363
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Distribution, diversity, endemism, and ecology of Nymphalid butterflies
(Lepidoptera: Nymphalidae) in the Loxicha Region, Oaxaca, Mexico
Armando Luis-Martínez1; https://orcid.org/0000-0002-1044-3986
Omar Ávalos-Hernández1; https://orcid.org/0000-0002-5476-9400
Marysol Trujano-Ortega1, 2; https://orcid.org/0000-0001-8911-8504
Arturo Arellano-Covarrubias1; https://orcid.org/0000-0001-9515-5782
Isabel Vargas-Fernández1; https://orcid.org/0000-0001-6524-7184
Jorge Llorente-Bousquets1; https://orcid.org/0000-0003-0876-0533
1. Museo de Zoología (Entomología), Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional
Autónoma de México, Av. Universidad 3000, Circuito Exterior S/N, C.P. 04510, Ciudad de México, México; alm@
ciencias.unam.mx, omaravalosh@ciencias.unam.mx, marysol_trujano@yahoo.com.mx, arellano.covarrubias@gmail.
com, ivf@ciencias.unam.mx, llorentebousquets@gmail.com (* Correspondence).
2. Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Batalla 5 de Mayo
s/n, Ejercito de Oriente, Iztapalapa, 09230, Ciudad de México, México.
Received 26-X-2021. Corrected 14-III-2022. Accepted 27-V-2022.
ABSTRACT
Introduction: The Loxicha Region of Oaxaca, Mexico, has been historically important for the study of
Nymphalidae, second in the Papilionoidea for species richness. Describing the diversity patterns of this butterfly
clade in Loxicha can improve our understanding of the evolutionary history of the Sierra Madre del Sur, the
Mexican Pacific slope, and Mexico in general.
Objective: To describe the temporal and spatial patterns of Nymphalidae diversity along an elevational gradient
(80-2 600 m), and to compare Loxicha’s fauna with other regions in Mexico.
Methods: We obtained 28 756 records from 21 sites in the Loxicha Region, representing seven years of sam-
pling. We estimate and analyze the diversity, endemism, and distributional patterns for three elevational levels
and five vegetation types. We estimated species composition and similarity with other regions of the Pacific and
Atlantic slopes.
Results: We identified 189 taxa, including species and subspecies, from 85 genera and ten subfamilies of
Nymphalidae. Loxicha contains 46 % of the species in the family recognized for Mexico, including ten endemic
species and 56 endemic subspecies. Cloud forest and low elevations were the most diverse habitats for this
family. There is a clear divergence between the Atlantic and Pacific faunas, and the Sierra Madre del Sur has
two faunal components. High-elevation sites in Oaxaca, and in the neighboring state of Guerrero, have a distinc-
tive fauna, apparently isolated from low-elevation sites, revealing an archipelagic distribution for cloud forest
Nymphalidae.
Conclusions: The Loxicha Region is one of the richest areas for Nymphalidae in Mexico. Distribution on the
Pacific slope is determined by geographical history and ecological conditions, including elevation. Nymphalidae
can be used to test hypotheses of biogeographic regionalization in Mexico.
Key words: Brush-footed butterflies; elevational gradient; sampling efficiency; phenology; biogeographic
provinces; Van Someren-Rydon traps.
https://doi.org/10.15517/rev.biol.trop..v70i1.48821
INVERTEBRATE BIOLOGY
364 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Brush-footed butterflies (Nymphalidae)
represent the second most diverse family of
Papilionoidea worldwide, behind the skip-
pers (Hesperiidae). Because of the remarkable
diversity and local endemism featured within
Nymphalidae, the description and analysis of
spatio-temporal patterns of this group are a pri-
ority for advancing conservation and systemat-
ics. This is particularly true for Mexico, which is
a megadiverse country and biodiversity hotspot
where Nymphalidae constitute 25 % (413 spe-
cies) of the country’s Papilionoidea fauna sensu
lato (Llorente-Bousquets et al., 2014).
Oaxaca is one of the most biodiverse states
in Mexico (Flores-Villela & García-Vázquez,
2014; García-Mendoza & Meave del Castillo,
2011; Navarro-Sigüenza et al., 2014), and this
pattern is reflected in Nymphalidae. Some 339
species or 82 % of the country’s nymphalids
are documented from Oaxaca, ranking it sec-
ond only to the state of Chiapas in nymphalid
species richness (Luis-Martínez et al., 2016).
This outstanding biodiversity in Oaxaca is
attributable to the convergence of five different
biogeographic provinces in the state, with the
most well-represented of these being the Sierra
Madre del Sur, Costa del Pacífico, and Golfo de
México (Morrone, 2005; Morrone et al., 2002).
The Loxicha Region of Oaxaca lies within
the Sierra Madre del Sur, and it is of special
faunal interest. Loxicha experienced two main
collecting periods in the 20th century, during
which numerous species of Nymphalidae were
described and named (Luis-Martínez et al.,
2020). The MARIPOSA database (Luis-Mar-
tínez et al., 2005), contains 1 248 records from
the Loxicha Region during that century, with
139 species of Nymphalidae being documented
by more than 30 collectors. Particularly notable
among those collectors were Eduardo Cecilio
Welling with 66 species (265 records), and
John Kemner with 78 species (402 records).
Modern description and analysis of the
Papilionoidea from the Pacific slope of the
Loxicha Region has been the core focus of an
ongoing project, begun in 2005, to analyze the
butterfly fauna of Oaxaca (Luis-Martínez et
al., 2016). To date, the families Papilionidae,
Pieridae, and Riodinidae of the Loxicha Region
have been analyzed (Arellano-Covarrubias et
al., 2018; Luis-Martínez et al., 2020). The
present study aims to describe the temporal and
spatial patterns of Nymphalidae diversity in
the Loxicha Region. Based on a review of the
literature and historical records, coupled with
sampling from 2005-2014 along an elevational
gradient from 80–2 600 m, we document this
diversity and make a preliminary comparison
of nymphalids in Loxicha to other compara-
tively well-sampled regions to describe broad-
scale patterns.
Historical outline of the collection of
Papilionoidea from the Pacific slope and the
Loxicha Region: The historical collection and
classification of Mexican species of Papilionoi-
dea began at the end of the 19th century and
continued through the early 1980’s. Collectors
generally focused on the Southeastern states,
the Atlantic slope, and the states of Guerrero
and Morelos due to the high diversity of these
areas and to the presence of associated high-
ways (v. gr. Llorente-Bousquets et al., 1986;
Llorente-Bousquets & Luis-Martínez, 1993;
Llorente-Bousquets et al.,1998; Luis-Martínez
et al., 2000; Luis-Martínez et al., 2003; Michán
et al., 2004). During this period, sporadic col-
lections were also made in Northern Mexico,
mostly carried out by academic institutions of
the USA (v. gr. Comstock, 1953; Holland, 1995;
Spade et al., 1988; Stanford, 1998). The Pacific
slope of Mexico was often ignored by collec-
tors, resulting in relatively few publications
except for a butterfly checklist for the Cha-
mela Biological Research Station in the state
of Jalisco (Beutelspacher, 1982), notes on the
butterflies of some Pacific islands (Vázquez,
1958; Vázquez, 1959; Vázquez, 1960), and a
contribution on the fauna of the Pacific slope
of Jalisco (v. gr. Comstock & Vázquez, 1961).
Additionally, Members of the Mexican Soci-
ety of Lepidopterology published the results
of periodic collections along this slope (v. gr.
Maza & Maza, 1981; Maza & Maza, 1983;
Maza et al., 1982; Velázquez, 1976; Velázquez
365
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
& Velázquez, 1975), with the main goal of
describing new taxa from unexplored areas.
The first systematic sampling of the Pacif-
ic slope extended from the coast (Puerto San
Blas) to the mountains (Sierra San Juan) in the
state of Nayarit during 1978-1980, spanning an
elevational gradient from sea level to 1 300 m.
This effort documented 135 species of Nym-
phalidae, marking the beginning of dedicated
research on the distribution of Papilionoidea
from the Pacific slope. A decade later, faunistic
studies were carried out in the Sierra de Atoyac
(Vargas-Fernández et al., 1994) and the Omilt-
emi region (Luis-Martínez & Llorente-Bous-
quets, 1993) of the Sierra Madre del Sur (SMS)
in the state of Guerrero. The former spanned
an elevational range of 300-3 100 m, and the
latter a range of 2 300-3 000 m (v. gr. Llorente-
Bousquets, 1984; Llorente-Bousquets et al.,
2004; Warren & Llorente-Bousquets, 1999).
Further studies on the faunistic composi-
tion of Papilionoidea from the Pacific slope
were completed during the last three decades
in Pedernales, state of Michoacán (Balcázar,
1993); Mismaloya, Jalisco and Bahía de Ban-
deras, Nayarit (Warren & Llorente-Bousquets,
1999); the Sierra de Manantlán, Jalisco-Colima
(Vargas-Fernández et al., 1999); and West-
ern Michoacán (Luis-Martínez, 1997; Luis-
Martínez, 1999; MARIPOSA database 2001).
Additional analyses of the alpha and beta
diversity of the Nymphalidae (Tapia-Sedeño,
2013) and the lepidopterofauna of the Loxicha
Region, Oaxaca (Arellano-Covarrubias et al.,
2018; Luis-Martínez et al., 2020) were also
released. Most of these studies focused on
the local, regional, or elevational distribution
and the phenology of Papilionoidea species,
under distinct ecological conditions and across
a wide environmental gradient. Some fau-
nal comparisons between different areas have
also been made (v. gr. Monteagudo-Sabaté &
Luis-Martínez, 2013; Monteagudo-Sabaté et al.,
2001; Monteagudo-Sabaté et al., 2014).
When analyzing the fauna of the Pacific
region and the Sierra Madre del Sur, the
diversity of the state of Morelos must be
considered. This state is located mainly in the
Eje Neovolcánico and Cuenca del Balsas bio-
geographic provinces (Morrone et al., 2002).
Michoacán and Guerrero also include portions
of these two provinces. More than half of
Guerrero lies in the Cuenca del Balsas, and the
state also encompasses a large portion of the
Sierra Madre del Sur, particularly its Pacific
slopes (Luna-Reyes et al., 2012). There are 450
species or subspecies of Papilionoidea sensu
lato recorded from Morelos, classified in 214
genera. The Nymphalidae is represented in
Morelos by 147 species or subspecies, of which
42 are endemic to Mexico (Luna-Reyes, 2020).
Besides these faunistic studies over the
past three decades, species lists have been
published for 10 of the 11 states in the Pacific
slope. Table 1 presents current data for the
number of species and endemics in these Mexi-
can states according to Llorente-Bousquets et
al. (2014) and Luis-Martínez et al. (2016).
MATERIALS AND METHODS
Faunistic inventory and sites: To update
the Papilionoidea species list for Oaxaca pub-
lished by Luis-Martínez et al. (2004), systemat-
ic sampling was begun in 2005 (Luis-Martínez
et al., 2016) which increased scientific knowl-
edge of the geographical and vegetational
distribution of the group. This sampling effort
focused on areas with the greatest diversity and
endemism. The Loxicha Region is one such
area, and thus was subject to 267 sampling
days over seven years (2005, 2007, 2008,
2011-2014), including 21 sampling sites that
span eight municipalities within the Pacific
slopes of the Sierra Madre del Sur (Table 2).
In 12 of these sites, sampling was system-
atic. A total of 16 collectors participated in the
sampling effort, with 13 to 65 sampling days
per site. Sites were grouped by elevational
levels and vegetation type for comparison
and analysis purposes. Vegetation classifica-
tion followed Rzedowski (1978) and Llorente-
Bousquets (1984), with four types recognized
in the Loxicha Region: tropical deciduous
forest (TDF), tropical sub-deciduous forest
(TSDF), cloud forest (low- and mid-elevation)
366 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
(CF), and oak-pine forest (OPF). Besides these,
a fifth vegetation type was recognized in some
sites at 2 000-2 400 m elevation, denominated
as oak-pine and high-elevation cloud forest
(OPCF). OPCF is similar to OPF but has inter-
mixed elements of CF. Because the OPCF can
be easily distinguished from both the OPF and
the CF, and is located at different elevations in
the region, this vegetation type was considered
a distinct category (Arellano-Covarrubias et al.,
2018; Luis-Martínez et al., 2020).
Taxonomic determination: Taxa were
identified by comparison with specimens in the
Lepidoptera Collection of the Zoology Muse-
um, Facultad de Ciencias, Universidad Nacio-
nal Autónoma de México (MZFC), together
with the taxonomic expertise of the authors and
reference to specialized literature. The list of
species follows the taxonomic order proposed
by Vargas-Fernández et al. (2016), and Llor-
ente-Bousquets, Luis-Martínez et al. (2006),
for the Satyrinae subfamily. All specimens
were deposited in the Lepidoptera Collection
of the MZFC, which is registered at the Secre-
taría de Medio Ambiente, Recursos Naturales
y Pesca (SEMARNAP) (DFE.IN.071.0798).
Specimens were collected under scientific
collecting permit FAUT-0148 issued by the
Secretaría de Medio Ambiente y Recursos
Naturales (SEMARNAT). Collecting data were
entered into the MARIPOSA database (Luis-
Martínez et al., 2005).
Nets and Van Someren-Rydon traps:
Sampling techniques included 4-6 aerial nets
set for eight hours and 10-20 Van Someren-
Rydon traps (Rydon, 1964) placed daily 1-2.5
m high along transects, with 50 m between
each trap. Traps used a mixture of water,
brown sugar, pineapple, and banana as bait.
Transects covered distinct microhabitats (open
and closed vegetation) to obtain a more rep-
resentative sample. The number of specimens
captured with traps in each locality is presented
in Table 2.
Species richness estimation and diver-
sity analysis by vegetation type and eleva-
tional level: A species accumulation curve was
estimated using data from all specimens col-
lected. Data were randomized (500 runs) with
TABLE 1
Species richness and endemism of Nymphalidae in Mexico and its Pacific-slope states
State spp. E % Reference
Baja California 41 0 0 Brown et al., 1992
Baja California Sur 43 2 5 Brown et al., 1992
Sonora 101 6 6 Bailowitz et al., 2017
Sinaloa 106 8 8
Nayarit 144 12 8 Llorente-Bousquets et al., 2004
Jalisco 176 18 10 Llorente-Bousquets, Luis-Martínez et al., 1996; Vargas-Fernández et
al., 1996; Vargas-Fernández et al., 1999; Warren et al., 1996
Colima 139 15 11 Llorente-Bousquets, Warren et al., 1996
Michoacán 168 15 9
Guerrero 216 22 10 Vargas-Fernández et al., 1994
Oaxaca 339 31 9 Luis-Martínez et al., 2016
Chiapas 351 26 7 Maza & Maza, 1993; Luis-Martínez et al., 2011
Mexico (country) 413 123 12
spp.: species, E: taxa endemic to the state/country, %: percentage of endemics relative to the total species richness of the
state/country.
Note. Chiapas endemism is reduced because species’ ranges extend towards Central America as a biogeographical and
ecological unit; the same occurs in Baja California.
367
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
EstimateS 9.1 (Colwell, 2013) and fitted to the
Clench model (Soberón & Llorente-Bousquets,
1993) to estimate species richness. Species
richness was also estimated for each vegeta-
tion type (Table 2) and three elevational levels:
0-750 m, 750-1 800 m, and 1 800-2 850 m
(Luis-Martínez et al., 2020). For the elevational
analysis, the non-parametric estimation method
Chao1 (Colwell & Coddington, 1994) was
implemented in SPADE (Chao & Shen, 2010).
For each estimation, the 95 % confidence
interval (CI) was estimated using the bootstrap
technique. Significant differences between the
species richness of distinct vegetation types or
elevational levels were evaluated by compari-
son and overlap of the confidence intervals.
Additionally, the real diversity defined as
the exponential of the Shannon-Wiener index
(H’) was estimated for each elevational level
along with the 95 % CI, using the method pro-
posed by Chao and Shen (2003) implemented
in SPADE (Chao & Shen, 2010). The scale of
the real diversity (effective number of species)
is linear; therefore, the values of each eleva-
tional level can be compared directly using the
CI overlap (Jost, 2006).
Species composition similarity analy-
sis: Similarities were estimated in species
composition between the Loxicha Region and
other regions with roughly equivalent sampling
effort on the Pacific and Atlantic slopes of
TABLE 2
Sampling sites in the Loxicha Region, Oaxaca, Mexico
Site Elevation
(m)
Geographic location Vegetation
type SE/ R /T
Lat North Long West
a. Parque Nacional Huatulco, Río Cacaluta 80-100 15°47’07” 96°10’34” TDF 16/ 1 627 /781
b. Parque Nacional Huatulco 100 15°45’20” 96°09’19” TDF 24/ 1 869 /977
c. Azulillo 380-500 15°53’25” 96°29’27” TSDF 65/ 4 929 /1 755
d. Rancho Hagia Sofía 410 15°52’01” 96°21’55” TSDF 49/ 6 672 /3 430
e. Río Molinos* 530-700 15°56’10.8” 96°30’41.8” CF 4/ 71 /30
f. Copalita, Río Copalita* 600-1 200 15°56’48” 96°20’23.43” CF 21/ 1 200 /450
g. Magdalena, El Lirio 750-900 15°55’11” 96°23’34” CF 13/ 1 934 /789
h. Copalita, Los Plátanos* 900 CF 1/ 31 /6
i. Copalita, Siete Veneros* 940 CF 24/ 1 066 /457
j. San Mateo Piñas* 1 000 15°59’57.50” 96°20’4.47” CF 27/ 426 /132
k. Pluma Hidalgo, 4 km NW “La Curva” 1 100-1 200 15°56’23” 96°25’59” CF 41/ 2 243 /528
l. Finca Aurora-Finca San Isidro 1 100-1 250 15°56’30” 96°24’13” CF 25/ 1 013 /390
m. Copalita, Llano de Ocote* 1 200 CF 17/ 434 /229
n. Portillo del Rayo-Finca El Encanto 1 200-1 530 15°58’38” 96°31’11” CF 24/ 1 218 /622
o. La Soledad-Buenavista 1 470-1 550 15°58’18” 96°31’54” CF 31/ 1 690 /574
p. La Pasionaria 1 500-1 650 15°66’09” 96°25’08” CF 15/ 1 153 /420
q. Puente Arroyo “El Guajolote” 2 020-2 150 16°03’28” 96°30’18” OPF-OPCF 17/ 274 /53
r. San José del Pacífico, 1 km S 2 280-2 400 16°09’28” 96°29’21” OPF-OPCF 33/ 771 /126
s. Manzanal-Doncella* 2 700-2 800 16°07’47.9” 96°30’12” OPF 1/ 1 /-
t. Camino a San Agustín Loxicha* 2 700-2 800 16°07’41.57” 96°29’54.2” OPF 2/ 5 /-
u. Nevería-La Ciénega* 2 820-2 850 16°12’01” 96°20’56” OPF 2/ 19 /-
* Sites without systematic sampling; SE: sampling effort (days); R: records (specimens); T: specimens collected with Van
Someren-Rydon traps; Vegetation types: tropical deciduous forest (TDF), tropical sub-deciduous forest (TSDF), cloud forest
(low- and mid-elevation) (CF), oak-pine forest (OPF), and oak-pine and high-elevation cloud forest (OPCF). (Arellano-
Covarrubias et al., 2018; Llorente-Bousquets, 1984, Luis-Martínez et al., 2020; Rzedowski, 1978). Note Van Someren-
Rydon traps were not used at sites s, t, and u.
