, E. M. (2007). Low
prevalence of blood parasites in Cerrado birds, Cen-
tral Brazil. Neotropical Biological Conservation, 2(3),
127–135.
Fecchio, A., Pinheiro, R., Felix, G., Faria, I. P., Pinho, J. B.,
Braga, E. M., Farias, I. P., Alexio, A., Tkach, V. V.,
Collins, M. D., Bell, J. A., & Weckstein, J. D. (2018).
Host community similarity and geography shape the
diversity and distribution of haemosporidian parasi-
tes in Amazonian birds. Ecography, 41(3), 505–515.
Ferreira-Junior, F. C., Rodrigues, R. A., Ellis, V. A., Leite, L.
O., Borges, M. A. Z., & Braga, E. M. (2017) Habitat
modification and seasonality influence avian haemos-
poridian parasite distributions in southeastern Brazil.
Plos One, 12(6), e0178791.
Ferreira-Junior, F. C., Dutra, D. de A., Silveira, P., Pacheco,
R. C., Witter, R., Ramos, D. G. de S., Pacheco, M. A.,
Escalante, A. A., & Braga, É. M. (2018). A new patho-
gen spillover from domestic to wild animals: Plasmo-
dium juxtanucleare infects free-living passerines in
Brazil. Parasitology, 145(14), 1949–1958.
Grewal, M. S. (1963). Studies on the blood-parasites of the
Whitethroated munia, Uroloncha malabarica Lin-
naeus. (A. Trypanosoma avium Danilewsky, 1885.
(B). Trypanosoma delhiense sp. nov. Indian Journal of
Malariology, 17(1963), 55–64.
Hammer, Ø. H., David, A. T., Ryan, P. D., & Ryan, P. D.
(2001). Past: Paleontological Statistics Software Pac-
kage for education and data analysis. Palaeontologia
Electronica, 4(1), 1–9.
Laurence, S. G. W., Jones, D., Westcott, D., Mckeown, A.,
Harrington, G., & Hilbert, D. W. (2013). Habitat frag-
mentation and ecological traits influence the preva-
lence of avian blood parasites in a tropical rainforest
landscape. Plos One, 8(10), e76227.
Lisbôa, R. S., Guedes, J. D. S., Silva, F. J. M., Cunha, N. C.,
Machado, C. H., & Fonseca, A. H. (2008). Alterações
nos parâmetros hematológicos de domesticus expe-
rimentalmente infectados por Gallus gallus Borre-
lia anserina. Pesquisa Veterinária Brasileira, 28(10),
527–532.
McCallum, H., & Dobson, A. (1995). Detecting disea-
se and parasite threats to endangered species and
ecosystems. Trends in Ecology and Evolution, 10(5),
190–194.
McInnes, L. M., Gillett, A., Ryan, U. M., Austen, J., Cam-
pbell, R. S. F., Hanger, J., & Reid, S. A. (2009).
Trypanosoma irwini n. sp. (Sarcomastigophora:
Trypanosomatidae) from the koala (Phascolarctos
cinereus). Parasitology, 136(8), 875–885.
12 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 71: e54843, enero-diciembre 2023 (Publicado Oct. 02, 2023)
Molyneux, D. H. (1977). Vector relationships in the Trypa-
nosomatidae. Advances in Parasitology, 15(1977),
1–82.
Mungomba, L. M., Molyneux, D. H., & Wallbanks, K.
R. (1989). Host-parasite relationship of Trypano-
soma corvi in Ornithomyia avicularia. Parasitology
Research, 75(3), 167–174.
Nores, M. (2000). Species richness in the Amazonian bird
fauna from an evolutionary perspective. Emu, 100(5),
419–430.
Norris, K., Anwar, M., & Read, A. F. (1994). Reproductive
effort influences the prevalence of haematozoan para-
sites in great tits. Journal of Animal Ecology, 63(3),
601–610.
Paxton, E. H., Camp, R. J., Gorresen, P. M., Crampton, L. H.,
Leonard Jr., D. L., & Vanderwerf, E. A. (2016). Collap-
sing avian community on Hawaiian island. Science
Advances, 2(9), e1600029.
Pornpanom, P., Salakij, C., Prasopsom, P., Lertwatcharasa-
rakul, P., Kasorndorkbua, C., & Santavakul, M. (2019).
