14
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Heart urchins from the depths: Corparva lyrida gen. et sp. nov.
(Palaeotropidae), and new records for the southwestern Atlantic Ocean
Jonathan N. Flores
1
*
Pablo E. Penchaszadeh
1
Martín I. Brogger
2
1. Laboratorio de Ecosistemas Costeros, Plataforma y Mar Profundo. Museo Argentino de Ciencias Naturales
“Bernardino Rivadavia” (CONICET), Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina; jflores@macn.
gov.ar; pablopench@gmail.com
2. Laboratorio de Reproducción y Biología Integrativa de Invertebrados Marinos, Instituto de Biología de Organismos
Marinos (CONICET), Bvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina; brogger@cenpat-conicet.
gob.ar (*Correspondence).
Received 07-V-2020. Corrected 08-VIII-2020. Accepted 07-X-2020.
ABSTRACT
Introduction: Sea urchins in the order Spatangoida are the most diverse group of extant echinoids. Objective:
Describe a new genus and species of Spatangoida from abyssal depths, and add new records for known spe-
cies. Methods: Specimens were collected during several cruises at different areas of the southwestern Atlantic
Ocean (SWAO), among 37-55° S latitude at depths ranging from 55 to 3 000 m. We present morphological and
ultrastructure analyses. Results: Corparva lyrida gen. et sp. nov. (Palaeotropidae) is described from the Mar del
Plata Canyon on the Argentine continental slope (2 950 m depth), the first record of this family from Argentina.
Corparva gen. nov. differs in having an apical system semi-ethmolytic, and labrum reaching to rear part of
second adjacent ambulacral plate. We also report the northernmost distribution and deepest record for Brisaster
moseleyi (38° S latitude, 2 212 m depth), the northward extension of the distribution range of Tripylus excavatus
(39° S latitude, 74 m depth), and the first record of Abatus philippii and Abatus agassizii at the Burdwood Bank/
MPA Namuncurá. Conclusions: The present work brings novel and updated data about the diversity and distri-
bution of spatangoids from the SWAO, including the description of C. lyrida gen. et sp. nov., and new records
of species. This shows how much remains to be known about the diversity and distribution of heart urchins in
the SWAO, especially from the deep-sea.
Key words: Atelostomata; sea urchins; deep-sea; diversity; Argentina; MPA-N/BB.
Flores, J.N., Penchaszadeh, P.E., & Brogger, M.I. (2021).
Heart urchins from the depths: Corparva lyrida
gen. et sp. nov. (Palaeotropidae), and new records
for the southwestern Atlantic Ocean. Revista de
Biología Tropical, 69(S1), 14-34. DOI 10.15517/rbt.
v69iSuppl.1.46320
Commonly known as heart urchins, the
irregular echinoids of the order Spatangoida
L. Agassiz, 1840 are represented in the fossil
record since the lowermost Cretaceous (Ber-
riasian, c. 145 Mya) and today are the most
diverse group of extant echinoids (Villier,
Néraudeau, Clavel, Neumann & David, 2004;
Stockley, Smith, Littlewood, Lessios & Mack-
enzie-Dodds, 2005). Spatangoids are widely
distributed throughout the ocean, from shallow
waters to abyssal depths. Mostly spatangoids
have evolved an infaunal lifestyle burrowing
into the superficial layer of unconsolidated
muddy and sandy sediments; however, some
species living in the deep sea have adopt-
ed an epifaunal lifestyle (Mortensen, 1950;
Mortensen,1951; Mironov, 1978). Owing
to their ecological traits, heart urchins are
DOI 10.15517/rbt.v69iSuppl.1.46320
15
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
considered important components of benthic
communities. Spatangoids are deposit-feeders,
they ingest a large amount of detritus from the
sediment and cause bioturbation due to their
locomotion and feeding mode (De Ridder, Jan-
goux & De Vos, 1987; Lohrer, Thrush, Hunt,
Hancock & Lundquist, 2005). Concerning their
reproductive aspects, spatangoids show broad-
casting or brooding spawning modes, and
indirect or direct developmental strategy, these
life-history traits affects particularly the early
larval dispersion and the distribution patterns
of species (Poulin & Féral, 1996, 1998).