368 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Oaxaca and other states. Besides Loxicha, our
analysis included the Sierra de Juárez, Oaxaca
(Luis-Martínez et al., 1991), the Sierra Maza-
teca, Oaxaca (Álvarez-García et al., 2016),
the Sierra de Atoyac de Álvarez, Guerrero
(Vargas-Fernández et al., 1994), the Sierra de
Manantlán, Jalisco-Colima (Vargas-Fernández
et al., 1999) and the Sierra de San Juan, Nayarit
(MARIPOSA database). A distance matrix was
estimated with presence/absence data of the
species in each region using the Jaccard index
with the “vegan” package (Oksanen et al.,
2019) in R 4.0.0 (R Core Team, 2020). Using
the same method, the similarity among 77
sites distributed across Mexico was estimated,
including multiple biogeographic provinces
and both Pacific and Atlantic slopes.
Natural history: Some biological obser-
vations made during fieldwork are presented,
which include elevational migrations and spe-
cies aggregations among other data. These
observations are valuable for describing the
fine-scale spatial and temporal distribution of
some rare or hard-to-find species and could aid
future efforts to collect these species.
RESULTS
Species list: Based on a review of pub-
lished records (1950-2004) and a query of the
MARIPOSA database up to the year 2000, 139
taxa of Nymphalidae were historically recorded
from the Loxicha Region. Our subsequent
field sampling from 2005-2014 across 21 sites
in the region (Table 2) increased that list to
189 taxa, including 10 subfamilies, 23 tribes,
15 subtribes, and 85 genera. Our sampling
effort resulted in 28 756 records plus 1 248
records from historical collections archived
in the MARIPOSA database, for a total of
30 004 records of Nymphalidae for the Loxicha
Region. Data from publications and scientific
collections are mostly from the 400-1 400 m
elevational range, while records from our field
work are distributed from 80-2 850 m. All spe-
cies and subspecies historically recorded for
the region were collected during our fieldwork
except for Adelpha donysa ssp., Pedaliodes
dejecta ssp., and Actinote guatemalena guer-
rerensis J. Maza, 1982.
The Nymphalidae species documented in
the Loxicha Region constitute 46 % of Mexi-
can nymphalid species and 56 % of those
recorded from Oaxaca (Luis-Martínez et al.,
2016). A total of 10 species and 56 subspecies
endemic to Mexico are represented in the Loxi-
cha Region. These endemic taxa were binned
into four groups according to their degree of
endemism (Fig. 1): group 1, endemic to the
Loxicha Region (5 spp.); group 2, endemic
to the Sierra Madre del Sur (13 spp.); group
3, endemic to the Pacific slope (23 spp.); and
group 4, endemic to Mexico (15 spp.). The taxa
exclusive to the Loxicha Region are Memphis
wellingi (L. Miller & J. Miller, 1976); Cyllopsis
jacquelineae (L. Miller, 1974); Callicore texa
loxicha (R. G. Maza & J. Maza, 1983); Chlo-
syne gaudialis wellingi (L. Miller & Rotger,
1979), and Altinote stratonice oaxaca (J. Miller
& L. Miller, 1979).
Species list of Nymphalidae for the Loxi-
cha Region, Oaxaca. Taxa in bold text are
endemics, and superscript numbers correspond
to their degree of endemism: 1, endemic to
the Loxicha Region; 2, endemic to the Sierra
Madre del Sur; 3, endemic to the Pacific slope;
4, endemic to Mexico.
Family NYMPHALIDAE
Rafinesque, 1815
Subfamily Libytheinae Boisduval, 1833
1. Libytheana carinenta mexicana
Michener, 1943
Subfamily Danainae Boisduval, 1833
Tribe Euploeini Herrich-Schäffer, 1849
Subtribe Itunina Reuter, 1896
2. Anetia thirza thirza Geyer, [1833]
3. Lycorea halia atergatis Doubleday,
[1847]
4. Lycorea ilione albescens (Distant, 1876)
369
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Tribe Danaini Boisduval, 1833
Subtribe Danaina Boisduval, 1833
5. Danaus eresimus montezuma Talbot,
1943
6. Danaus gilippus thersippus (Bates,
1863)
7. Danaus plexippus plexippus (Linnaeus,
1758)
Subfamily Ithomiinae Godman & Salvin, 1879
Tribe Tithoreini Fox, 1940
8. Aeria eurimedia pacifica Godman &
Salvin, 1879
9. Tithorea harmonia hippothous Godman
& Salvin, 1879
10. Tithorea tarricina duenna Bates, 1864
Tribe Melinaeini Clark, 1947
11. Melinaea lilis flavicans Hoffmann,
1924 3
Tribe Mechanitini Bar, 1878
12. Mechanitis lysimnia utemaia Reakirt,
1866
13. Mechanitis menapis doryssus Bates,
1864
14. Mechanitis polymnia lycidice Bates,
1864
Tribe Oleriini Fox, 1940
15. Oleria paula (Weymer, 1883)
Tribe Dircennini D’Almeida, 1941
16. Dircenna klugii klugii (Geyer, 1837)
17. Episcada salvinia portilla J. Maza &
Lamas, 1978 3
18. Pteronymia artena praedicta J. Maza
& Lamas, 1982 2
19. Pteronymia cotytto cotytto (Guérin-
Méneville, [1844])
2. Pteronymia rufocincta (Salvin, 1869) 3
Tribe Godyridini D’Almeida, 1941
21. Greta annette moschion (Godman,
1901) 3
22. Greta morgane morgane (Geyer,
1837) 3
Subfamily Charaxinae Guenée, 1865
Tribe Anaeini Reuter, 1896
23. Hypna clytemnestra mexicana Hall,
1917
24. Consul electra electra (Westwood,
1850)
25. Consul excellens genini (Le Cerf, 1922)
26. Consul fabius cecrops (Doubleday,
[1849])
27. Phantos callidryas (R. Felder, 1869)
28. Siderone galanthis ssp.
29. Zaretis ellops (Ménétriés, 1855)
30. Anaea troglodyta aidea (Guérin-
Méneville, [1844])
31. Fountainea eurypyle glanzi (Rotger,
Escalante & Coronado, 1965) 3
32. Fountainea glycerium glycerium
(Doubleday, [1849])
33. Fountainea nobilis rayoensis (J. Maza
& Díaz, 1978) 3
34. Memphis forreri (Godman & Salvin,
1884)
35. Memphis perenna perenna (Godman &
Salvin, [1884])
36. Memphis pithyusa pithyusa (R. Felder,
1869)
37. Memphis wellingi L. Miller & J.
Miller, 1976 1
Tribe Preponini Rydon, 1971
38. Archaeoprepona amphimachus baroni
J. Maza, 1982 2
39. Archaeoprepona demophon
occidentalis Stoffel & Descimon, 1974
3
40. Archaeoprepona demophoon mexicana
Llorente, Descimon & K. Johnson,
1993 3
41. Archaeoprepona phaedra ssp. 2
42. Prepona laertes octavia Fruhstorfer,
1905
43. Prepona brooksiana ibarra
Beutelspacher, 1982 3
370 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Subfamily Morphinae Newman, 1834
Tribe Morphini Newman, 1834
Subtribe Morphina Newman, 1834
44. Morpho polyphemus Westwood, [1850]
45. Morpho helenor guerrerensis Le Moult
& Réal, 1962 3
Tribe Brassolini Boisduval, 1836
Subtribe Brassolina Boisduval, 1836
46. Caligo telamonius memnon (C. Felder &
R. Felder, 1867)
47. Caligo uranus Herrich-Schäffer, 1850
48. Opsiphanes boisduvallii Doubleday,
[1849]
49. Opsiphanes cassina fabricii (Boisduval,
1870)
50. Opsiphanes quiteria quirinus Godman
& Salvin, 1881
51. Opsiphanes tamarindi tamarindi C.
Felder & R. Felder, 1861
Subfamily Satyrinae Boisduval, 1833
52. Manataria hercyna maculata (Hopffer,
1874)
53. Oxeoschistus hilara ssp. 2
54. Oxeoschistus tauropolis ssp. 3
55. Pedaliodes dejecta ssp. 2
56. Cissia similis (Butler, 1867)
57. Cissia terrestris (Butler, 1867)
58. Cissia sp.
59. Cissia themis (Butler, 1867)
60. Cyllopsis clinas (Godman & Salvin,
1889) 2
61. Cyllopsis diazi L. Miller, 1974 4
62. Cyllopsis hedemanni hedemanni R.
Felder, 1869
63. Cyllopsis jacquelineae L. Miller, 1974 1
64. Cyllopsis nayarit (R. L. Chermock,
1947) 4
65. Cyllopsis pyracmon pyracmon (Butler,
1867)
66. Cyllopsis suivalenoides L. Miller, 1974
67. Euptychia fetna Butler, 1870
68. Hermeuptychia hermes (Fabricius, 1775)
69. Megisto rubricata pseudocleophes L.
Miller, 1976 4
70. Paramacera xicaque rubrosuffusa L.
Miller, 1972 2
71. Pindis squamistriga R. Felder, 1869
72. Taygetis kerea Butler, 1869
73. Taygetis mermeria griseomarginata L.
Miller, 1978 3
74. Taygetis uncinata Weymer, 1907 4
75. Taygetis virgilia (Cramer, 1776)
76. Taygetis weymeri Draudt, 1912
77. Gyrocheilus patrobas patrobas
(Hewitson, 1862) 4
Subfamily Apaturinae Boisduval, 1840
78. Asterocampa idyja argus (Bates, 1864)
79. Doxocopa laure laure (Drury, 1773)
80. Doxocopa pavon theodora (Lucas,
1857)
Subfamily Biblidinae Boisduval, 1833
Tribe Cyrestini Guenée, 1865
81. Marpesia chiron marius (Cramer, 1779)
82. Marpesia petreus ssp. nov.
83. Marpesia zerynthia dentigera
(Fruhstorfer, 1907)
Tribe Biblidini Boisduval, 1833
Subtribe Biblidina Boisduval, 1833
84. Biblis hyperia aganisa Boisduval, 1836
85. Mestra dorcas amymone (Ménétriés,
1857)
Subtribe Ageroniina Doubleday, [1847]
86. Hamadryas amphinome mazai Jenkins,
1983 3
87. Hamadryas atlantis lelaps (Godman &
Salvin, 1883) 3
88. Hamadryas februa ferentina (Godart,
[1824])
89. Hamadryas glauconome glauconome
(Bates, 1864)
90. Hamadryas guatemalena marmarice
(Fruhstorfer, 1916) 4
Subtribe Epicaliina Guenée, 1865
91. Eunica alcmena alcmena (Doubleday,
[1847])
92. Eunica monima (Stoll, 1782)
93. Eunica tatila tatila (Herrich-Schäffer,
[1855])
371
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
94. Catonephele cortesi R. G. Maza,
1982 3
95. Catonephele numilia immaculata
Jenkins, 1985 2
96. Myscelia cyananthe cyananthe C.
Felder & R. Felder, 1867 4
97. Myscelia cyaniris alvaradia R. G.
Maza & Díaz, 1982 3
98. Myscelia ethusa ethusa (Doyère, [1840])
Subtribe Epiphilina Jenkins, 1987
99. Nica flavilla bachiana (R. G. Maza &
J. Maza, 1985) 2
100. Temenis laothoe quilapayunia R. G.
Maza & Turrent, 1985 3
101. Bolboneura sylphis beatrix R. G.
Maza, 1985 3
102. Epiphile adrasta escalantei Descimon
& Mast, 1979 4
103. Pyrrhogyra edocla paradisea R. G.
Maza & J. Maza, 1985 3
104. Pyrrhogyra neaerea hypsenor Godman
& Salvin, 1884
Subtribe Callicorina Orfila, 1952
105. Diaethria anna mixteca J. Maza, 1977
2
106. Diaethria astala asteroide R. G. Maza
& R. F. Maza, 1985 2
107. Callicore texa loxicha R. G. Maza & J.
Maza, 1983 1
108. Cyclogramma pandama (Doubleday,
[1848])
Subtribe Eubagina Burmeister, 1878
109. Dynamine dyonis Geyer, 1837
110. Dynamine postverta mexicana
D’Almeida, 1952
111. Dynamine theseus (C. Felder & R.
Felder, 1861)
Subfamily Limenitidinae Behr, 1864
Tribe Limenitidini Behr, 1864
Subtribe Limenitidina Behr, 1864
112. Adelpha barnesia leucas Fruhstorfer,
1915
113. Adelpha basiloides (Bates, 1865)
114. Adelpha bredowii Geyer, 1837
115. Adelpha diocles ssp. 3
116. Adelpha donysa ssp. 2
117. Adelpha fessonia fessonia (Hewitson,
1847)
118. Adelpha iphicleola iphicleola (Bates,
1864)
119. Adelpha iphiclus iphiclus (Linnaeus,
1758)
120. Adelpha leuceria leuceria (Druce, 1874)
121. Adelpha leucerioides ssp. 3
122. Adelpha lycorias melanthe (Bates, 1864)
123. Adelpha naxia naxia (C. Felder & R.
Felder, 1867)
124. Adelpha paraena massilia (C. Felder &
R. Felder, 1867)
125. Adelpha phylaca phylaca (Bates, 1866)
126. Adelpha pithys (Bates, 1864)
127. Adelpha serpa celerio (Bates, 1864)
Subfamily Nymphalinae Rafinesque, 1815
Tribe Coeini Scudder, 1893
128. Historis acheronta acheronta (Fabricius,
1775)
129. Historis odius dious Lamas, 1995
130. Pycina zamba zelys Godman & Salvin,
1884
Tribe Nymphalini Rafinesque, 1815
131. Colobura dirce dirce (Linnaeus, 1758)
132. Smyrna blomfildia datis Fruhstorfer,
1908
133. Smyrna karwinskii Geyer, [1833]
134. Hypanartia dione disjuncta Willmott, J.
Hall & Lamas, 2001
135. Hypanartia godmanii (Bates, 1864)
136. Hypanartia lethe (Fabricius, 1793)
137. Hypanartia trimaculata autumna
Willmott, J. Hall & Lamas, 2001
138. Nymphalis antiopa antiopa (Linnaeus,
1758)
139. Vanessa atalanta rubria (Fruhstorfer,
1909)
140. Vanessa cardui (Linnaeus, 1758)
141. Vanessa virginiensis (Drury, 1773)
Tribe Victorinini Scudder, 1893
142. Siproeta epaphus epaphus (Latreille,
[1813])
372 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
143. Siproeta stelenes biplagiata (Fruhstorfer,
1907)
144. Anartia fatima fatima (Fabricius, 1793)
145. Anartia jatrophae luteipicta Fruhstorfer,
1907
Tribe Junoniini Reuter, 1896
146. Junonia coenia Hübner, [1822]
147. Junonia evarete nigrosuffusa Barnes &
McDunnough, 1916
148. Junonia genoveva ssp. nov.
Tribe Melitaeini Herrich-Schäffer, 1843
Subtribe Nova
149. Chlosyne cynisca (Godman & Salvin,
1882) 4
150. Chlosyne erodyle ssp.
151. Chlosyne gaudialis wellingi L. Miller
& Rotger, 1979 1
152. Chlosyne hippodrome hippodrome
(Geyer, 1837)
153. Chlosyne janais janais (Drury, 1782)
154. Chlosyne lacinia lacinia (Geyer, 1837)
155. Chlosyne marina marina (Geyer, 1837)
156. Chlosyne melanarge (Bates, 1864)
157. Chlosyne theona theona (Ménétriés,
1855)
158. Microtia elva elva Bates, 1864
Subtribe Phyciodina Higgins, 1981
159. Phyciodes graphica graphica (R. Felder,
1869)
160. Phyciodes mylitta thebais Godman &
Salvin, 1878
161. Phyciodes pallescens (R. Felder,
1869) 4
162. Phyciodes phaon phaon (Edwards,
1864)
163. Phyciodes tharos tharos (Drury, 1773)
164. Tegosa guatemalena (Bates, 1864)
165. Anthanassa ardys ardys (Hewitson,
1864) 4
166. Anthanassa argentea (Godman &
Salvin, 1882)
167. Anthanassa atronia (Bates, 1866)
168. Anthanassa frisia tulcis (Bates, 1864)
169. Anthanassa nebulosa alexon (Godman
& Salvin, 1889) 4
170. Anthanassa otanes oaxaca
Beutelspacher, 1990 4
171. Anthanassa ptolyca amator (Hall,
1929) 4
172. Anthanassa sitalces cortes (Hall,
1917) 4
173. Anthanassa texana texana (Edwards,
1863)
174. Eresia phillyra phillyra Hewitson, 1852
Subfamilia Heliconiinae Swainson, 1822
Tribe Acraeini Boisduval, 1833
175. Altinote stratonice oaxaca (J. Miller &
L. Miller, 1979) 1
176. Actinote guatemalena guerrerensis J.
Maza, 1982 2
Tribe Heliconiini Swainson, 1822
Subtribe Heliconiina Swainson, 1822
177. Agraulis vanillae incarnata (Riley,
1926)
178. Dione juno huascuma (Reakirt, 1866)
179. Dione moneta poeyii Butler, 1873
180. Dryas iulia moderata (Riley, 1926)
181. Dryadula phaetusa (Linnaeus, 1758)
182. Eueides aliphera gracilis Stichel, 1903
183. Eueides isabella eva (Fabricius, 1793)
184. Heliconius charithonia vazquezae W. P.
Comstock & F. M. Brown, 1950
185. Heliconius erato cruentus Lamas,
1998 3
186. Heliconius hortense Guérin-Méneville,
[1844]
187. Heliconius ismenius telchinia
Doubleday, 1847
Tribe Argynnini Swainson, 1833
Subtribe Euptoietina Simonsen, 2006
188. Euptoieta claudia daunius (Herbst,
1798)
189. Euptoieta hegesia meridiania Stichel,
1938
Alpha diversity: Considering only the
data obtained during our fieldwork, 186 Nym-
phalidae species were collected. When species
from the literature review and historically col-
lected specimens were added, the list reached
373
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Fig. 1. Nymphalidae taxa endemic to Mexico that occur in the Loxicha Region, Oaxaca. Numbers correspond to names
available in our species list. Dorsal view: left side of the specimen; Ventral view: right side.
374 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
189 species. The Clench model estimated 188
species (Fig. 2) while Chao1 estimated 193
species. Therefore, the Clench model underes-
timated the region’s species richness, while the
Chao1 estimator was potentially more reliable.
According to Chao1, our list is 98 % complete.
Across the 11 states of Mexico’s Pacific
slope from Baja California to Chiapas (Table
1), the nymphalid species richness of the
Loxicha Region alone (189 spp.) surpasses
all states except for Guerrero (216 spp.) and
Chiapas (351 spp.). The high species richness
in Guerrero is attributable to the biogeographic
provinces Planicie Costera del Pacífico and
Sierra Madre del Sur occupying most of the
state, with the SMS having substantial faunal
endemism. In Chiapas, the high species rich-
ness can be explained by the convergence of
Atlantic and Pacific slopes in the state, as well
as the presence of tropical evergreen forest, a
vegetation type that supports more than 50 %
of Mexican species of Papilionoidea (Salinas-
Gutiérrez et al., 2004).