Morphological and molecular characterization of
avian trypanosomes in raptors from Thailand. Para-
sitology Research, 118(2019), 2419–2429.
Reiczigel, J., & Rózsa, L. (2005). Quantitative Parasitology
3.0. Budapest, Hungria.
Ribeiro, S. F., Sebaio, F., Branquinho, F. C. S., Marini, M.
A., Vago, A. R., & Braga, E. M. (2004). Avian malaria
in Brazilian passerine birds: parasitism detected by
nested PCR using DNA from stained blood smears.
Parasitology, 130(3), 261–267.
Roos, F. L., Belo, N. O., Silveira, P., & Braga, E. M. (2015).
Prevalence and diversity of avian malaria parasites in
migratory Black Skimmers (Rynchops niger, Laridae,
Charadriiformes) from the Brazilian Amazon Basin.
Parasitology Research, 114(10), 3903–3911.
Sebaio, F., Braga, É. M., Branquinho, F., Fecchio, A., &
Marini, M. Â. (2012). Blood parasites in passerine
birds from the Brazilian Atlantic Forest. Revista Brasi-
leira de Parasitologia Veterinária, 21(1), 7–15.
Sehgal, R. N. M., Iezhova, T. A., Marzec, T., & Valkiūnas, G.
(2015). Trypanosoma naviformis sp. nov. (Kinetoplas-
tidae: Trypanosomatidae) from widespread African
songbirds, the Olive sunbird (Cyanomitra olivacea)
and Yellow-whiskered greenbul (Andropadus latiros-
tris). Zootaxa, 4034(2), 342–350.
Silva, J. M., Rylands, A. B., & Fonseca, G. A. B. (2005). O
destino das áreas de endemismo na amazônia. Mega-
diversidade, 1(1), 124–131.
Silva, J. M. C., & Oren, D. C. (1996). The application of
the parsimony analysis of endemicity in Amazonian
biogeography: an example with primates. Biological
Journal of the Linnean Society, 59(4), 427–437.
Spodareva, V. V., Grybchuk-Ieremenko, A., Losev, A.,
Votýpka, J., Lukeš, J., Yurchenko, V., & Kostygov, A.
Y. (2018). Diversity and evolution of anuran trypano-
somes: insights from the study of European species.
Parasites & Vectors, 11(1), 447.
Svobodová, M., Dolnik, O. V., Čepička, I., & Rádrová, J.
(2017). Biting midges (Ceratopogonidae) as vectors of
avian trypanosomes. Parasites & Vectors, 10(1), 224.
Taylor, M. A., Coop, R. L., & Wall, R. L. (2007). Veterinar y
parasitology. Blackwell Publishing.
Valkiūnas, G., Iezhova, T. A., & Shapoval, A. P. (2003).
High prevalence of blood parasites in hawfinch Coc-
cothraustes coccothraustes. Journal of Natural History,
37(22), 2647–2652.
Valkiūnas, G., Iezhova, T. A., Carlson, J. S., & Sehgal, R. N.
M. (2011). Two new Trypanosoma species from Afri-
can birds, with notes on the taxonomy of avian trypa-
nosomes. The Journal of Parasitology, 97(5), 924–930.
Votýpka, J., Lukeš, J., & Oborník, M. (2004). Phylogene-
tic relationship of Trypanosoma corvi with other
avian Trypanosomes. Acta Protozoologica, 43(2004),
225–231.
Votýpka, J., & Svobodová, M. (2004). Trypanosoma avium:
experimental transmission from blackflies to cana-
ries. Parasitology Research, 92(2), 147–151.
Votýpka, J., Szabová, J., Rádrová, J., Zídková, L., & Svobo-
dová, M. (2012). Trypanosoma culicavium sp. nov., an
avian trypanosome transmitted by Culex mosquitoes.
International Journal of Systematic and Evolutionary
Microbiology, 62(3), 745–754.
White, E. M., Greiner, E. C., Bennett, G. F., & Herman, C.
M. (1978). Distribution of the hematozoa of Neotro-
pical birds. Revista de Biología Tropical, 26(1), 43–102.
Woo, P. T. K., & Bartlett, C. M. (1982). Trypanosoma
ontarioensis n.sp. and T . paddae from Corvus bra-
chyrhynchos brachyrhynchos in Ontario, Canada, with
notes on the biology of T. ontarioensis n.sp. Canadian
Journal of Zoology, 60(9), 2107–2115.