The southwestern Atlantic Ocean (SWAO)
receives waters formed in remotes areas of the
world, generating one of the most energetic
oceanic regions of the world (Piola & Matano,
2001). Along the Argentine continental shelf,
the upper ocean is mainly dominated by the
Malvinas Current, a branch of the Antarctic
Circumpolar Current that flows offshore to
north, the Brazil Current, a branch of the
subtropical gyre that flows south along the
continental slope of South America, and by the
Brazil/Malvinas Confluence, the collision of
these two opposite currents near 38° S latitude
(Matano, Palma & Piola, 2010). Also, the deep
layers from the continental slope off Argentina
are characterized by a variety of water masses
with origin in deep and bottom waters from the
North Atlantic, South Pacific, and Antarctic
regions (Piola & Matano, 2001). According with
several authors, two biogeographic provinces
are recognized on the Argentine continental
shelf by the patterns of distribution of different
macroinvertebrates taxa: the Argentine Bio-
geographic Province (ABP), and the Magellan
Biogeographic Province (MBP) (Bernasconi,
1964; Bastida, Roux & Martínez, 1992; Doti,
Roccatagliata & López Gappa, 2014). The ABP
extends from 23° S (Cabo Frio, Brazil) to 43° S
(Península Valdés, Argentina), while the MBP
is present on both sides of South America, from
the southeastern Pacific Ocean at 41° S (Puerto
Montt, Chile) reaching around the tip of South
America into the SWAO at 43° S latitude,
where the MBP turns aside from shallow shelf
waters following a northeastern direction to
more deep shelf waters, as far as 35° S latitude
(López Gappa, Alonso & Landoni, 2006; Doti
et al., 2014).
Based on previous reports, there are eight
spatangoids species present in the Argentine
continental shelf and offshore: Abatus caver-
nosus (Philippi, 1845); Abatus philippii Lovén,
1871; Abatus agassizii Mortensen, 1910; Bri-
saster moseleyi (A. Agassiz, 1881); Tripylaster
philippii (Gray, 1851); Tripylus excavatus
(Philippi, 1845); Tripylus reductus (Koehler,
1912); and Delopatagus brucei Koehler, 1907
(Bernasconi, 1964; Brogger et al., 2013; Fabri-
Ruiz, Saucède, Danis & David, 2017; Saucède
et al., 2020). D. brucei is considered due
to its occurrence south off Tierra del Fuego
(Saucède et al., 2020).
This paper aims to contribute to improving
the knowledge of the diversity and distribution
of the Spatangoida from the SWAO, through
the study of specimens recently collected.
Here we describe a new genus and species of
Palaeotropidae from the Mar del Plata Canyon,
which represents the first report for this family
in Argentina. Besides, we inform new records
in the SWAO for other known species.
MATERIALS AND METHODS
The study area is located at the southern
extreme of the SWAO, from 37° to 55° S lati-
tude at depths encompassing from the shallow
waters of the continental shelf to abyssal waters
of the slope off the Argentine coast (Fig. 1A).
The specimens were collected from sev-
eral sites during eight cruises at different
areas within the SWAO: continental shelf and
slope off Buenos Aires, the Mar del Plata
Canyon, San Jorge Gulf, Patagonian shelf, and
the Marine Protected Area Namuncurá/Banco
Burdwood (MPA-N/BB). These cruises were:
“Mejillón II” (M II), 2009, 9-150 m depth,
3 sites; “Talud Continental I” (TC I), 2012,
200-3 006 m depth, 6 sites; “Talud Continental
II” (TC II), 2013, 78-1 289 m depth, 2 sites;
“Talud Continental III” (TC III), 2013, 1 310-3
447 m depth, 5 sites; “Área Marina Prote-
gida Namuncurá/Banco Burdwood: Bentos”
16
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Fig. 1. Maps showing the studied area with the distribution of the species discussed in the present study. A. Positions for the
main locations from the southwestern Atlantic Ocean discussed in this study. B. Corparva lyrida gen. et sp. nov. C. Tripylus
excavatus. D. Tripylus reductus. E. Abatus cavernosus. F. Abatus philippii. G. Abatus agassizii. H. Brisaster moseleyi. I.