Species composition similarity across
regions: We compared nymphalid faunal rich-
ness across eight regions with differing ele-
vational gradients, comprising six from the
Pacific slope and two from the Atlantic slope
(Table 3). All regions have roughly similar
sampling effort, and species estimation meth-
ods indicate that more than 90 % of the species
have been recorded from each, thus validat-
ing the comparison. The Loxicha Region is
the most diverse for Nymphalidae on the
Pacific slope, and the second most diverse in
Oaxaca, behind only the Sierra de Juárez (259
spp.) of the Atlantic slope. Identical patterns
exist for Papilionidae and Pieridae (Luis-Mar-
tínez et al., 2020).
Similarity analysis shows two main groups
(Fig. 3), corresponding to the arrangement of
mountain ranges in Mexico and the conse-
quent isolation of the lepidopterofauna. The
first group comprises the Sierra Mazateca and
the Sierra de Juárez, on the Atlantic slope of
Oaxaca. The second group is composed of six
regions on the Pacific slope or in the Amacuzac-
Cuenca del Balsas, which are divided into two
subgroups with a similarity value of more than
50 %. The first subgroup contains the regions
of the Southern Sierra Madre del Sur: Atoyac
and Loxicha, which share 66 % of their species
(142 spp.). The second subgroup corresponds
to the regions located North of the Costa del
Pacífico, in the Western Eje Neovolcánico (San
Juan-Manantlán), the Northern Sierra Madre
del Sur (SMS-Michoacán), and Morelos which
includes parts of two biogeographic provinces:
Cuenca del Balsas and Eje Neovolcánico.
Fig. 2. Species accumulation curve of Nymphalidae in the Loxicha Region, Oaxaca, Mexico fitted to the Clench model. The
asymptote (dashed line) corresponds to 188 estimated species.
375
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Species composition distances between
Loxicha and other regions are correlated with
geographic distances, but also with biogeo-
graphic regionalization (Fig. 3). The two
regions with the greatest faunistic distance
are those from the Atlantic slope (the Sierra
de Juárez and Sierra Mazateca), even though
they are the closest geographically. The same
pattern was observed with Morelos, which
belongs to the Cuenca del Balsas: although
Morelos is closer to Loxicha than regions
like San Juan and Manantlán, these two have
lower faunistic distances. Considering only the
four regions in the SMS, faunistic distances
TABLE 3
Species richness of Nymphalidae across eight regions in Mexico
Region spp. Elevation (m) Slope
1. Sierra de Juárez, Oaxaca 259 100-3 100 Atlantic
2. Sierra Mazateca, Oaxaca 185 100-2 200 Atlantic
3. Loxicha Region, Oaxaca 189 80-2 600 Pacific
4. Sierra de Atoyac, Guerrero 170 300-3 100 Pacific
5. Morelos (state) 147 1 000-3 000 Pacific -CB
6. Michoacán, SMS portion 134 800-1 800 Pacific
7. Sierra de Manantlán, Jalisco-Colima 144 250-1 750 Pacific
8. Sierra de San Juan, Nayarit 135 0-1 350 Pacific
1: Luis-Martínez et al., 1991; 2: Álvarez-García et al., 2016; 3: this article; 4: Vargas-Fernández et al., 1994; 5: Luna-Reyes
et al., 2012 and Luna-Reyes, 2020; 6 and 8: MARIPOSA database; 7: Vargas-Fernández et al., 1999. CB: Cuenca del Balsas.
Fig. 3. Similarity of Nymphalidae species composition across eight regions in Mexico. The distance matrix was estimated
with the Jaccard index. For full names of the regions see Table 3.
376 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
are correlated with geographic distances, with
Atoyac being the closest and most similar to
Loxicha while also being the farthest and most
distinct relative to San Juan.
Species richness by site: The MARI-
POSA database contains records of Nymphali-
dae species from more than 5 000 sites across
Mexico. However, only 40 of those sites have
over 100 species recorded, eight of which are
on the Pacific slope while the other 32 are dis-
tributed elsewhere in Mexico (Table 4). From
the Loxicha Region, only Azulillo and Rancho
Hagia Sofía exceed 100 species, placing them
in sixth and fourth place at a national scale,
respectively. Areas like Acahuizotla, Guerrero
(158 spp.) and Candelaria Loxicha, Oaxaca
(138 spp.) also have high species richness but
are not specific sites, instead being extended
areas that include several sites with wide
variation in elevation and vegetation type.
These extended or historical “sites” served as
geographic references for decades prior to this
study, where collected specimens from other
sites were gathered and labeled. Additional
such historical “sites” across Mexico include
Xalapa, Catemaco, and Presidio in the state of
Veracruz (Luis-Martínez et al., 1996), Chilte-
pec, Oaxaca (Luis-Martínez et al., 1991), and
some others on the Atlantic slope.
Of the 40 sites with more than 100 spe-
cies of Nymphalidae (Table 4), 16 have been
sampled by members of the MZFC, and 30
are located in 11 of the regions with high-
est diversity of Papilionoidea in Mexico. Of
these high-diversity regions, nine were rec-
ognized by Luis-Martínez et al. (2003): 1,
Orizaba-Córdoba-Fortín de las Flores corridor;
TABLE 4
Sites with more than 100 species of Nymphalidae along the Atlantic and Pacific slopes of Mexico
State R Site spp. State R Site spp.
Atlantic slope
Veracruz 3 Xalapa* 193 San Luis Potosí Tamazunchale 109
Veracruz 1 Córdoba 180 Chiapas Santa Rosa 108
Veracruz 1 Presidio 170 Veracruz 3 Parque Francisco Javier Clavijero1107
Chiapas San Antonio Buena Vista 162 Oaxaca 4 Cerro Armadillo1106
Oaxaca 4 San José Chiltepec 156 Veracruz Cuetzalapan 104
Oaxaca 4 Metates1152 Veracruz 2 Popoctépetl 104
Veracruz 3 Barranca de Cayoapa*1149 Oaxaca 4 Soyolapan El Bajo1103
Puebla 10 Tequezquitla 145 Oaxaca Matías Romero 102
Veracruz 1 Fortín de las Flores*1146 Oaxaca La Gringa, Sta. María Chimalapa1102
Veracruz 2 Catemaco 142 Veracruz 1 Orizaba 102
Veracruz 2 Dos Amates 138 Veracruz 2 Tapalapan 102
Veracruz 1 Presidio, Ixhuatlán del Café* 134
Veracruz 3 Teocelo1132 Pacific slope
Puebla 10 Barranca de Patla* 132 Guerrero 8 Acahuizotla* 158
Oaxaca 4 La Esperanza1131 Oaxaca 11 Candelaria Loxicha* 138
Chiapas Santa Rosa, Comitán 130 Oaxaca 11 Rancho Hagia Sofía1121
Chiapas Zona Arqueológica Yaxchilán1129 Chiapas San Jerónimo, Tacaná 117
Oaxaca 4 Puerto Eligio1110 Jalisco 6 La Calera1115
Veracruz 2 Laguna de Catemaco 117 Oaxaca 11 Azulillo1109
Tabasco Cerro del Coconá1115 Guerrero 5 Río Santiago1106
Oaxaca 4 Naranjal Chiltepec 115 Guerrero 5 El Faisanal1105
*: extended or historical “sites” that combine records from multiple distinct sites under a single name (see text); 1: sites
collected by MZFC members; R: sites that lie in the most diverse regions of Mexico (see text).
377
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
2, Tuxtlas; 3, Xalapa-Coatepec-Teocelo cor-
ridor; 4, Sierra de Juárez; 5, Sierra de Atoyac;
6, Sierra de Manantlán; 7, Mismaloya-Bahía de
Banderas corridor; 8, Acahuizotla; and 9, Sierra
de San Juan. Recently, two more high-diversity
regions were recognized: 10, La Sierra Norte
de Puebla (MARIPOSA database), and 11,
Loxicha (Arellano-Covarrubias et al., 2018;
Luis-Martínez et al., 2016; Luis-Martínez et al.,
2021; data presented here).
Species composition similarity across
sites: Of the 77 sites included in the spe-
cies composition similarity analysis (Table
5), 62 are on the Pacific slope and 15 on
the Atlantic slope, 44 have been sampled by
members of the MZFC, 32 are located between
0-750 m, 27 between 800-1 750 m, and six
above 1 800 m elevation. Five vegetation types
are included: TDF, TSDF, OPF, OF, and CF.
The latter includes three elevation-delimited
subtypes: low-CF (750-1 199 m), medium-
CF (1 200-1 800 m), and high-CF (> 2 000
m). Additionally, we recognize six ecotones:
OF-CF, OPF-CF, TDF-TSDF, TDF-TSDF-CF,
TSDF-CF and TSDF-OPF. Twenty-four sites
are in the CF, and seven more exist in an eco-
tone that includes CF. Therefore, CF is the most
well-represented vegetation type across the
sites (48 % of the sites).
The similarity analysis showed two groups
corresponding to the sites of the Atlantic and
TABLE 5
Sites included in the species composition similarity analysis for Mexican Nymphalidae
State Site Spp. Abbreviated name Elevation Vegetation type
Atlantic slope
San Luis Potosí Tamazunchale 109 SLP_Tam_350 350 TEGF
Puebla Tequezquitla 145 PUE_Teq_650 650 TSDF-CF
Puebla Barranca de Patla 132 PUE_Bpa_600 600 TSDF-CF
Veracruz Barranca de Cayoapa1149 VER_Bca_600 600 CF
Veracruz Catemaco 142 VER_Cat_250 250 TEGF
Veracruz Córdoba 180 VER_Cor_900 900 CF
Veracruz Fortín de las Flores1146 VER_FFl_900 900 CF
Veracruz Xalapa 193 VER_Jal_1350 1 350 CF
Veracruz Teocelo1132 VER_Teo_1200 1 200 CF
Oaxaca San José Chiltepec 156 OAX_Chi_100 100 TEGF
Oaxaca La Esperanza1131 OAX_Esp_1750 1 750 CF
Oaxaca Metates1152 OAX_Met_900 900 CF
Oaxaca Puerto Eligio1110 OAX_Pel_650 650 TEGF
Chiapas San Antonio Buena Vista 162 CHIS_SAB_1350 1 350 CF
Chiapas Santa Rosa, Comitán 130 CHI_SRC_1800 1 800 CF
Pacific slope
Nayarit Compostela141 NAY_Com_800 800 TDF
Nayarit Jumatán178 NAY_Jum_300 300 TDF
Nayarit La Bajada161 N_Baj_250 250 TSDF
Nayarit La Yerba, Tepeltite172 NAY_Yer_900 900 CF
Nayarit Mecatán147 NAY_Mec_300 300 TSDF
Nayarit Palapita166 NAY_Pal_650 650 TSDF
Nayarit Pintadeño123 NAY_Pin_750 750 OF
Nayarit San Blas145 NAY_SBl_50 50 MAN
Nayarit Singayta159 NAY_Sin_50 50 OP
Nayarit Venustiano Carranza169 NAY_Vca_1250 1 250 CF
378 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
State Site Spp. Abbreviated name Elevation Vegetation type
Jalisco Ahuacapán185 JAL_Ahu_900 900 TDF
Jalisco Estación de Biología, UNAM, Chamela 50 JAL_Cha_100 100 TDF
Jalisco La Calera1115 JAL_Cal_650 650 TDF
Jalisco Los Mazos176 JAL_Maz_1600 1 600 CF
Jalisco Puerto Vallarta 49 JAL_Pva_50 50 TDF
Jalisco Zenzontla177 JAL_Zen_800 800 TDF
Colima Agua Dulce186 COL_Agu_250 250 TSDF
Colima Platanarillo188 COL_Pla_350 350 TSDF
Michoacán Arteaga 70 MICH_Art_900 900 TDF
Michoacán Chiquihuitillo 75 MICH_Chi_260 260 TDF
Michoacán Los Chorros del Varal172 MICH_Cho_900 900 TSDF
Michoacán P.H. Cupatitzio 83 MICH_CUP_1000 1 000 TSDF-PF
Michoacán Rancho “El Zorrillo” 92 MICH_Rzo_750 750 TDF
Michoacán Rancho “El Zorrillo”, Cañada Húmeda 70 MICH_RzC_750 750 TDF-TSDF
Morelos 3 km al NE de Chiautla 41 MOR_Shia_1000 1 000 TDF
Morelos Km 1.5 Carretera Tetecala-Coatlalco 56 MOR_TC_1100 1 100 TDF
Morelos Cañón de Lobos 51 MOR_CL_1200 1 200 TDF
Morelos 1.5 Km al E de Palo Grande 57 MOR_PG_1200 1 200 TDF
Morelos Sierra de Huautla 58 MOR_SH_1000 1 000 TDF-TSDF
Guerrero Agua Salada MOR_AS_760 760 TDF
Guerrero Coapango 74 GRO_Coa_1330 1 330 TDF
Guerrero Las Vías 72 GRO_LV_1200 1 200 TDF
Guerrero Cascada de las Granadas 81 GRO_CdeG_1370 1 370 TDF
Guerrero Los Amates 65 GRO_Ama_980 980 TDF
Guerrero Quetzalapa 66 GRO_Que_850 850 TDF
Guerrero Piedras Negras 54 GRO_PN_1300 1 300 TDF
Guerrero Palmillas 57 MOR_Pal_1050 1 050 TDF
Guerrero Acahuizotla 158 GRO_Aca_900 900 TDF-TSDF-CF
Guerrero El Faisanal194 GRO_Fai_1250 1 250 TSDF-CF
Guerrero El Iris124 GRO_Iris_2000 2 000 OF-CF
Guerrero La Golondrina145 GRO_LGo_1800 1 800 CF
Guerrero Las Parotas178 GRO_Par_350 350 TSDF
Guerrero Los Retrocesos 71 GRO_Ret_1600 1 600 CF
Guerrero Nueva Delhi182 GRO_Nde_1350 1 350 CF
Guerrero Puente de Los Lugardo194 GRO_PLL_800 800 TSDF
Guerrero Puerto del Gallo138 GRO_Pga_2350 2 350 BPE-CF
Guerrero Río Santiago, 4 km W1106 GRO_Rsa_680 680 TSDF
Oaxaca Azulillo1109 OAX_Azu_380 380 TSDF
Oaxaca Copalita, Río Copalita 58 OAX_Cop_600 600 CF
Oaxaca Copalita, Siete Veneros 54 OAX_Ven_940 940 CF
Oaxaca Finca Aurora-Finca San Isidro163 OAX_FAS_1100 1 100 CF
Oaxaca La Pasionaria172 OAX_Pas_1500 1 500 CF
Oaxaca La Soledad-Buenavista170 OAX_Sbu_1470 1 470 CF
Oaxaca Magdalena, El Lirio195 OAX_Mag_750 750 CF
Oaxaca Parque Nacional Huatulco168 OAX_PNH_100 100 TDF
Oaxaca Parque Nacional Huatulco, Río Cacaluta174 OAX_PNHC_80 80 TDF
Oaxaca Pluma Hidalgo, 4 km NW “La Curva” 1 95 OAX_Phi_1100 1 100 CF
379
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Pacific slopes, respectively (Fig. 4). Sites of
the Atlantic slope, in the low part of the phe-
nogram (1), are associated with the vegetation
and environmental conditions of the Gulf of
Mexico (East of Chiapas). This group has 163
exclusive taxa, six of which are distributed in
85 % of the sites of the group: Archaeoprepona
demophon centralis (Fruhstorfer, 1905), Cato-
nephele mexicana Jenkins & R. G. Maza, 1985,
Fountainea eurypyle confusa (A. Hall, 1929),
State Site Spp. Abbreviated name Elevation Vegetation type
Oaxaca Portillo del Rayo-Finca El Encanto188 OAX_PRa_1200 1 200 CF
Oaxaca Puente Arroyo “El Guajolote”174 OAX_Gua_2020 2 020 OPF
Oaxaca Rancho Hagia Sofía1121 OAX_Rha_410 410 TSDF
Oaxaca San José del Pacífico, 1 km S161 OAX_Pac_2280 2 280 OPF-CF
Chiapas San Jerónimo, Tacaná 117 CHIS_Sje_750 750 CF
1: sites collected by MZFC members; CF, cloud forest; MAN, mangrove; OF, oak forest; OP, Orbygnia palmar; OPF, oak-
pine forest; TDF, tropical deciduous forest; TEGF, tropical evergreen forest; TSDF, tropical sub-deciduous forest.
Fig. 4. Nymphalidae species composition similarity across 77 sites in Mexico (15 in the Atlantic and 62 in the Pacific
slopes). The distance matrix was estimated with the Jaccard index. Groups: 1. Atlantic slope; 2. Pacific slope; 3. Sierra de
Atoyac high-lands; 4. Costa del Pacífico, Northern Sierra Madre del Sur, and Western Eje Neovolcánico; 5. Sierra Madre
del Sur (Guerrero-Oaxaca); 6. Cuenca del Balsas (Guerrero-Morelos).
380 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Hamadryas amphinome mexicana (Lucas,
1853), Morpho helenor montezuma Guenée,
1859, and Taygetis thamyra (Cramer, 1779).
The second group comprises the sites in the
Pacific slope (2), divided into four subgroups.
In the first subgroup are the sites of the high-
lands of the Sierra de Atoyac de Álvarez (La
Golondrina, El Iris, and Puerto del Gallo) (3).
No exclusive species were recorded for these
three sites. Interestingly, although these sites
are geographically close to the sites of Balsas
and SMS, they segregate from other sites of the
Pacific because of their high-elevation species
assemblage (1 800-2 350 m). In the second
subgroup are the sites of the biogeographic
provinces Costa del Pacífico, Northern Sierra
Madre del Sur, and Western Eje Neovolcánico
(4). Six species are exclusive to this subgroup:
Bolboneura sylphis sylphis (Guérin-Méneville,
1844), Chlosyne rosita montana A. Hall, 1924,
Cyllopsis pallens L. Miller, 1974, Fountainea
halice tehuana (A. Hall, 1917), Polygonia
interrogationis (Fabricius, 1798), and Texola
elada hepburni (Godman, 1901), but all are
restricted to just 4-12 % of the sites in the
subgroup. A third subgroup is formed by the
sites in the Balsas province of Guerrero and
Morelos (6). These sites support mostly TDF
and lie at elevations from 760-2 280 m. Of
the three exclusive species to Balsas, Zisch-
kaia lupita (Reakirt, [1867]) is in 79 % of the
sites of this subgroup, while Chlosyne cyneas
cynisca (Godman & Salvin, 1882) and Cyl-
lopsis pertepida pertepida (Dyar, 1912) are
documented only in 7 % of the sites. The fourth
subgroup includes the Loxicha Region and is
composed of the sites of Oaxaca and Guerrero
in the SMS (5). Exclusive species recorded in
at least 80 % of the sites of this subgroup are
Archaeoprepona amphimachus baroni, Cato-
nephele numilia immaculata, Diaethria astala
asteroide, and D. anna mixteca. This subgroup
is divided into two sets of sites: those with low-
elevation CF, and those with TSDF between
350-900 m. However, the high-elevation site
El Guajolote (2 202 m) is similar to these sites,
possibly because of its geographical proximity.
The other set of sites are those within the SMS
with mid-elevation CF, between 600-1 600 m.
A clear distinction exists between the sites of
Oaxaca and those of Guerrero. These results
show that the position of the sites in the pheno-
gram corresponds to their geographic location
but also to their respective elevations (Fig. 4).
Diversity of the Loxicha Region relative
to other regions of the Sierra Madre del Sur
and Costa del Pacífico: The Mexican Pacific
slope, particularly in Guerrero and Oaxaca,
stands out for its remarkable diversity and
endemism at both the species and genus level.
In this area, only two faunistic studies exist that
cover a complete elevational gradient, and that
have an inventory completeness level higher
than 95 % according to the species richness
estimators. The first study was carried out in
the Sierra de Atoyac, Guerrero, from 300-3
100 m (Vargas-Fernández et al., 1994) and the
second one is the present study from 80-2 850
m (Table 6). Including both inventories, the
diversity of Nymphalidae in the area is 214
species including 11 subfamilies and 84 genera.
Of these 214 species, 88 % occur in the Loxi-
cha Region and 78 % in the Sierra de Atoyac.
Species richness is higher in Loxicha for nine
of the 11 subfamilies, with the greatest differ-
ence being in Nymphalinae (11 sspp.); only
Satyrinae has a higher species richness in the
Sierra de Atoyac, with nine subspecies.
Considering both transects, 13 species
endemic to Mexico were recorded: Pteronymia
rufocincta, Cyllopsis caballeroi Beutelspacher,
1982, C. clinas, C. diazi, C. jacquelineae,
C. nayarit, C. perplexa L. Miller, 1974,
Paramacera copiosa L. Miller, 1972, Tay-
getis uncinata, Catonephele cortesi, Chlosyne
cynisca, Chlosyne eumeda (Godman & Salvin,
1894), and Phyciodes pallescens. At the sub-
species level there are 66 endemics, consti-
tuting 31 % of the Nymphalidae recorded in
these areas. At a national scale, Loxicha and
the Sierra de Atoyac contain 43 % of the spe-
cies or subspecies of Nymphalidae endemic
to Mexico. Of these endemics, 56 are present
in the Loxicha Region and 55 in the Sierra
de Atoyac, with 64 % of the endemics shared
381
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
between the two (Llorente-Bousquets, Trujano-
Ortega et al., 2006; Luis-Martínez et al., 2003;
Luis-Martínez et al., 2016; Luis-Martínez et
al., 2021). As with the endemics of the Loxicha
Region, endemics of the Sierra de Atoyac were
grouped into four categories: 1, endemic to the
Sierra de Atoyac (3 sspp: Drucina championi
ssp., Eunica malvina almae Vargas, Llorente &
Luis, 1996, and Eueides isabella nigricornis R.
G. Maza, 1982); 2, endemic to the Sierra Madre
del Sur (17 sspp.); 3, endemic to the Pacific
slope (23 sspp.); and 4, endemic to Mexico (12
sspp.). These numbers are very similar to those
of the Loxicha Region, with differences of at
most three species. In both regions, Nymphali-
nae has the highest species richness and Biblid-
inae has most of the endemic taxa. Libytheinae,
Danainae, and Apaturinae have the lowest rich-
ness, a common pattern in America (Lamas,
2004; Pelham, 2008). Additionally, in Loxicha
these three subfamilies have no endemic taxa.
Phenology, elevational patterns, and
exclusivity of species in the transect
Phenology: Temporal distribution of the
species richness and abundance of Nymphali-
dae is influenced by season (Fig. 5). Richness
and abundance both reach their maximum
values in October (the end of the rainy season),
after which both parameters suddenly drop to
their lowpoints in December. The increase in
species richness is more or less steady, with
just a few more species in the rainy season
compared with the dry season; in contrast,
abundance has a steep increase from the dry to
the rainy season. April shows a slight increase
in species richness but a decrease in abundance,
suggesting an increase of rare species during
this month, compared with other months.
Elevational diversity patterns: Species
richness and diversity (eH) of Nymphalidae
decrease abruptly at elevations above 1 800
m, with just 33 % of the total species assem-
blage compared with 79 % at low elevations
and 82 % at mid elevations (Fig. 6). Although
observed species richness is higher at the
750-1 800 m level (151 spp.) than at the 0-750
m level (146 spp.), diversity estimates show no
significant difference between these two levels.
However, diversity is higher at low elevations,
which may be because of a higher dominance
of Hermeuptychia hermes and Cissia similis at
mid elevations which reduces overall diversity.
Elevational abundance patterns: Abun-
dance is highest at low elevations with 58 %
TABLE 6
Species richness and endemism of Nymphalidae subfamilies for two regions of the Pacific slope
of the Sierra Madre del Sur, Mexico (modified from Luis-Martínez et al., 2021)
Subfamily Loxicha Region, Oaxaca Sierra de Atoyac, Guerrero
Genera Species Subspecies Genera Species Subspecies
Libytheinae 1 1/0 1/0 1 1/0 1/0
Danainae 3 6/0 6/0 3 5/0 5/0
Ithomiinae 9 2/1 15/6 7 2/1 12/8
Charaxinae 10 4/1 21/8 9 3/0 16/6
Morphinae 3 3/0 8/1 3 2/0 7/1
Satyrinae 12 16/5 26/12 12 20/8 35/16
Apaturinae 2 3/0 3/0 1 1/0 1/0
Biblidinae 16 5/1 31/15 14 6/1 29/14
Limenitidinae 1 3/0 16/3 1 2/0 13/2
Nymphalinae 16 12/2 47/8 15 12/1 36/5
Heliconiinae 9 2/0 15/3 7 19/0 12/3
TOTAL
Richness/Endemism 82 57/10 189/56 73 73/11 167/55
382 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
of the total (15 861 records), decreases at mid
elevations with 39 % (10 520 records), and is
just 3 % (796 records) at high elevations. Each
level has dominant or characteristic species,
but the overall proportions of those dominant
species are highest in the mid and high eleva-
tions. The most abundant species in each level
belong to the Satyrinae subfamily. At low ele-
vations, Cissia similis (607 records) and Her-
meuptychia hermes (869 records) account for
5.1 and 5.4 % of the specimens, respectively;
at mid elevations, H. hermes is also the most
abundant species with 1 273 records (12 %);
at high elevations, 22 % of the specimens (177
records) are Paramacera xicaque rubrosuffusa
(Satyrinae) and 15 % (122 records) are Antha-
nassa a. ardys (Nymphalinae).
A total of 35 species were collected
from all three elevational levels (Appendix
1), but these species showed the following
three distinct distribution patterns. Pattern A:
Dione moneta poeyii, Paramacera xicaque
Fig. 6. Observed (black) and estimated (white) Nymphalidae species richness and diversity (exponential of Shannon-Wiener
index) across three elevational levels in the Loxicha Region, Oaxaca, Mexico.
Fig. 5. Phenology of Nymphalidae abundance and species richness in the Loxicha Region, Oaxaca, Mexico based on seven
years of sampling data. February was not sampled during this study.
383
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
rubrosuffusa, and Vanessa virginiensis mainly
occur at high elevations with just one to three
records from low elevations. Pattern B: 19
spp. (v. gr. Anartia f. fatima, Cissia similis,
Smyrna blomfildia datis) with the opposite
pattern, being abundant at low elevations and
decreasing at mid elevations, with just a few
specimens at high elevations. Pattern C: 13
species (v. gr. Anthanassa a. ardys, Chlosyne h.
hippodrome, Hermeuptychia hermes) that are
abundant at mid elevations with fewer records
at both low and high elevations. Most of the
taxa (104, 56 %) are present in two elevational
levels, mainly in the low and mid elevations
with just 10 species in both the mid and high
elevations (v. gr. Anthanassa atronia, A. otanes
oaxaca) (see Appendix 1). Remarkably, eight
species Adelpha f. fessonia, Anartia jatrophae
luteipicta, Chlosyne m. marina, Danaus eresi-
mus montezuma, Doxocopa l. laure, Phyciodes
g. graphica, P. mylitta thebais, and Pteronymia
artena praedicta were collected only in the low
and high elevations, implying that they are also
present in the mid elevations. Finally, 45 spe-
cies are restricted to a single elevational level
(Table 7). Of these, 17 species are exclusive
to 0-750 m elevation, with the most abundant
being Bolboneura sylphis beatrix, Hamadryas
g. glauconome, and Hypna clytemnestra mexi-
cana; 20 species are exclusive to mid eleva-
tions where Anthanassa argentea and Cyllopsis
diazi comprised most of the records; and eight
species are distributed only in the highest
elevations where Adelpha bredowii, Nymphalis
a. antiopa, and Phyciodes t. tharos were the
most abundant.
Diversity patterns by vegetation type:
The vegetation type with the most observed
Nymphalidae species is the CF (147 species);
TABLE 7
Exclusive species of each elevational level (m)
Taxa 0-750 750-1 800 1 800-2 850
Danainae
Lycorea ilione albescens 9
Danaus p. plexippus 1
Ithomiinae
Episcada salvinia portilla 22
Pteronymia c. cotytto 9
Charaxinae
Hypna clytemnestra mexicana 159
Memphis p. perenna 33
Memphis wellingi 1
Archaeoprepona phaedra ssp. 2
Prepona brooksiana ibarra 2
Morphinae
Caligo uranus 1
Opsiphanes quiteria quirinus 1
Opsiphanes t. tamarindi 6
Satyrinae
Oxeoschistus hilara ssp. 5
Oxeoschistus tauropolis ssp. 2
Cyllopsis clinas 1
Cyllopsis diazi 124
Cyllopsis h. hedemanni 87
Cyllopsis nayarit 5
Megisto rubricata pseudocleophes 2
384 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
however, according to estimations the species
richness in the TSDF, the CF, and the OPCF
are not significantly different (Fig. 7). Interest-
ingly, the OPCF has just 9 % of the abundance
of both the TSDF and the CF. Below these three
types, the TDF supports 47 % of the species in
the region with 90 estimated taxa. The species
richness in the OPF is much lower than the
other vegetation types, with no rare species,
so the total richness estimate is also low (six
spp.). Estimations indicate that all vegetation
types were adequately sampled. The differ-
ence between estimated and observed species
is higher in the OPCF, suggesting either lower
sampling effort or greater numbers of rare spe-
cies in this vegetation type.
Abundance patterns by vegetation type:
The TSDF and the CF present the highest and
most similar abundance of Nymphalidae, with
11 703 (43 %) and 10 903 (40 %) records,
respectively. Abundance in other vegetation
types is distinctly different, with just 3 496
records (13 %) in the TDF and 1 028 (4 %) in
the OPCF. This family is even scarcer in the
OPF, with less than 1 % of the overall abun-
dance (47 records) in the Loxicha Region.
Dominant species in most vegetation types
mainly belong to the Satyrinae. Dominance
is low in most vegetation types, except in the
OPF where Nymphalis a. antiopa (24 speci-
mens) and Paramacera xicaque rubrosuffusa
(17 specimens) comprise 87 % of the records.
Paramacera xicaque rubrosuffusa is also the
most abundant species in the OPCF with
15 % of the recorded specimens, followed
closely by Anthanassa a. ardys with 14 % of
the abundance in this vegetation. The most
abundant species in the CF and the TSDF is
also a member of the Satyrinae: Hermeupty-
chia hermes, with 12 and 7 % of the records,
respectively. The TDF is the only vegetation
type where Satyrinae are not dominant, but is
also the vegetation where dominance is lowest,
with Microtia e. elva and Hamadryas g. glau-
conome comprising only 9 % and 8 % of the
records, respectively.
Most species (80 %) were collected in
multiple vegetation types, although some have
just one or two records in the vegetation at the
highest or lowest elevations. The only species
found in all five vegetation types was Smyrna
blomfildia datis, with one record in the OPF.
Thirty-seven species are exclusive to a veg-
etation type (Table 8), half of which are rare
species with one or two records. Fig. 8, Fig. 9,
Fig. 10, Fig. 11, and Fig. 12 show the eleva-
tional distribution by vegetation type of these
Fig. 7. Observed (black) and estimated (white) species richness by vegetation types of Nymphalidae in the Loxicha Region,
Oaxaca, Mexico. TDF = tropical deciduous forest, TSDF = tropical sub-deciduous forest, CF = cloud forest (low- and mid-
elevation), OPCF = oak-pine and high-elevation cloud forest, OPF = oak-pine forest.
385
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
TABLE 8
Nymphalidae species exclusive to each vegetation type in the Loxicha Region, Oaxaca, Mexico
Taxa TDF TSDF CF OPCF OPF
Danainae
Lycorea ilione albescens 9
Danaus p. plexippus 1
Ithomiinae
Dircenna k. klugii 134
Episcada salvinia portilla 22
Pteronymia c. cotytto 9
Charaxinae
Memphis perenna perenna 33
Memphis wellingi 1
Archaeoprepona phaedra ssp. 2
Prepona brooksiana ibarra 2
Morphinae
Caligo uranus 1
Opsiphanes quiteria quirinus 1
Opsiphanes t. tamarindi 6
Satyrinae
Oxeoschistus tauropolis ssp. 2
Cyllopsis clinas 1
Cyllopsis h. hedemanni 87
Megisto rubricata pseudocleophes 2
Taygetis virgilia 1
Gyrocheilus p. patrobas 4
Apaturinae
Asterocampa idyja argus 18
Biblidinae
Marpesia zerynthia dentigera 18
Myscelia c. cyananthe 11
Bolboneura sylphis beatrix 211
Pyrrhogyra edocla paradisea 1
Limenitidinae
Adelpha barnesia leucas 3
Adelpha bredowii 15
Adelpha diocles ssp. 1
Nymphalinae
Pycina zamba zelys 4
Smyrna karwinskii 2
Hypanartia trimaculata autumna 42
Nymphalis a. antiopa 24
Vanessa cardui 1
Junonia genoveva ssp. nov. 5
Chlosyne cyneas cynisca 1
Phyciodes pallescens 1
Phyciodes p. phaon 24
Phyciodes t. tharos 19
Anthanassa texana texana 8
Heliconiinae
Dryadula phaetusa 4
Heliconius ismenius telchinia 1
Vegetation types: TDF = tropical deciduous forest, TSDF = tropical sub-deciduous forest, CF = cloud forest (low- and mid-
elevation), OPCF = oak-pine and high-elevation cloud forest, OPF = oak-pine forest. For each species listed, the habitat
preference value is 90-100 %.
386 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Fig. 8. Elevational profiles and characteristic species of Limenitidinae, Danainae, and Ithomiinae for each vegetation type in
the Loxicha Region, Oaxaca, Mexico. TDF = tropical deciduous forest, TSDF = tropical sub-deciduous forest, CF = cloud
forest (low- and mid-elevation), OPCF = oak-pine and high-elevation cloud forest.
Fig. 9. Elevational profiles and characteristic species of Charaxinae and Morphinae for each vegetation type in the Loxicha
Region, Oaxaca, Mexico. TDF = tropical deciduous forest, TSDF = tropical sub-deciduous forest, CF = cloud forest (low-
and mid-elevation), OPCF = oak-pine and high-elevation cloud forest.
387
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Fig. 10. Elevational profiles and characteristic species of Satyrinae and Apaturinae for each vegetation type in the Loxicha
Region, Oaxaca, Mexico. TDF = tropical deciduous forest, TSDF = tropical sub-deciduous forest, CF = cloud forest (low-
and mid-elevation), OPCF = oak-pine and high-elevation cloud forest.
Fig. 11. Elevational profiles and characteristic species of Biblidinae for each vegetation type in the Loxicha Region, Oaxaca,
Mexico. TDF = tropical deciduous forest, TSDF = tropical sub-deciduous forest, CF = cloud forest (low- and mid-elevation),
OPCF = oak-pine and high-elevation cloud forest.
388 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
37 species (Table 8); all species with 95 % or
more of their records in a single vegetation type
were also included.
Efficiency and efficacy of Van Someren-
Rydon traps: During our fieldwork, 94 species
of seven subfamilies of Nymphalidae were col-
lected with Van Someren-Rydon traps (Appen-
dix 2). These taxa represent 50 % of the species
recorded and 41 % of the specimens. Some spe-
cies were captured with both traps and aerial
nets, but abundance was higher in traps (11
543; 73 %). Only 18 species (173 specimens)
were collected exclusively in traps. Biblidinae
was the subfamily with most species recorded
in traps with 24 spp., followed by Satyrinae
and Charaxinae with 23 and 21 species, respec-
tively; these three subfamilies account for 74
% of the specimens collected in traps (Fig.
13). In terms of abundance, Satyrinae was the
subfamily with the most records (40 % of the
specimens), followed by Nymphalinae (21 %).
Comparing the relative abundance and species
richness solely of trapped specimens for each
subfamily, two patterns can be recognized: A.
Satyrinae and Nymphalinae had greater abun-
dance than richness; B. Charaxinae, Biblidinae,
and Morphinae presented a relatively higher
richness than specimens, but still lower abun-
dance than subfamilies in pattern A (Fig. 13).
The efficiency and efficacy of the traps
at each elevational level (0-750 m, 750-1 800
m, and 1 800-2 850 m) were evaluated based
on the species and specimens captured rela-
tive to the totals. The percentage of speci-
mens collected with traps decreased at higher
elevations (Appendix 2; Fig. 14), and this was
more evident for Apaturinae and Nymphali-
nae. However, traps reduce to almost 40 % of
their efficiency at the higher elevations. On
the other hand, efficacy measured as the % of
recorded species of each subfamily, remained
constant along the elevational gradient. Traps
captured 100 % of the species of Charaxinae
and Morphinae at all levels (Fig. 15). Efficacy
was lower at higher elevations for Apaturinae
Fig. 12. Elevational profiles and characteristic species of Nymphalinae and Heliconiinae for each vegetation type in the
Loxicha Region, Oaxaca, Mexico. TDF = tropical deciduous forest, TSDF = tropical sub-deciduous forest, CF = cloud forest
(low- and mid-elevation), OPCF = oak-pine and high-elevation cloud forest.
389
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
and Biblidinae, and slightly lower for Satyri-
nae. Finally, Van Someren-Rydon traps are less
effective in capturing species of Nymphalinae,
since percentages are lower than 40 % in all
elevational levels, although this efficacy stays
constant along the gradient. Of note, 16 species
of Limenitidinae were recorded in the Loxicha
Region but only two were collected in traps,
with an efficiency of 19 specimens out of the
298 collected of those species: Adelpha basi-
loides (5/227) and Adelpha i. iphiclus (14/71).
Natural history remarks on selected
taxa of the Loxicha Region: During our
fieldwork, some nymphalid species were par-
ticularly abundant or showed special behaviors.
We summarize that natural history data for each
relevant species below.
Hypna clytemnestra mexicana. Found in
the understory of the TDF, mainly in humid
and dark microhabitats. Easily collected with
traps in two sites: Parque Nacional Huatul-
co, and Río Cacaluta within Parque Nacional
Fig. 13. Relative abundance (black) and species richness (grey) of seven subfamilies of Nymphalidae collected in Van
Someren-Rydon traps in the Loxicha Region, Oaxaca, Mexico.
Fig. 14. Percentage of specimens of each Nymphalidae subfamily captured in Van Someren-Rydon traps by elevational
level, relative to all specimens captured in that level, in the Loxicha Region, Oaxaca, Mexico.
390 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Huatulco. More abundant in the rainy season
(July–November).
Consul excellens genini. Recorded and
collected in OPF, mostly on humid cliffs where
elements of CF are present. Attracted to fer-
mented fruit. Recorded mainly in San José
del Pacífico.
Chlosyne gaudialis wellingi. Flight faster
than other species of this genus, and flies
unusually high in search of flowers three to
four meters above ground level, in sunny open
places. Unusually low abundance relative to
other species of Chlosyne, which tend to be
very abundant.
Pycina zamba zelys. In Mexico, this taxon
has been recorded at just a few sites and with
low abundance. Only four specimens were col-
lected, the first records for the Pacific slope. All
specimens were collected on a wet wall along
a road where a stream formed puddles. Many
other species were also collected in this micro-
habitat: Pycina zamba zelys specimens were
licking the wet wall five or six meters above
ground level, as were specimens of Hypanar-
tia dione disjuncta, H. godmanii, H. lethe, H.
trimaculata autumna, Historis a. acheronta,
Epiphile adrasta escalantei, Diaethria anna
mixteca, D. astala asteroide, Marpesia chiron
marius, Siproeta e. epaphus, and S. stelenes
biplagiata, among other common taxa that
exploit this special microhabitat.
Altinote stratonice oaxaca. This species
is associated with low elevation CF from
1 000-2 500 m, making large elevational migra-
tions at the end of the summer. Present in open
spaces, with a slow flight, visiting bushes with
white composite flowers.
Archaeoprepona demophoon mexicana.
An elusive species, mainly occurring in the
forest canopy but sometimes in the understory
associated with open spaces like roads or river-
banks. Along rivers it can be found feeding on
minerals dissolved in wet sand and shows simi-
lar behavior along roads with some humidity
on the ground. Feeds mostly on decomposing
fruit and exudates of certain trees. Rapid fliers
that quickly flee when disturbed, often into the
forest canopy. Males are territorial and chase
away other males.
Bolboneura sylphis beatrix. Mostly along-
side roads or streams. If near rivers, it is likely
to be found on moist sand feeding on dissolved
minerals; if along roads, likely feeding on small
flowers. Flight is slow and halting, generally
about 50 cm above ground level. Groups of
more than 10 specimens can be found along-
side streams. When resting usually perches on
leaves. Recorded only in TDF.
Fig. 15. Percentage of species of each Nymphalidae subfamily recorded in Van Someren-Rydon traps by elevational level,
relative to all species recorded in that level, in the Loxicha Region, Oaxaca, Mexico.
391
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Heliconius erato cruentus. Found mainly
in open spaces and along roads and small paths.
Flight slow and halting, always less than one
meter above ground level. Often feeds at road-
side flowers, but sometimes also attracted to
decomposing fruit. Gregarious, forming groups
to overnight in protected places.
Microtia elva elva. Frequently found along
open roads with some shade. Flight low and
halting, at most 50 cm above ground level.
Feeds mostly on small composite flowers along
roadsides. When disturbed, usually flies just a
few meters away.
DISCUSSION
More than 60 % of Mexico’s surface is
covered by mountains, but faunal surveys of
Lepidoptera across elevational gradients are
scarce, except for those done by members of
the MZFC (Arellano-Covarrubias et al., 2018;
Luis-Martínez & Llorente-Bousquets, 1990;
Luis-Martínez et al., 1991; Luis-Martínez et al.,
2020; Vargas-Fernández et al., 1994; Vargas-
Fernández et al., 1999). This type of analysis
provides important insight into various bio-
logical processes. Such insights include the
recognition of disjunct distributions across
mountain archipelagos due to speciation and
endemism processes, and the ability to detect
changes of species distribution due to climate
change, especially in stenotopic species vulner-
able to extinction.
Of all elevational gradients in Mexico,
the Loxicha Region is the most systematically
sampled area for Papilionoidea sensu lato,
particularly for the Nymphalidae (Table 2).
Many experienced collectors have sampled
this region for decades (Álvarez-García et al.,
2016; Arellano-Covarrubias et al., 2018; Luis-
Martínez et al., 2000; Luis-Martínez et al., 2003;
Luis-Martínez et al., 2020; Michán et al., 2004;
Pozo et al., 2008). Estimates of Nymphalidae
species richness in the Loxicha Region show
that it has the highest percentage of inventory
completeness for any region in Mexico (Var-
gas-Fernández et al., 1994; Vargas-Fernández
et al., 1999). Furthermore, it has the highest
species richness of any region on the Pacific
slope (Table 1 and Table 3) and the second
richest in the country, behind only the Sierra de
Juárez (Table 3).
Sampling in the Loxicha Region began in
1960, based on historical specimens that we
checked and on publications that described a
dozen taxa from those specimens. However,
even with Loxicha’s great species richness and
endemism, the present work is the first sys-
tematic study that provides a detailed regional
description of the diversity and distributional
patterns of Nymphalidae, mirroring similar
works published previously for Riodinidae
(Arellano-Covarrubias et al., 2018), Papilioni-
dae, and Pieridae (Luis-Martínez et al., 2020).
Species richness of Nymphalidae by site:
Comparison of the diversity on both the Pacific
and Atlantic slopes confirms that the latter has
higher species richness (v. gr. Andresen, 2008;
Ceballos, 1995; Flores-Contreras & Luna-
Reyes, 2017; González-Ramírez et al., 2017;
Luis-Martínez et al. 2003; Salinas-Gutiérrez
et al. 2004). Of sites with 100 or more species
of Nymphalidae, only 20 % are on the Pacific
slope. Moreover, among these Pacific slope
“sites” are Acahuizotla, Guerrero and Cande-
laria Loxicha, Oaxaca, which are larger areas
that historically encompassed a group of sites
with distinct elevations and vegetation types
but labeled under a single site name. These
areas were used as reference points for collec-
tors for three decades (1950-1980) of the 20th
century. Therefore, actual species richness of
these reference sites is lower than cited, further
reducing to 15 % the Pacific slope sites with
over 100 species. In the last 40 years, more
than 10 faunistic studies on Papilionoidea
were done on the Pacific slope by members of
the MZFC (Llorente-Bousquets et al., 1996;
Llorente-Bousquets et al., 2004; Luis-Martínez
& Llorente-Bousquets, 1993; Luis-Martínez,
1997; Luis-Martínez, 1999; Luis-Martínez,
2001; Vargas-Fernández et al., 1994; Vargas-
Fernández et al., 1996; Vargas-Fernández et
al., 1999; Warren & Llorente-Bousquets, 1999;
Warren et al., 1996; Warren et al.,1998), but only
392 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
six sites exceed 100 species. Of these, only four
are in Sierra Madre del Sur (two in the Sierra
de Atoyac and two in the Loxicha Region),
which is the mountain range with the greatest
diversity on the Pacific slope despite lack-
ing tropical evergreen forest vegetation. San
Jerónimo, Tacaná, Chiapas is the only Mexican
site with more than 100 species that lacks a
systematic faunistic study; data from this site
were obtained from national and international
specimen collections (MARIPOSA database).
Species composition similarity across
regions: The similarity analysis reflects how
Lepidoptera are associated with mountain
archipelagos, as described by Llorente-Bous-
quets (1984) and Halffter (1987). In Mexico,
the states of Guerrero and Oaxaca support the
most faunistically similar mountain habitat
“islands” (Llorente-Bousquets, 1984). These
two isolated regions each have exclusive or
endemic species, yet they share at least 50 %
of their species, forming geographic and genea-
logic relations between them. Other areas are
disjunct, each with its own biogeographic histo-
ry based on patterns of biotic provinces defined
by Morrone et al. (2002) and Morrone (2005).
The distinction between the diurnal Lepidop-
tera on the Atlantic and Pacific slopes had been
further revealed using panbiogeographic meth-
ods (Llorente-Bousquets, Trujano-Ortega et al.,
2006; Luis-Martínez et al., 2006; Oñate-Ocaña
et al., 2006; Vargas-Fernández et al., 2006).
The faunistic similarity of Nymphalidae
shows a division in the Pacific slope and SMS
in two parts, a Northwest section (Nayarit,
Jalisco, Michoacán) and a Southeast section
(Guerrero, Oaxaca), with the latter including
the Loxicha Region. This division of the SMS
in two subprovinces was proposed by Santiago-
Alvarado et al. (2016) based on data from 32
species endemic to the SMS. No distribution
was consistent with the SMS as a whole.
Later, Morrone (2017) named and described
three subprovinces in the SMS: the West sub-
province with the Jalisciense and Jalisciense-
Manantlán districts, the Central subprovince
with the Michoacán district, and the Oriental
subprovince comprising the Guerrerense and
Tierras Altas de Oaxaca districts. Although
Nymphalidae data do not reflect the separation
of these three subprovinces, when analyzing
the data at a site-level scale, Nymphalidae
of the Southwest SMS are shown to be more
similar to the Balsas province fauna than to the
fauna of the Northeast SMS.
Species composition similarity of sites:
Diurnal Lepidoptera associated with the CF at
all elevational levels are an excellent model for
the study of complex dispersion, vicariance,
and speciation patterns, due to the disjunct
distribution and isolation of this vegetation
community (Rzedowski, 1978). Generally, CF
fauna distribution patterns are consistent with
the geographic barriers that delimit each of
the mountain ranges of Mexico. An integrated
phylogeographic analysis that included birds,
mammals, and plants concluded that the evo-
lution of the biota of the CF in Mesoamerica
resulted from a complex combination of dis-
tinct histories of range expansion, isolation,
and biotic differentiation (Ornelas et al., 2013).
A similar process seems to have occurred
with the Papilionoidea sensu lato and particu-
larly with Nymphalidae, based on distribution
patterns resolved by multiple studies (Llor-
ente-Bousquets, 1984; Llorente-Bousquets &
Escalante, 1994; Llorente-Bousquets & Luis-
Martínez, 1998).
Nymphalidae assemblages are closely
related to vegetation type and elevation but
are also influenced by geographic history and
distance. Sites are grouped in six sets accord-
ing to their similarity (Fig. 4). The first one
corresponds to the Atlantic slope, while the
other subgroups represent the diverse faunas
of the Pacific slope distributed in distinct phys-
iographic units and biotic provinces. These
results concur with the data published in fau-
nistic studies and generic reviews, describing
the distribution of fauna in three elevational
levels of the CF based on the proposal of
Llorente-Bousquets (1984). Sites on the Pacific
slopes (Fig. 4, subgroups 3 to 6) are grouped
similarly to the elevational gradients (Fig. 3).
393
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
The Sierra Madre del Sur (Guerrero and Oaxa-
ca portion) (Fig. 4, subgroup 5) is more similar
to the Cuenca del Balsas (Fig. 4, subgroup
6), than to the sites in the Costa del Pacífico,
Northern Sierra Madre del Sur, and Western
Eje Neovolcánico provinces (Fig. 4, subgroup
4). Notably, the sites above 1 800 m in the
Sierra de Atoyac de Álvarez (Fig. 4, subgroup
3, La Golondrina, El Iris, and Puerto del Gallo)
are separated from subgroups 4 and 6, and
from the sites above 1 800 m in the Loxicha
Region (Puente Arroyo “El Guajolote” and San
José del Pacífico, 1 km S), even though these
two regions are geographically close. Puente
Arroyo “El Guajolote” is part of the subgroup
of low elevation Guerrero-Oaxaca sites below
900 m, while San José del Pacífico is separated
from other sites of the Sierra Madre del Sur,
placed near the sites of the Cuenca del Balsas,
as the most distinct site of this group. These
similarity patterns of the high-elevation sites
of Atoyac and Loxicha suggest that these are
isolated communities, with a distinctive fauna,
different from nearby low-elevation sites as
well as from other high-elevation sites.
In general, the faunistic composition of
Nymphalidae agrees with the biogeographic
history of Mexico and its proposed provinces
(Morrone, 2005; Morrone et al., 2002). First,
there is a clear distinction between the faunas
of the Atlantic and the Pacific. At a finer scale,
a division of the Sierra Madre del Sur into a
Northern and Southern portion was recognized.
Within the Southern portion of SMS, sites are
grouped by elevation and vegetation type, with
high elevation sites separated from the rest.
Therefore, distribution patterns of Nymphali-
dae in Mexico are produced at large scales by
historical elements and at smaller scales by
ecological elements.
Phenology: In the Loxicha Region, the
temporal distribution of Nymphalidae species
richness and abundance is correlated direct-
ly with the summer-associated rainy season
(Fig. 5), which is common in most of the
regions in Mexico (Álvarez-García et al., 2016;
Luis-Martínez & Llorente-Bousquets, 1990;
Luis-Martínez & Llorente-Bousquets, 1993;
Luis-Martínez et al., 1991; Vargas-Fernández et
al., 1994; Vargas-Fernández et al., 1999). In the
Loxicha Region, nymphalid species richness
and abundance are higher from July to October.
This pattern is echoed in the Sierra de Juárez
(Oaxaca), the Sierra de Atoyac (Guerrero),
the Sierra de Manantlán (Jalisco-Colima), and
the Sierra de San Juan (Nayarit), although the
month with the highest species richness differs
among the regions. In Loxicha, October had
the highest richness. In comparison, September
is the month with most species recorded in the
Sierras de Juárez, Manantlán, and San Juan,
while in the Sierra de Atoyac most species
were recorded in July. As rainfall decreases so
too does species richness, with April and May
being both the driest months and having among
the lowest species richness in all regions.
Diversity and abundance by vegetation
type: Stenoic species of Nymphalidae have a
wider distribution across different vegetation
types (Table 8) than the stenoic species of
Papilionidae, Pieridae, and Riodinidae, which
mostly occur in the TSDF and CF (Arellano-
Covarrubias et al., 2018; Luis-Martínez et al.,
2020). The elevational profiles (Fig. 8, Fig.
9, Fig. 10, Fig. 11, and Fig. 12) show that the
stenoic species of both Satyrinae and Nym-
phalinae are characteristic of each vegetation
type. In contrast, Charaxinae and Biblidinae
lack stenoic species in the OPCF but are repre-
sented in the lower-elevation vegetation types.
The TDF is the vegetation type with the fewest
stenoic species, with only 11 characteristic spe-
cies of four subfamilies: Charaxinae, 3 spp.;
Satyrinae, 1 sp.; Apaturinae, 1 sp.; Biblidinae,
5 spp.; and Nymphalinae, 1 sp. Comparing
with other families, Riodinidae has a single
characteristic species of the TDF (Arellano-
Covarrubias et al., 2018). In Papilionidae only
the TSDF has a significant number of stenoic
species with five of the 10 species recorded,
while the number of stenoic species of Pieridae
does not differ among vegetation types (Luis-
Martínez et al., 2020).
394 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
The observed species richness and abun-
dance of Nymphalidae show that the OPCF is
the most diverse vegetation type. Although the
estimated species richness for the OPCF is not
significantly different from that of the CF and
the TSDF, the OPCF abundance is lower, with
nine exclusive species. Despite being originally
considered a combination of two vegetation
types (Luis-Martínez et al., 2020), these nym-
phalid results support the recognition of the
OPCF as a distinct ecological unit. We suggest
the analysis of other taxonomic groups to fur-
ther characterize this vegetation type. In com-
parison, the CF presented the highest number
of exclusive species with 16 taxa, although the
strong dominance of some species decreases
its diversity to a value lower than that of the
OPCF. Considering the diversity and exclusive
species of Nymphalidae that they support, we
recommend that the OPCF, CF, and the TSDF
be considered conservation priorities.
Van Someren-Rydon traps: Fruit-feeding
butterflies constitute approximately 50 % of
all Nymphalidae species (Santos et al., 2011).
Similarly, other authors have reported 40-55
% of fruit-feeding Nymphalidae species from
tropical forests, with some variation in the
composition among the subfamilies (Daily &
Ehrlich, 1995; DeVries & Walla, 2001; DeVries
et al., 1999; Freire-Jr. et al., 2021a; Pinheiro
& Ortiz, 1992; Uehara-Prado et al., 2004;
Vargas et al., 1994; Vargas et al., 1999). In the
last two decades, this guild has been used in
analyses of forest fragmentation, conservation,
monitoring, community structure, and ecology,
because these species are more easily sampled
(Freire Jr., Oliveira, et al., 2021; Freitas et al.,
2003; González-Valdivia et al., 2016; Pozo,
2006; Pozo et al., 2005; Pozo et al., 2009). The
growing importance of this guild underscores
the relevance of the Van Someren-Rydon trap
efficiency and efficacy data presented here.
During our fieldwork, all species of
Charaxinae, Morphinae, and Apaturinae were
collected in traps, along with most species of
Satyrinae (92 %) and Biblidinae (77 %). In
contrast, only two species of Limenitidinae
were collected in traps (13 %). Apparently,
Limenitidinae are only occasional visitors to
traps, probably looking for water as some
Ithomiinae also do, since neither of these
two subfamilies belong to the fruit-feeding
guild (Meave del Castillo & Luis-Martínez,
2000). Traps are especially useful for collect-
ing Charaxinae because these species frequent
open spaces above the forest canopy, while
Satyrinae frequent the understory less than one
meter above ground (Freire Jr., Ribeiro, et al.,
2021). Across all Nymphalidae, 19 % of the
taxa were collected exclusively with this tech-
nique, and for 69 % of the species documented,
75 % of the specimens were trapped. We thus
emphasize that Van Someren-Rydon traps are
critical for accurately documenting the species
richness, abundance, and elevational and veg-
etational distributions of Nymphalidae.
Ethical statement: The authors declare
that they all agree with this publication and
made significant contributions; that there is no
conflict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are
fully and clearly stated in the acknowledge-
ments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
JLB and ALM thank the projects DGAPA
PAPIIT IN220521, PAPIME PE202820,
CONACyT 284966, and CONABIO JF018 for
financial support. MTO thanks the Postdoctoral
Research Fellowship CONACyT 284966. AAC
thanks the Posgrado en Ciencias Biológicas de
la Universidad Nacional Autónoma de México.
We thank the Departmento de Biología Evo-
lutiva of the Facultad de Ciencias, Universi-
dad Nacional Autónoma de México (UNAM),
México; Armando Canavati, owner of Rancho
Hagia Sofía; and the authorities of the Parque
Nacional Huatulco for their support during this
project. Thanks to Sandra Nieves, Blanca Clau-
dia Hernández and other colleagues and stu-
dents who participated in the field work, and to
395
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Adriana Atzinameyali Sánchez Castañeda for
processing the collected material. The authors
thank Adam G. Clause for English language
review, and the peer reviewers for their com-
ments on the manuscript.
RESUMEN
Distribución, diversidad, endemismo y ecología de las
mariposas Nymphalidae (Lepidoptera: Nymphalidae)
en la Región Loxicha, Oaxaca, México
Introducción: La Región Loxicha de Oaxaca, México, ha
sido históricamente importante para el estudio de Nympha-
lidae, segunda en riqueza de especies en Papilionoidea.
Describir los patrones de diversidad de este taxón de mari-
posas en Loxicha puede mejorar nuestra comprensión de la
historia evolutiva de la Sierra Madre del Sur, la vertiente
del Pacífico mexicano y México en general. Objetivo:
Describir los patrones temporales y espaciales de la diver-
sidad de Nymphalidae a lo largo de un gradiente altitudinal
(80-2 600 m), y comparar la fauna de Loxicha con otras
regiones de México.
Métodos: Obtuvimos 28 756 registros de 21 sitios de la
Región Loxicha, que representan siete años de muestreo.
Estimamos y analizamos la diversidad, el endemismo y
los patrones de distribución para tres niveles altitudinales
y cinco tipos de vegetación. Estimamos la composición de
especies y la similitud con otras regiones de las vertientes
del Pacífico y Atlántico de México.
Resultados: Identificamos 189 taxones, incluyendo espe-
cies y subespecies, de 85 géneros y diez subfamilias de
Nymphalidae. Loxicha contiene 46 % de las especies de la
familia reconocidas para México, incluidas diez especies
endémicas y 56 subespecies endémicas. El bosque mesófilo
y las elevaciones bajas fueron los hábitats más diversos
para esta familia. Existe una clara divergencia entre las
faunas del Atlántico y del Pacífico, y la Sierra Madre del
Sur tiene dos componentes faunísticos. Los sitios de eleva-
ciones altas en Oaxaca, y en el estado vecino de Guerrero,
tienen una fauna distintiva, aparentemente aislada de los
sitios de elevaciones bajas, lo que revela una distribución
archipelágica para los Nymphalidae del bosque mesófilo.
Conclusiones: La Región Loxicha es una de las zonas más
diversas para Nymphalidae en México. La distribución en
la vertiente del Pacífico está determinada por la historia
geográfica y las condiciones ecológicas, incluida la eleva-
ción. Nymphalidae puede usarse para probar hipótesis de
regionalización biogeográfica en México.
Palabras clave: mariposas ninfálidas; gradiente de eleva-
ción; eficiencia de muestreo; fenología; provincias biogeo-
gráficas; trampas Van Someren-Rydon.
REFERENCES
Álvarez-García, H., Ibarra, A., & Escalante, P. (2016).
Riqueza y distribución altitudinal de las mariposas de
la Sierra Mazateca, Oaxaca (Lepidoptera: Papilionoi-
dea). Acta Zoológica Mexicana (Nueva Serie), 32(3),
323–347. https://doi.org/10.21829/azm.2016.323967
Andresen, E. (2008). Dung beetle assemblages in primary
forest and disturbed habitats in a tropical dry forest
landscape in western Mexico. Journal of Insect Con-
servation, 12(6), 639–650. https://doi.org/10.1007/
s10841-007-9100-y
Arellano-Covarrubias, A., Llorente-Bousquets, J., & Luis-
Martínez, A. (2018). Distribución y fenología de la
familia Riodinidae (Lepidoptera: Papilionoidea) en el
bosque tropical subcaducifolio de Oaxaca, México.
Revista de Biología Tropical, 66(2), 503–558. http://
dx.doi.org/10.15517/rbt.v66i2.33378
Bailowitz, R., Brock, J., & Danforth, D. (2017). Annotated
checklist of the butterflies (Lepidoptera) of Sono-
ra, Mexico. Dugesiana, 24(2), 125–147. https://doi.
org/10.32870/dugesiana.v24i2.6639
Balcázar, M. (1993). Butterflies of Pedernales, Michoacán,
Mexico, with notes on seasonality and faunistic affi-
nities (Lepidoptera: Papilionoidea and Hesperioidea).
Tropical Lepidoptera, 4(2), 93–105.
Beutelspacher, C. (1982). Lepidópteros de Chamela, Jalis-
co, México I. Rhopalocera. Anales del Instituto de
Biología (Zoología), UNAM, 52(1), 371–388.
Brown, J. W., Real, H. G., & Faulkner, D. K. (1992).
Butterflies of Baja California. Faunal survey, natu-
ral history, conservation biology. The Lepidoptera
Research Foundation, Inc.
Ceballos, G. (1995). Vertebrate diversity, ecology and con-
servation in neotropical dry forests. In S. H. Bullock,
H. A. Mooney, & E. Medina (Eds.), Seasonally dry
tropical forests (pp. 195–220). Cambridge University
Press.
Chao, A., & Shen, T. J. (2003). Nonparametric estima-
tion of Shannon’s index of diversity when there
are unseen species in sample. Environmental and
Ecological Statistics, 10(4), 429–443. https://doi.
org/10.1023/A:1026096204727
Chao, A., & Shen, T. J. (2010). Program SPADE (Species
Prediction and Diversity Estimation). User guide.
Available at http://chao.stat.nthu.edu.tw
Colwell, R. K. (2013). ESTIMATES: Statistical Estimation
of Species Richness and Shared Species from Sam-
ples (Version 9.1). Available at http://purl.oclc.org/
estimates.
Colwell, R. K., & Coddington, J. A. (1994). Estimating
terrestrial biodiversity through extrapolation. Philo-
sophical Transactions of the Royal Society of London.
396 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Series B: Biological Sciences, 345(1311), 101–118.
https://doi.org/10.1098/rstb.1994.0091
Comstock, J. A. (1953). Collecting butterflies in the coastal
area of Mexico near Manzanillo, Colima, with notes
on the life history of a rare skipper. Bulletin of the
Southern California Academy of Sciences, 52(2),
43–45.
Comstock, J. A. & Vázquez, L. (1961). Estudios de los
ciclos biológicos en lepidópteros mexicanos. Anales
del Instituto de Biología, UNAM, 31(1/2), 349–448.
Daily, G. C., & Ehrlich, P. R. (1995). Preservation of biodi-
versity in small rainforest patches: rapid evaluations
using butterfly trapping. Biodiversity Conservation,
4, 35–55. http://dx.doi.org/10.1007/BF00115313
DeVries, P. J., & Walla, T. R. (2001). Species diversity and
community structure in neotropical fruit-feeding but-
terflies. Biological Journal of the Linnean Society, 74,
1–15. http://dx.doi.org/10.1111/j.1095-8312.2001.
tb01372.x
DeVries, P. J., Walla, T. R., & Grenney, H. F. (1999). Spe-
cies diversity in spatial and temporal dimensions of
fruit-feeding butterflies from two Ecuadorian rainfo-
rests. Biological Journal of the Linnean Society, 68,
333–353. https://doi.org/10.1111/j.1095-8312.1999.
tb01175.x
Flores-Contreras, I., & Luna-Reyes, M. (2017). Diversidad
y distribución de cinco familias de Papilionoidea
(Lepidoptera) de las selvas altas en la provincia
biogeográfica del Golfo de México. Acta Zoológica
Mexicana, 33(2), 211–230. https://doi.org/10.21829/
azm.2017.3321062
Flores-Villela, O., & García-Vázquez, U. O. (2014). Biodi-
versidad de reptiles en México. Revista Mexicana de
Biodiversidad, Suplemento Biodiversidad de México,
85, S467–S475. https://doi.org/10.7550/rmb.43236
Freire-Jr., G., Oliveira, H., Silva, T., Pamela, H., Dias, J.,
Santos, J., Marini-Filho, O., Freitas, A., & Diniz, I.
(2021a). Good Things Come in Larger Packages: Size
Matters in Neotropical Fruit-Feeding Butterfly Dis-
persal [artículo]. MDPI in 1st International Electro-
nic Conference on Biological Diversity, Ecology and
Evolution session Biodiversity Conservation. https://
doi.org/10.20944/preprints202111.0113.v1
Freire-Jr., G., Ribeiro, D. B., de Carvalho Santos, A.,
Silva, T., Dias, J. P., Rodrigues, H. P., & Diniz, I.
R. (2021b). Horizontal and vertical variation in
the structure of fruit-feeding butterfly (Nymphali-
dae) assemblages in the Brazilian Cerrado. Insect
Conservation and Diversity, 14, 1–10. https://doi.
org/10.1111/icad.12547
Freitas, A. V. L., Francini, R. B., & Brown, K. S. (2003).
Insetos como indicadores ambientais. In L. Cullen,
R. Rudran, & C. Valladares-Padua (Eds.), Métodos
de estudos em biologia da conservação & manejo da
vida silvestre (pp.125–152). Editora UFPR.
García-Mendoza, A. J., & Meave del Castillo, J. A. (2011).
Diversidad florística de Oaxaca: de musgos a angios-
permas (colecciones y lista de especies). Universidad
Nacional Autónoma de México-Comisión Nacional
para el Conocimiento y Uso de la Biodiversidad.
González-Ramírez, M., Zaragoza-Caballero, S., & Pérez-
Hernández, C. X. (2017). Análisis de la diversidad
de Coleoptera en el bosque tropical caducifolio en
Acahuizotla, Guerrero, México. Revista Mexica-
na de Biodiversidad, 88(2), 381–388. https://doi.
org/10.1016/j.rmb.2017.03.008
González-Valdivia, N. A., Pozo, C., Ochoa-Gaona, S.,
Ferguson, B. G., Cambranis, E., Lara, O., Pérez-
Hernández, I., Ponce-Mendoza, A., & Kampichler, C.
(2016). Nymphalidae frugívoras (Lepidoptera: Papi-
lionoidea) asociadas a un ecomosaico agropecuario y
de bosque tropical lluvioso en un paisaje del sureste
de México. Revista Mexicana de Biodiversidad, 87,
451–464. https://doi.org/10.1016/j.rmb.2016.04.003
Halffter, G. (1987). Biogeography of the montane entomo-
fauna of Mexico and Central America. Annual Review
of Entomology, 32, 95–114. https://doi.org/10.1146/
annurev.en.32.010187.000523
Holland, R. W. (1995). Distribution of selected Anthocha-
ris, Euchloe and Pontia (Pieridae) in New Mexico,
Texas, Chihuahua and Sonora. Journal of the Lepi-
dopterists’ Society, 49(2), 119–135.
Jost, L. (2006). Entropy and diversity. Oikos, 113(2), 363–375.
https://doi.org/10.1111/j.2006.0030-1299.14714.x
Lamas, G. (2004). Checklist: Part 4A. Hesperioidea - Papi-
lionoidea. In J. B. Heppner (Ed.), Atlas of Neotropical
Lepidoptera. Vol. 5A. Association for Tropical Lepi-
doptera, Scientific Publishers.
Llorente-Bousquets, J. (1984). Sinopsis sistemática y
biogeográfica de los Dismorphiinae de México con
especial referencia al género Enantia Hübner (Lepi-
doptera: Pieridae). Folia Entomológica Mexicana,
58, 3–206.
Llorente-Bousquets, J., Garcés, A., & Luis-Martínez, A.
(1986). Las mariposas de JalapaTeocelo, Veracruz (El
Paisaje Teoceleño IV). Teocelo, 4, 14–37.
Llorente-Bousquets, J., & Escalante, P. (1994). Insular bio-
geography of submontane humid forests in México. In
S. P. Darwin, & A. L. Welden (Eds.), Biogeography of
Mesoamerica (pp. 139–146). University of Louisiana.
Llorente-Bousquets, J., & Luis-Martínez, A. (1993). A
conservation oriented analysis of Mexican butterflies:
the Papilionidae (Lepidoptera: Papilionoidea). In T. P.
Ramammorthy, J. Fa, R. Bye, & A. Lot (Eds.), The bio-
logical diversity of Mexico: origins and distributions
(pp. 147–177). Oxford University Press.
397
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Llorente-Bousquets, J., & Luis-Martínez, A. (1998). Análisis
conservacionista de las mariposas mexicanas: Papi-
lionidae (Lepidoptera: Papilionoidea). In T. Ramam-
morthy, R. Bye, A. Lot, & J. Fa (Eds.), Diversidad
Biológica de México: orígenes y distribución (pp.
149–178). Instituto de Biología, Universidad Nacional
Autónoma de México (UNAM), México.
Llorente-Bousquets, J., Luis-Martínez A., & Vargas-Fer-
nández, I. (2006). Apéndice general de Papilionoidea:
Lista sistemática, distribución estatal y provincias
biogeográficas. In J. J. Morrone, & J. Llorente-
Bousquets (Eds.), Componentes bióticos principales
de la entomofauna mexicana (Vol. II, pp. 945–1009).
Las Prensas de Ciencias, Universidad Nacional Autó-
noma de México (UNAM), México.
Llorente-Bousquets, J., Luis-Martínez, A., Vargas-Fernán-
dez, I., & Warren, A. D. (1996). Lista de las mariposas
del estado de Jalisco, México. Revista Sociedad Mexi-
cana Historia Natural, 46, 35–48.
Llorente-Bousquets, J., Luis-Martínez, A., Vargas-Fernán-
dez, I., & Warren, A. D. (2004). Butterflies of the state
of Nayarit, Mexico. Journal of the Lepidopterists’
Society, 58(4), 203–222.
Llorente-Bousquets, J., Trujano-Ortega, M., Luis Martí-
nez, A., & Vargas-Fernández, I. (2006). Patrones
de distribución de la familia Pieridae (Lepidoptera).
In J. J. Morrone, & J. Llorente-Bousquets (Eds.),
Componentes bióticos principales de la entomofau-
na mexicana (Vol. II, pp. 715–770). Las Prensas de
Ciencias, Universidad Nacional Autónoma de Méxi-
co (UNAM), México.
Llorente-Bousquets, J., Vargas-Fernández, I., Luis-Martí-
nez, A., Trujano-Ortega, M., Hernández-Mejía, B. C.,
& Warren, A. D. (2014). Biodiversidad de Lepidop-
tera en México. Revista Mexicana de Biodiversidad,
Suplemento Biodiversidad de México, 85, 353–371.
https://doi.org/10.7550/rmb.31830
Llorente-Bousquets, J., Warren, A. D., Vargas-Fernández,
I., & Luis-Martínez, A. (1996). Mariposas diur-
nas de Colima. Dugesiana, 3(2), 1-18. https://doi.
org/10.32870/dugesiana.v28i2.7165
Luis-Martínez, A. (1997). Papilionoidea (Lepidoptera:
Insecta) del estado de Michoacán: Fase I. Informe
final SNIB-CONABIO proyecto No. B150. UNAM,
México. http://www.conabio.gob.mx/institucion/pro-
yectos/resultados/InfB150.pdf
Luis-Martínez, A. (1999). Papilionoidea (Lepidoptera:
Insecta) del estado de Michoacán: Fase II. Informe
final SNIB-CONABIO proyecto No. H209. UNAM,
México. http://www.conabio.gob.mx/institucion/cgi-
bin/datos.cgi?Letras=H&Numero=209.pdf
Luis-Martínez, A. (2001). Papilionoidea (Lepidoptera:
Insecta) del estado de Michoacán: Fase III. Informe
final SNIB-CONABIO proyecto No. R256. UNAM,
México. http://www.conabio.gob.mx/institucion/pro-
yectos/resultados/Inf%20R256.pdf
Luis-Martínez, A., Ávalos-Hernández, O., Trujano-Ortega,
M., Arellano-Covarrubias, A., Vargas-Fernández, I.,
& Llorente-Bousquets, J. (2021). Riqueza y Ende-
mismo de Papilionoidea (Lepidoptera) de la región
Loxicha en el estado de Oaxaca, México. Dugesiana,
28(2), 233–246. https://doi.org/10.32870/dugesiana.
v28i2.7165
Luis-Martínez, A., Hernández-Mejía, B., Trujano-
Ortega, M., Warren, A. D., Salinas-Gutiérrez, J.,
Ávalos-Hernández, O., Vargas-Fernández, I., & Llo-
rente-Bousquets, J. (2016). Avances faunísticos en los
Papilionoidea (Lepidoptera) sensu lato de Oaxaca,
México. Southwestern Entomologist, 41(1), 171–224.
https://doi.org/10.3958/059.041.0119
Luis-Martínez, A., & Llorente-Bousquets, J. (1990). Maripo-
sas en el Valle de México: Introducción e Historia. 1.
Distribución local y estacional de los Papilionoidea de
la Cañada de los Dínamos, Magdalena Contreras, D. F.,
México. Folia Entomológica Mexicana, 78, 95–198.
Luis-Martínez, A., & Llorente-Bousquets, J. (1993). Mari-
posas. In I. Luna & J. Llorente (Eds.), Historia
Natural del Parque Ecológico Estatal Omiltemi,
Chilpacingo, Guerrero, México (pp. 307–385). Facul-
tad de Ciencias, Universidad Nacional Autónoma de
México (UNAM), México.
Luis-Martínez, A., Llorente-Bousquets, J., & Vargas-
Fernández, I. (2005). MARIPOSA database. (Una
megabase de datos de mariposas y la regionalización
biogeográfica de México). En J. Llorente-Bousquets,
& J. J. Morrone (Eds.), Regionalización geográfica
en Iberoamérica y tópicos afines: Primeras Jorna-
das Biogeográficas de la Red Iberoamericana de
Biogeografía y Entomología Sistemática (RIBES
XII.X-CYTED) (pp. 269-294). Las Prensas de Cien-
cias, Universidad Nacional Autónoma de México
(UNAM), México.
Luis-Martínez, A., Llorente-Bousquets, J., Vargas-Fernán-
dez, I., & Gutiérrez, A. L. (2000). Síntesis preliminar
del Conocimiento de los Papilionoidea (Lepidoptera:
Insecta) de México. In F. Martín, J. Morrone, & A.
Melic (Eds.), Monografías Tercer Milenio (Boletín
Sociedad Entomológica Aragonesa), 1, 275–285.
Luis-Martínez, A., Llorente-Bousquets, J., Vargas-Fernán-
dez, I., & Warren, A. D. (2003). Biodiversity and
Biogeography of mexican butterflies (Lepidoptera:
Papilionoidea and Hesperioidea). Proceedings of
the Entomological Society of Washington, 105(1),
209–224.
Luis-Martínez, A., Llorente-Bousquets, J., Warren, A. D.,
& Vargas-Fernández, I. (2004). Los lepidópteros:
Papilionoideos y Hesperoideos. In A. J. García-Men-
doza, M. J. Ordóñez, & M. A. Briones-Salas (Eds.),
Biodiversidad de Oaxaca (pp. 331–356). Instituto
de Biología, Universidad Nacional Autónoma de
398 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
México (UNAM)-Fondo Oaxaqueño para la Conser-
vación de la Naturaleza-WWF.
Luis-Martínez, A., Salinas-Gutiérrez, J. L., & Llorente-
Bousquets, J. (2011). Papilionoidea y Hesperioidea
(Lepidoptera: Rhopalocera). In F. Álvarez (Coord.).
Chiapas: Estudios sobre su diversidad biológica (pp.
363–392). Instituto de Biología, Universidad Nacio-
nal Autónoma de México (UNAM), México
Luis-Martínez, A., Sánchez García, A., Ávalos-Hernández,
O., Salinas-Gutiérrez, J. L., Trujano-Ortega, M.,
Arellano-Covarrubias, A., & Llorente-Bousquets, J.
(2020). Distribution and diversity of Papilionidae
and Pieridae (Lepidoptera: Papilionoidea) in Loxicha
Region, Oaxaca, Mexico. Revista de Biología Tropi-
cal, 68(1), 139–155. https://doi.org/10.15517/RBT.
V68I1.37587
Luis-Martínez, A., Trujano-Ortega, M., Llorente-Bousquets,
J., & Vargas-Fernández, I. (2006). Patrones de distri-
bución de las subfamilias Danainae, Apaturinae, Bibli-
dinae y Heliconiinae (Lepidoptera: Nymphalidae).
In J. J. Morrone, & J. Llorente-Bousquets (Eds.),
Componentes bióticos principales de la entomofau-
na mexicana (Vol. II, pp. 771–866). Las Prensas de
Ciencias, Universidad Nacional Autónoma de Méxi-
co (UNAM), México.
Luis-Martínez, A., Vargas-Fernández, I., & Llorente-Bous-
quets, J. (1991). Lepidopterofauna de Oaxaca I.
Distribución y Fenología de los Papilionoidea de la
Sierra de Juárez. Publicaciones Especiales del Museo
de Zoología, UNAM, 3, 1–121.
Luis-Martínez, A., Vargas-Fernández, I., & Llorente-Bous-
quets, J. (1996). Síntesis de los Papilionoidea (Rho-
palocera: Lepidoptera) del estado de Veracruz. Folia
Entomológica Mexicana, 93, 91–133.
Luna-Reyes, M. (2020). Mariposas diurnas (Lepidoptera).
La biodiversidad en Morelos: Estudio de Estado 2
(pp. 203–209). Comisión Nacional para el Conoci-
miento y Uso de la Biodiversidad (CONABIO) y
Gobierno del Estado de Morelos, México.
Luna-Reyes, M., Luis-Martínez, A., Vargas-Fernández, I.,
& Llorente-Bousquets, J. (2012). Mariposas del esta-
do de Morelos, México (Lepidoptera: Papilionoidea).
Revista Mexicana de Biodiversidad, 83, 623–666.
https://doi.org/10.7550/rmb.27987
Maza, J., & Maza, R. G. (1981). Notas sobre los Ithomiidae
de Mexico. IV: Zona Loxicha, Pacífico de Oaxaca.
Boletín informativo. Sociedad mexicana de Lepidop-
terología, 7(1), 3–10.
Maza, J., Maza, R. G., & Maza, R. F. (1982). Lepidópteros
nuevos del Estado de Guerrero, México. (Papilionoi-
dea). Revista de la Sociedad mexicana de Lepidopte-
rología, 7(1), 2–14.
Maza, R. G., & Maza, J. E. (1983). Descripción de nuevas
subespecies del género Callicore Hübner de México
y Guatemala (Nymphalidae: Nymphalinae). Revista
de la Sociedad mexicana de Lepidopterología, 8(1),
3–11.
Maza, R. G., & Maza, J. E. (1993). Mariposas de Chiapas.
Espejo de Obsidiana.
Meave del Castillo, J. A. & Luis-Martínez, A. (2000).
Caracterización biológica del Monumento Natural
Yaxchilán como un elemento fundamental para el
diseño de su plan rector de manejo. Hoja de cálculo
SNIB-CONABIO proyecto No. M099. Universidad
Nacional Autónoma de México, México.
Michán, L., Llorente-Bousquets, J., Luis-Martínez, A., &
Castro, D. J. (2004). Breve historia de la Taxonomía
de Lepidoptera en México durante el siglo XX. In
J. Llorente, J. J. Morrone, O. Yáñez, & I. Vargas
(Eds.), Biodiversidad, Taxonomía y Biogeografía
de Artrópodos de México: Hacia una Síntesis de su
Conocimiento (Vol. IV, pp. 5–42). Facultad de Cien-
cias, Universidad Nacional Autónoma de México
(UNAM), México.
Monteagudo-Sabaté, D., & Luis-Martínez, A. (2013).
Patrones de riqueza altitudinal de Papilionidae, Pie-
ridae y Nymphalidae (Lepidoptera: Rhopalocera)
en áreas montañosas de México. Revista Biología
Tropical, 61(3), 1509–1520.
Monteagudo-Sabaté, D., Luis-Martínez, A., Vargas-Fer-
nández, I., & Llorente-Bousquets, J. (2001). Patrones
altitudinales de la diversidad de mariposas en la
Sierra Madre del Sur (México). (Lepidoptera: Papi-
lionoidea). SHILAP Revista de Lepidopterología,
29(115), 207–237.
Monteagudo-Sabaté, D., Salinas-Gutiérrez, J. L., & Luis-
Martínez, A. (2014). Relaciones biogeográficas de
Papilionidae, Pieridae y Nymphalidae (Lepidoptera:
Papilionoidea) en el bosque mesófilo de montaña de
México. Entomotropica, 29(1), 29–37.
Morrone, J. J. (2005). Hacía una síntesis biogeográfica de
México. Revista Mexicana de Biodiversidad, 76(2),
207–252.
Morrone, J. J. (2017) Biogeographic regionalization of
the Sierra Madre del Sur province, Mexico. Revista
Mexicana de Biodiversidad, 88, 710–714. https://doi.
org/10.1016/j.rmb.2017.07.012
Morrone, J. J., Espinosa-Organista, D., & Llorente-Bous-
quets, J. (2002). Mexican biogeographic provinces:
preliminary scheme, general characterizations, and
synonymie. Acta Zoológica Mexicana (Nueva Serie),
85, 83–108.
Navarro-Sigüenza, A., Rebón-Gallardo, M. F., Gordillo-
Martínez, A., Peterson, A. T., Berlanga-García, H.,
& Sánchez-González. L. A. (2014). Biodiversidad de
Aves en México. Revista Mexicana de Biodiversidad,
Suplemento Biodiversidad de México, 85, S476–
S495. https://doi.org/10.7550/rmb.41882
399
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legen-
dre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B.,
Simpson, G. L., Solymos, P., Henry, M., Stevens,
H., Szoecs, E., & Wagner, H. (2019). Vegan: Com-
munity Ecology (Version 2.5-6, R package). https://
CRAN.R-project.org/package=vegan
Oñate-Ocaña, L., Trujano-Ortega, M., Llorente-Bousquets,
J., Luis Martínez, A., & Vargas-Fernández, I. (2006).
Patrones de distribución de la familia Papilionidae
(Lepidoptera). In J. J. Morrone, & J. Llorente-Bous-
quets (Eds.), Componentes bióticos principales de la
entomofauna mexicana (Vol. II, pp. 661–714). Las
Prensas de Ciencias, Universidad Nacional Autóno-
ma de xico (UNAM), México.
Ornelas, J. F., Sosa, V., Soltis, D. E., Daza, J. M., González,
C., Soltis, P. S., & Ruiz-Sánchez, E. (2013). Compa-
rative phylogeographic analyses illustrate the com-
plex evolutionary history of threatened cloud forests
of northern Mesoamerica. PloS One, 8(2), e56283.
https://doi.org/10.1371/journal.pone.0056283
Pelham J. P. (2008). A catalogue of the butterflies of the
United States and Canada with a complete biblio-
graphy of the descriptive and systematic literature.
Journal of Research on the Lepidoptera, 40, 1–652.
Pinheiro, C. E. G., & Ortiz, J. V. C. (1992). Communities
of fruit-feeding butterflies along a vegetation gra-
dient in central Brazil. Journal of Biogeography, 19,
505–511. http://dx.doi.org/10.2307/2845769
Pozo, C. (2006). Los Rhopalocera de la región de Calak-
mul, Campeche: métodos de estudio, fenología y
su uso y monitoreo como indicadores de distur-
bio. Universidad Nacional Autónoma de México.
http://132.248.9.195/pd2006/0604448/Index.html
Pozo, C., Llorente-Bousquets, J., Luis-Martínez, A., Var-
gas-Fernández, I., & Salas, N. (2005). Reflexiones
acerca de los métodos de muestreo para mariposas
en las comparaciones biogeográficas. In J. Llorente,
& J. Morrone (Eds.), Regionalización geográfica
en Iberoamérica y tópicos afines: primeras jorna-
das biogeográficas de la Red Iberoamericana de
Biogeografía y Entomología Sistemática (RIBES
XII.I. –CYTED) (pp. 203–215). Universidad Nacional
Autónoma de México.
Pozo, C., Luis-Martínez, A., Llorente-Bousquets, J., Salas-
Suárez, N., Maya-Martínez, A., Vargas-Fernández,
I., & Warren, A. D. (2008). Seasonality and pheno-
logy of the butterflies (Lepidoptera: Papilionoidea
and Hesperioidea) of Mexico’s Calakmul region.
Florida Entomologist, 91, 407–422. https://doi.
org/10.1653/0015-4040(2008)91[407:SAPOTB]2.0.
CO;2
Pozo, C., Salas-Suárez, N., Prado-Cuéllar, B., & May-Uc,
E. (2009). Riqueza de mariposas diurnas (Lepidop-
tera: Rhopalocera) en el Santuario del Manatí y una
propuesta para su uso en el monitoreo de ambientes
terrestres del área. In J. Espinoza-Avalos, G. A.
Islebe, & H. A. Hernández-Arana (Eds.), El sistema
ecológico de la bahía de Chetumal/Corozal: costa
occidental del Mar Caribe. El Colegio de la Frontera
Sur, México.
R Core Team (2020). R: A language and environment for
statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. https://www.R-project.
org/
Rydon, A. (1964). Notes on the use of butterfly traps in east
Africa. Journal Lepidopterists’ Society, 18, 51–58.
Rzedowski, J. (1978). Vegetación de México. Limusa,
México.
Salinas-Gutiérrez, J. L., Luis-Martínez, A., & Llorente-
Bousquets, J. (2004). Papilionoidea of the evergreen
tropical forests of Mexico. Journal of the Lepidopte-
rists’ Society, 58, 125–142.
Santiago-Alvarado, M., Montaño-Arias, G., & Espino-
sa, D. (2016). Áreas de endemismo de la Sierra
Madre del Sur. In I. Luna-Vega, D. Espinosa, & R.
Contreras-Medina (Eds.), Biodiversidad de la Sierra
Madre del Sur (pp. 431–448). Universidad Nacional
Autónoma de México (UNAM), México.
Santos, J. P., Iserhard, C. A., Teixeira, M. O., & Roma-
nowski, H. P. (2011). Fruit-feeding butterflies guide
of subtropical Atlantic Forest and Araucaria moist
forest in the State of Rio Grande do Sul, Brazil. Biota
Neotropica, 11, 253–274.
Soberón, J., & Llorente-Bousquets, J. (1993). The use of
species accumulation functions for the prediction of
species richness. Conservation Biology, 7(3), 480–488.
https://doi.org/10.1046/j.1523-1739.1993.07030480.x
Spade, P., Hamilton A. T., & Brown, J. (1988). The biology
of seven troidine swallowtail butterflies (Papilioni-
dae) in Colima, Mexico. Journal of Research on the
Lepidoptera, 26(1/4), 13–26.
Stanford, R. E. (1998). Collecting Lepidoptera in Sonora
and Sinaloa, Mexico, 26-31 December 1954. News of
the Lepidopterists’ Society, 40(3), 44.
Tapia-Sedeño, A. (2013). Análisis de los componentes alfa
y beta de la familia Nymphalidae (Papilionoidea:
Lepidoptera) en el estado de Michoacán (Tesis de
Licenciatura). Universidad Nacional Autónoma de
México (UNAM), México. http://132.248.9.41:8880/
jspui/handle/DGB_UNAM/TES01000704303
Uehara-Prado, M., Freitas, A. V. L., Francini, R. B., &
Brown, K. S. (2004). Guia das borboletas frugívoras
da Reserva Estadual do Morro Grande e região de
Caucaia do Alto, Cotia (São Paulo). Biota Neotropi-
ca, 4(1), 1-25.
Vargas-Fernández, I., Llorente-Bousquets, J., & Luis-Mar-
tínez, A. (1994). Listado Lepidopterofaunístico de la
Sierra de Atoyac de Álvarez en el estado de Guerrero:
400 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
notas acerca de su distribución local y estacional (Rho-
palocera: Papilionoidea). Folia Entomológica Mexica-
na, 86, 41–178.
Vargas-Fernández, I., Llorente-Bousquets, J., & Luis-Mar-
tínez, A. (1999). Distribución de los Papilionoidea
(Lepidoptera: Rhopalocera) de la Sierra de Manantlán
(250–1 650 m) en los estados de Jalisco y Colima.
Publicaciones Especiales del Museo de Zoología,
UNAM, 11, 1153.
Vargas-Fernández, I., Llorente-Bousquets, J., & Luis-Mar-
tínez, A. (2016). Adiciones a la serie Papilionoidea
de México: Distribución Geográfica e Ilustración.
Las Prensas de Ciencias, Universidad Nacional Autó-
noma de México (UNAM), México.
Vargas-Fernández, I., Luis-Martínez, A., Llorente-Bous-
quets, J., & Warren, A. D. (1996). Butterflies of the
state of Jalisco. Journal of the Lepidopterists’ Society,
50(2), 97–138.
Vargas-Fernández, I., Trujano-Ortega, M., Llorente-Bous-
quets, J., & Luis Martínez, A. (2006). Patrones de
distribución de las subfamilias Ithomiinae, Morphinae
y Charaxinae (Lepidoptera: Nymphalidae). In J. J.
Morrone, & J. Llorente-Bousquets (Eds.), Com-
ponentes bióticos principales de la entomofauna
mexicana (Vol. II, pp. 867–944). Las Prensas de
Ciencias, Universidad Nacional Autónoma de Méxi-
co (UNAM), México.
Vázquez, L. (1958). Notas sobre lepidópteros de las Islas
Revillagigedo. I. Anales del Instituto de Biología,
UNAM, 28(1/2), 301–307.
Vázquez, L. (1959). Notas sobre lepidópteros de las Islas
Revillagigedo. II. Anales del Instituto de Biología,
UNAM, 29(1/2), 349–353.
Vázquez, L. (1960). La isla Socorro. X. Observaciones
sobre los artrópodos. Monografías del Instituto de
Geofísica, Universidad Nacional Autónoma de Méxi-
co, 2, 217–234.
Velázquez, C. A. (1976). Reporte de un viaje de colecta a
los Estados de Michoacán, Jalisco, Colima y Oaxaca.
Boletín informativo. Sociedad Mexicana de Lepidop-
terología, 2(4), 6.
Velázquez, N. V., & Velázquez, C. A. (1975). Viaje de
colecta a Jalisco y Colima. Boletín informativo.
Sociedad Mexicana de Lepidopterología, 1(4), 6–7.
Warren, A. D., & Llorente-Bousquets, J. (1999). Butterflies
of Mismaloya, Jalisco and adjacent parts of Banderas
Bay and Southern Nayarit, México. Dugesiana, 6(1),
17–32. https://doi.org/10.32870/dugesiana.v6i1.3904
Warren, A. D., Vargas-Fernández, I., Luis-Martínez, A.,
& Llorente-Bousquets, J. (1996). Mariposas diur-
nas de Jalisco. Dugesiana, 3(1), 1–20. https://doi.
org/10.32870/dugesiana.v3i1.3795
Warren, A. D., Vargas-Fernández, I., Luis-Martínez, A., &
Llorente-Bousquets, J. (1998). Butterflies of the state
of Colima, México. Journal of the Lepidopterists’
Society, 52(1), 32–64.
401
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
APPENDIX 1
Nymphalidae of the Loxicha Region across a vegetational-elevational gradient
Monthly vegetational and elevational distribution of 189 species of Nymphalidae in the Loxicha Region, Oaxaca,
Mexico. Records were obtained from 267 sampling days over seven years (2005, 2007, 2008, 2011–2014) in 21 sites from
eight municipalities. The first column (Sp.) is the species identifier number corresponding to the list of species in the Results
section. The next 11 columns are the months of the year excluding February from which no records are available. Column 13
(Total) is the total number of records for each species. The next five columns are the specimens recorded in each vegetation
type: TDF, tropical deciduous forest; TSDF, tropical subdeciduous forest; CF, cloud forest; OPCF, oak-pine forest with ele-
ments of high-elevation cloud forest; OPF, oak-pine forest. The next two columns (100 and >70 %) present the elevational
range where 100 % and more than 70% of the specimens of each species were recorded, respectively. These two columns
show the elevational range with the highest probability for finding the species, although some taxa undergo seasonal eleva-
tional migrations. The last column (%) refers to the percentage of specimens collected in the >70 % elevational range. The
last two rows correspond to the total number of specimens (TAb) and species (TSp) of each column. Species 55. Pedaliodes
dejecta ssp., 116. Adelpha donysa ssp., and 176. Actinote guatemalena guerrerensis were not recorded during fieldwork and
hence are not included in this table.
Sp. J M A M J J A S O N D Total TDF TSDF CF OPCF OPF 100 >70% %
1 10 6 8 3 2 29 10 18 1 80-900 80-500 97
2 1 9 10 3 7 500-2400 1200-2400 92
33 8 1 5 1 3 3 8 1 33 5 21 7 290-1650 100-500 81
4 1 1 7 9 9 290-1650 1100-1650 92
520 1 1 6 13 29 4 2 36 112 65 40 6 1 80-2400 80-410 93
6 223794311 2 43 17 21 5 80-900 80-500 88
7 1 1 1 1500-2400 1500-2400 100
81 2 3 9 25 11 1 2 54 53 1 100-2150 350-500 99
910 3 1 4 10 32 48 76 57 13 4 258 243 12 3 290-2150 350-500 93
10 2 2 2 1 3 3 31 6 8 58 1 57 350-1650 750-1250 69
11 4 1 3 4 12 9 33 14 19 350-1530 410-1250 97
12 10 3 1 3 2 12 9 43 30 6 5 124 51 73 350-1530 350-900 79
13 2 2 20 18 1 43 22 21 290-1650 350-1300 89
14 3 14 3 13 10 40 113 5 201 3 150 47 1 80-2150 350-900 94
15 63 15 7 6 11 18 58 115 119 12 3 427 86 341 350-1650 350-1300 98
16 2 7 21 91 21 142 142 290-1650 1100-1650 89
17 1 17 4 22 22 1200-1650 1200-1650 100
18 1 2 3 2 1 600-2400 600-850 67
19 1 8 9 9 350-500 350-500 100
20 3 4 2 8 3 18 76 35 14 4 167 1 165 1 410-1650 1100-1650 69
21 1 9 8 1 28 47 43 4 1200-2400 1200-1650 92
22 3 8 8 9 22 69 86 80 8 293 74 215 4 350-2150 350-940 74
23 5 3 33 8 75 17 18 159 157 2 80-410 80-100 99
24 1 1 2 3 3 3 1 14 4 10 410-1650 410-1650 100
25 1 1 1 8 11 10 1 1200-2400 1500-1650 82
26 10 6 1 9 16 9 53 30 2 136 1 117 15 3 410-2150 350-500 87
27 3 1 4 2 1 15 5 31 7 22 1 1 80-2150 350-500 72
28 8 1 2 1 3 4 19 13 3 3 80-900 80-900 100
29 31 48 10 42 14 21 7 145 51 1 370 104 244 22 80-900 80-500 95
30 8 4 26 52 80 9 13 4 196 116 14 59 7 100-2400 80-940 88
31 1 6 4 1 4 4 4 28 2 54 11 8 35 80-1650 80-1650 100
32 6 11 87 37 13 75 29 258 100 1 157 80-1650 80-1650 100
33 6 1 2 16 19 38 9 5 1 97 2 95 80-1550 940-1550 88
402 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Sp. J M A M J J A S O N D Total TDF TSDF CF OPCF OPF 100 >70% %
34 4 12 12 3 7 33 12 19 1 103 87 15 1 80-900 100-500 99
35 4 1 1 2 1 5 18 1 33 33 1200-1650 1200-1550 95
36 3 1 1 11 4 6 17 8 51 19 18 13 1 80-2400 100-500 73
37 1 1 1 410-500 410-500 100
38 711 5 4 5 19 25 31 26 7 1 141 86 52 3 410-2150 350-940 93
39 7 6 10 4 8 7 5 7 2 5 1 62 6 26 28 2 100-2150 350-940 77
40 3 7 1 4 10 31 5 20 20 1 1 103 12 82 8 1 80-2150 350-500 80
41 2 2 2 410-1530 410-1530 100
42 2 3 1 5 3 4 1 19 3 14 1 1 80-2150 350-500 77
43 1 1 2 2 1470-1550 1470-1550 100
44 8 19 17 5 15 38 57 2 1 162 55 75 32 80-1550 80-500 81
45 2436139118 138 72 4 387 1 214 171 1 80-2150 350-900 86
46 1 1 1 11 6 6 8 34 26 8 290-1300 350-900 95
47 1 1 1 500-900 500-900 100
48 3 8 9 4 1 2 27 10 11 6 80-1530 80-500 80
49 311385611 4 1 43 3 38 2 80-2150 350-500 90
50 1 1 1 350-500 350-500 100
51 3 1 1 1 6 6 350-500 350-500 100
52 2 2 1 1 350-1300 350-1300 100
53 2 1 2 5 3 2 1470-2150 1470-2150 100
54 1 1 2 2 500-1550 1200-1550 75
55
56 66 85 56 155 34 50 435 63 1 2 947 148 645 151 3 80-2400 350-700 70
57 53 1 12 17 44 5 17 1 150 54 96 410-1650 350-1300 86
58 6 42 6 13 58 55 66 103 87 41 4 481 4 153 324 80-1650 350-1530 98
59 1 3 32 215 89 5 9 354 18 308 28 80-1650 350-500 86
60 1 1 1 2020-2150 2020-2150 100
61 8 4 3 2 8 35 52 11 1 124 121 3 1100-2150 1100-2150 100
63 20 1 4 2 7 2 36 5 31 350-1650 350-1650 100
64 1 1 2 1 5 4 1 1100-1530 1100-1530 100
62 4 1 1 5 12 30 10 30 2 95 95 444-1650 1100-1550 77
65 1 6 1 1 3 12 3 9 1200-2400 2280-2400 75
66 1200-1530 1200-1530 100
67 2 4 51 18 62 34 62 61 294 22 270 2 410-2400 750-1550 73
68 194 100 46 91 346 269 292 339 496 81 13 2267 43 791 1430 3 80-2400 350-1650 98
69 2 2 2 2280-2400 2280-2400 100
70 4 30 58 13 3 4 68 180 1 1 161 17 2020-2800 2280-2400 88
71 3 2 1 1 4 1 12 4 8 290-1650 290-1650 100
72 3 2 4 12 2 6 6 1 36 35 1 240-2150 350-500 95
73 1 1 1 4 5 6 2 20 18 1 1 350-2150 350-500 93
74 35 21 12 13 28 102 62 98 66 437 16 399 20 2 80-2150 350-500 91
75 1 1 1 410-500 410-500 100
76 3 2 1 12 3 37 9 16 2 1 86 71 15 350-1530 350-1530 100
77 4 4 4 2280-2400 2280-2400 100
78 1 9 3 5 18 18 1100-1650 1100-1650 100
79 5 2 1 3 1 12 8 1 3 80-2400 80-2400 100
80 3 3 1 2 1 4 12 14 1 1 42 3 35 2 2 80-2150 350-500 86
403
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Sp. J M A M J J A S O N D Total TDF TSDF CF OPCF OPF 100 >70% %
81 6 3 1 25 71 54 24 21 39 1 245 24 206 11 4 80-2150 350-500 84
82 12 5 6 40 17 5 7 10 1 103 47 40 15 1 2280-2400 100-500 85
83 2 1 5 2 5 2 1 18 18 500-1650 1100-1650 76
84 4 8 3 7 45 41 23 56 26 213 6 9 198 100-1550 80-900 86
85 1 2 3 1 2 410-850 410-850 100
86 5 5 3 19 7 63 20 107 20 249 14 208 26 1 80-2150 350-500 85
87 6 3 5 13 1 28 26 2 80-410 80-410 100
88 21 196 41 68 53 91 16 56 28 570 158 305 107 80-1650 80-500 83
89 11 90 26 32 105 18 1 4 5 292 276 16 80-500 80-100 94
90 4 6 2 38 40 38 10 91 46 6 281 86 175 19 1 80-2150 80-500 95
91 6 2 3 100 29 5 1 146 119 22 5 80-1530 80-100 77
92 6 4 1 3 35 46 16 12 8 2 1 134 30 71 30 3 80-2150 350-500 54
93 1 2 1 4 8 3 5 350-900 750-900 63
94 7 6 1 11 14 9 11 2 61 2 26 31 2 100-2150 80-940 91
95 2 4 2 28 55 53 13 157 71 86 290-1650 350-1300 93
96 2 3 5 1 11 11 80-500 80-100 92
97 2 8 15 23 2 1 4 55 41 14 350-1650 350-900 98
98 3 3 1 3 10 3 7 80-410 80-410 100
99 16 4 2 11 59 48 99 84 2 2 327 17 295 14 1 80-2150 350-500 94
100 7 5 4 17 11 22 24 56 50 196 11 179 4 2 80-2150 350-500 92
101 3 2 2 174 24 3 3 211 211 80-100 80-100 100
102 9 6 1 1 1 6 7 6 34 12 83 10 72 1 350-2150 1000-1650 75
103 1 1 1 500-900 500-900 100
104 6 12 5 27 55 60 22 23 37 1 1 249 30 217 1 1 80-2150 80-500 98
105 71 17 4 11 21 109 171 179 338 108 1029 55 972 2 410-2150 1100-1650 80
106 8 7 1 2 24 20 17 59 8 146 11 135 410-1650 1100-1650 73
107 2 2 10 14 29 20 77 4 58 15 80-2150 350-500 80
108 1 3 1 3 8 3 20 8 47 46 1 940-2400 1470-1650 75
109 3 22 25 22 34 16 122 1 2 119 410-1250 600-940 95
110 11 2 4 27 51 45 70 116 2 328 73 232 22 1 80-2150 350-500 71
111 1 3 2 16 22 1 9 12 80-940 410-940 96
112 3 3 3 410-500 410-500 100
113 6 3 4 2 7 17 14 117 49 8 227 201 5 21 350-2150 350-500 90
114 5 4 1 2 3 15 15 2280-2400 2280-2400 100
115 1 1 1 2280-2400 2280-2400 100
116
117 5 1 1 1 8 5 2 1 100-2400 100-500 89
118 5 4 1 4 15 6 23 52 40 7 157 14 84 44 15 100-2400 80-900 70
119 1 1 5 3 16 45 71 26 44 1 410-2150 410-940 99
120 1 4 2 7 6 1 500-2150 500-1530 95
121 12 3 4 14 11 10 54 53 1 600-2150 1100-1650 95
122 2 3 5 2 3 410-1300 410-900 94
123 2 1 5 4 12 2 8 2 80-2150 80-500 91
124 5 1 3 2 5 4 3 6 29 4 17 3 5 100-2150 100-900 86
125 2 3 6 4 4 8 27 16 6 5 290-2150 400-900 88
126 3 2 8 2 6 11 32 1 30 1 350-2150 1100-1650 82
127 4 2 5 4 5 20 18 2 290-1530 290-500 87
404 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Sp. J M A M J J A S O N D Total TDF TSDF CF OPCF OPF 100 >70% %
128 3 1 8 3 6 2 2 1 26 8 13 4 1 80-2150 80-2150 100
129 1 1 2 36 7 17 11 25 7 2 109 28 57 24 80-1300 350-940 73
130 4 4 4 1470-1550 1470-1550 100
131 33 15 3 19 18 20 34 180 41 10 6 379 6 317 55 1 80-2150 350-500 83
132 77 41 9 134 113 157 148 173 185 182 10 1229 191 340 693 4 1 80-2400 80-940 72
133 4 4 4 1200 1200 100
134 14 8 3 16 2 11 11 25 10 100 1 79 20 350-2400 1100-1650 83
135 3 3 1 1 3 6 8 24 11 1 61 3 57 1 350-2400 1100-1650 77
136 23 12 4 6 9 12 32 57 99 21 1 276 8 242 26 350-2400 1100-1650 80
137 5 2 13 14 9 43 43 444-1650 1100-1650 88
138 10 3 2 1 8 24 24 1500-2400 2280-2400 75
139 3 1 4 1 3 1500-2400 2280-2400 75
140 2 2 2 940 940 100
141 1 5 4 22 8 1 21 1 63 1 12 49 1 80-2400 2280-2400 75
142 11 1 2 22 11 17 24 5 93 22 70 1 350-2150 350-980 65
143 71 54 6 12 85 100 30 123 114 4 599 188 283 124 4 80-2400 350-500 72
144 88 29 7 13 37 171 104 203 165 88 9 914 34 548 328 4 100-2400 350-940 88
145 2 2 5 2 7 24 42 16 24 2 100-2400 80-500 95
146 2 1 1 1 1 2 1 9 4 1 4 350-2400 350-2400 100
147 3 1 6 1 11 9 2 350-1530 350-500 82
148 5 5 5 410-500 410-500 100
149 1 1 1 2280-2400 2280-2400 100
150 1 3 1 4 12 10 3 33 22 89 21 65 3 350-2400 350-940 65
151 6 2 1 5 17 3 34 68 1 66 1 350-1650 1100-1650 84
152 29 7 26 48 81 185 124 176 195 35 10 916 1 343 562 10 80-2400 350-1300 88
153 53 30 11 14 49 44 48 62 78 38 427 6 41 380 80-1650 1000-1650 69
154 1 1 8 15 20 59 40 42 14 200 11 89 100 80-1650 410-1650 95
155 14 1 4 19 1 18 410-2400 2280-2400 90
156 2 15 9 15 17 76 61 1 196 22 167 4 3 80-2400 350-500 85
157 3 5 6 51 104 47 47 12 275 2 162 109 2 80-2400 350-500 66
158 5 1 87 130 23 106 31 1 384 317 66 1 80-1300 80-100 82
159 1 1 4 6 1 5 80-2400 2280-2400 83
160 1 9 7 1 9 27 1 26 350-2400 2280-2400 87
161 1 1 1 1100-1300 1100-1300 100
162 1 1 20 2 24 24 500-2400 2280-2400 88
163 1 9 2 1 1 5 19 19 2280-2400 2280-2400 100
164 167 91 17 8 32 24 63 100 74 51 2 629 109 519 1 290-2150 750-1650 78
165 42 21 25 110 104 62 99 30 122 24 639 3 493 143 410-2400 1100-2400 98
166 9 20 10 10 58 1 41 87 26 6 268 267 1 444-2150 1100-1300 92
167 7 60 29 1 6 103 100 3 1100-2400 1100-1650 98
168 85 3 7 29 44 35 14 96 146 13 8 480 239 187 41 13 80-2400 80-500 88
169 25 22 11 12 30 14 32 44 23 7 220 1 213 6 235-2400 1000-1650 95
170 7 29 1 50 49 17 15 42 46 13 269 237 32 940-2400 1000-1650 87
171 31 14 6 12 3 1 2 15 84 2 79 3 290-2400 1000-1650 91
172 14 3 3 19 39 1 38 1200-2450 2280-2400 88
173 1 1 6 8 8 2280-2400 2280-2400 89
174 4 9 1 10 4 31 33 49 13 1 155 15 140 290-1650 530-1650 86
405
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Sp. J M A M J J A S O N D Total TDF TSDF CF OPCF OPF 100 >70% %
175 1 2 1 3 3 7 98 1 116 1 67 48 350-2400 1100-2400 96
176
177 5 1 2 6 18 24 5 6 3 70 47 14 4 5 100-2400 80-500 87
178 2 16 2 3 31 18 5 13 1 1 92 1 51 23 17 80-2400 350-500 57
179 2 4 10 14 1 1 4 5 64 4 109 3 15 87 4 80-2400 1470-2400 89
180 59 21 8 25 44 111 93 159 135 36 18 709 30 503 172 4 80-2400 350-940 86
181 3 1 4 4 410-500 410-500 100
182 6 3 3 14 12 74 9 11 132 124 4 4 290-2150 350-500 92
183 3 2 1 3 7 28 44 1 40 3 410-1550 410 81
184 54 35 15 23 11 54 81 64 142 35 7 521 48 259 193 21 80-2400 80-940 81
185 97 22 19 33 61 113 68 112 123 23 20 691 32 643 15 1 80-2150 80-500 98
186 13 7 5 6 17 18 8 28 25 127 125 2 600-2400 1100-1650 93
187 1 1 1 1200-1530 1200-1530 100
188 1 1 2 1 1 80-410 80-410 100
189 12 9 9 20 24 61 44 18 41 1 239 42 187 3 7 80-2400 350-500 79
TAb 1914 1432 610 1746 2688 3938 3443 5570 6002 1256 163 28756 3496 11699 12487 1051 23
TSp 109 106 96 120 120 126 135 146 159 91 40 189 79 36 147 108 4
APPENDIX 2
Nymphalidae of the Loxicha Region captured in Van Someren-Rydon traps
Monthly and elevational distribution of Nymphalidae species captured with Van Someren-Rydon traps in the Loxicha
Region, Oaxaca, Mexico. The list includes 94 species of seven of the 11 subfamilies of Nymphalidae, representing 50 %
of all species recorded and 41 % of all specimens collected. The first column (Sp.) is the species identifier number cor-
responding to the list of species in the Results section. The next 11 columns are the months of the year excluding February
from which no records are available. Column 13 (VSRT) is the number of records of each species obtained in Van Someren-
Rydon traps. Column 14 (Total) is the total number of specimens captured during our study. The next column (%) shows
the percentage of specimens captured with traps out of the total number of specimens. The last three columns represent the
number of specimens collected in traps at each elevational level (m): 1, 0–750; 2, 750–1 800, and 3, 1 800–2 850. The last
two rows correspond to the total number of specimens (TAb) and species (TSp) of each column.
Sp. J M A M J J A S O N D VSRT Total % 1 2 3
23 5 3 33 4 69 17 18 149 159 93.71 149
24 1 1 2 2 3 1 10 14 71.43 4 6
25 1 1 1 8 11 11 100 10 1
26 10 6 6 13 8 39 25 2 109 136 80.15 94 14 1
27 3 1 4 2 1 15 3 29 31 93.55 27 1 1
28 8 1 2 1 3 4 19 19 100 16 3
29 30 47 9 38 13 20 7 135 48 1 348 370 94.05 327 21
30 8 4 26 48 68 9 13 4 180 196 91.84 114 59 7
31 1 5 2 1 3 4 3 27 2 48 54 88.89 14 34
32 6 11 82 34 12 72 25 242 258 93.80 96 146
33 6 1 2 14 17 36 9 5 1 91 97 93.81 2 89
34 411 12 3 7 31 11 15 1 95 103 92.23 94 1
35 4 1 1 2 1 5 18 1 33 33 100 33
36 3 1 1 11 4 6 17 8 51 51 100 37 13 1
37 1 1 1 100 1
38 711 5 4 4 17 25 30 26 7 1 137 141 97.16 84 50 3
406 Revista de Biología Tropical, ISSN: 2215-2075 Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Sp. J M A M J J A S O N D VSRT Total % 1 2 3
39 7 5 10 4 8 7 5 7 2 4 1 60 62 96.77 31 27 2
40 3 6 1 4 10 28 5 19 20 1 1 98 103 95.15 90 7 1
41 2 2 2 100 2
42 2 3 1 5 3 4 1 19 19 100 17 1 1
43 1 1 2 2 100 2
44 8 13 15 5 14 31 41 2 1 130 162 80.25 100 30
45 2 4 2 6 1 36 106 122 66 4 349 387 90.18 192 156 1
46 1 1 1 10 3 6 8 30 34 88.24 24 6
47 1 1 1 100 1
48 2 7 7 4 1 21 27 77.78 17 4
49 3 1 1 3 7 5 5 10 4 1 40 43 93.02 38 2
50 1 1 1 100 1
51 3 1 1 1 6 6 100 6
52 2 2 2 100 1 1
53 2 1 2 5 5 100 3 2
54 1 1 2 2 100 2
56 60 71 44 138 28 42 356 50 1 1 791 947 83.53 672 117 2
57 53 1 10 17 44 3 15 1 144 150 96 53 91
58 6 41 6 9 48 49 60 84 65 37 4 409 481 85.03 132 277
59 1 3 27 182 81 4 9 307 354 86.72 283 24
60 1 1 1 100 1
61 7 2 2 8 27 52 11 1110 124 88.71 108 2
62 4 1 1 5 7 20 10 30 2 80 95 84.21 80
63 13 4 2 2 21 36 58.33 1 20
64 1 1 1 1 4 5 80 4
65 6 1 2 9 12 75 2 7
67 2 3 43 13 54 24 51 52 242 294 82.31 18 222 2
68 171 84 41 86 305 228 267 303 443 76 12 2016 2267 88.93 770 1245 1
70 10 48 1 1 18 78 180 43.33 78
71 3 2 1 1 4 1 12 12 100 4 8
72 3 2 1 5 2 3 6 1 23 36 63.89 22 1
73 1 1 1 3 4 5 2 17 20 85 16 1
74 34 12 11 8 19 89 57 71 53 354 437 81.01 336 16 2
75 1 1 1 100 1
76 3 2 1 10 3 33 9 15 1 1 78 86 90.70 66 12
77 4 4 4 100 4
78 1 7 2 3 13 18 72.22 13
79 1 2 1 3 1 8 12 66.67 5 3
80 1 3 1 3 11 11 1 1 32 42 76.19 31 1
81 15 10 25 245 10.20 24 1
84 3 3 2 7 33 31 15 46 21 161 231 69.70 12 149
86 5 5 3 13 3 47 19 87 15 197 249 79.12 173 23 1
87 3 3 3 9 18 28 64.29 18
88 19 154 30 50 39 71 14 47 22 446 570 78.25 359 87
89 11 66 19 27 84 16 1 4 4 232 292 79.45 232
90 4 6 2 38 35 28 8 66 38 2 227 281 80.78 216 11
91 14 5 1 20 145 13.79 20
407
Revista de Biología Tropical, ISSN: 2215-2075, Vol. 70: 363-407, January-December 2022 (Published Jun. 07, 2022)
Sp. J M A M J J A S O N D VSRT Total % 1 2 3
92 4 2 35 32 10 4 8 1 96 134 71.64 86 9 1
93 1 2 3 8 37.50 3
94 7 4 1 11 14 8 11 1 57 61 93.44 28 27 2
95 2 4 2 22 45 46 13 134 157 85.35 57 77
96 1 5 1 7 11 63.64 7
97 2 4 14 20 2 1 4 47 55 85.45 39 8
98 2 2 1 1 6 10 60 6
99 12 2 1 11 43 33 78 66 2 1 249 327 76.15 236 13
100 7 5 4 13 10 20 18 39 34 150 196 76.53 144 4 2
101 1 9 10 211 4.74 10
102 4 6 1 1 1 1 4 2 10 8 38 83 45.78 1 36 1
104 3 1 1 6 3 4 18 249 7.23 18
105 13 1 22 69 105 1029 10.20 6 99
106 2 2 146 1.37 2
107 1 3 1 5 77 6.49 3 2
108 3 2 4 9 47 19.15 8 1
113 1 4 5 227 2.20 5
119 3 3 8 14 71 19.72 13 1
128 3 1 7 3 5 1 2 1 23 26 88.46 18 4 1
129 1 1 2 33 7 15 10 24 7 2 102 109 93.58 78 24
131 30 12 3 17 11 20 34 146 34 8 6 321 379 84.70 277 43 1
132 76 41 9 133 113 148 148 173 185 182 10 1218 1229 99.10 525 688 5
134 10 6 3 13 2 5 6 8 9 62 100 62 1 49 12
135 3 2 1 1 2 4 7 18 6 1 45 61 73.77 3 41 1
136 21 6 5 6 10 20 56 45 169 276 61.23 2 155 12
137 4 1 8 12 8 33 43 76.74 33
138 10 3 1 5 19 24 79.17 19
139 1 1 4 25 1
141 6 1 1 1 9 63 14.29 5 4
142 1 2 3 3 10 4 23 93 24.73 8 14 1
143 56 48 5 10 60 77 24 88 83 4 455 599 75.96 357 96 2
TAb 731 746 290 912 1080 1736 1357 2409 2061 463 49 11543 15824 72.95 6609 4709 191
TSp 49 53 43 57 57 63 69 68 76 38 20 94 94 74 69 42