Tripylaster philippii. B–I. species herein examined (marked signs) plotted on their previously registered distribution (dotted
area). References: A. SWAO, southwestern Atlantic Ocean; mdp, Mar del Plata Canyon; mi, Malvinas Islands; bb, Marine
Protected Area Namuncurá/Banco Burdwood; tdf, Tierra del Fuego; sg, South Georgia Islands; so, South Orkney Islands;
ss, South Shetland Islands; and ap, Antarctic Peninsula.
17
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
(AMP-N/BB-2016), 2016, 71-785 m depth, 16
sites; “PD BB ABR 17” (AMP-N/BB-2017),
2017, 48-646 m depth, 9 sites, “Pampa Azul
Golfo San Jorge–BO/PD-GSJ-02-2017” (GSJ
2017), 2017, 36-106 m depth, 19 sites, and
“AMP Namuncurá/Banco Burdwood: Ingenie-
ros Ecosistémicos” (AMP-N/BB-2018), 2018,
78–694 m depth, 2 sites (Table 1). All cruises
were performed on board of the R/V Puerto
Deseado from CONICET.
Specimens were collected using an adapt-
ed towed dredge or a bottom trawl net. The
towed dredge used consisted of a rigid body
structure 150 cm long and 100 cm wide, with
a 60 cm wide by 40 cm high mouth frame and
carrying two joint fishing nets with two differ-
ent pore-size (an external one of 3x3 cm, with
another internal one of 1x1 cm).
Once onboard, specimens were fixed in 96
% ethanol. All the specimens are now housed
TABLE 1
Collection data of the specimens studied
MACN-In Expedition - Station - Site Lat. (S) Long. (W) Depth (m) Date (yy-mm-dd) Spms. Fishing gear
43269 M II - 7 38°46’34” 55°50’38” 92 2009-09-11 1 towed dredge
43270
M II - 10
39°05’49” 58°02’09” 74 2009-09-12 3 towed dredge
43271
M II - 11
39°01’23” 58°10’02” 55 2009-09-12 3 towed dredge
43272
TC I - 2
37°57’11” 55°11’03” 291 2012-08-10 1 towed dredge
43273 TC I - 3 37°59’39” 55°13’03” 250 2012-08-10 16 bottom trawl net
43274
TC I - 5
37°58’39” 55°09’06” 528 2012-08-10 1 bottom traw1 net
43275 TC I - 14 38°00’59” 54°30’19” 1 006 2012-08-11 2 bottom trawl net
43276 TC I - 32 37°59’48” 55°12’29” 319 2012-08-17 1 towed dredge
43277 TC I - 33 37°58’42” 55°11’54” 308 2012-08-17 2 bottom trawl net
43278 TC II - 43 37°53’50” 54°30’27’ 998 2013-05-26 1 bottom traw1 net
43279 TC II - 44 37°53’33” 54°42’56” 780 2013-05-26 3 bottom trawl net
43280 TC III - 47 38°06’34” 53°42’50” 2 950 2013-09-06 1 bottom trawl net
43281 TC III - 51 38°01’23” 53°51’00” 2 212 2013-09-07 1 bottom traw1 net
43282 TC III - 53 37°52’37” 53°54’15” 1 763 2013-09-08 12 bottom trawl net
43283 TC III - 55 37°52’09” 53°51’35” 1 712 2013-09-08 9 bottom trawl net
43284 TC III - 59 37°49’41” 54°5’14” 1 398 2013-09-10 1 bottom trawl net
43285 AMP-N/BB-2016 - 5 - 126 55°02’17” 65°46’07’ 118 2016-04-06 1 towed dredge
43286 AMP-N/BB-2016 - 5 - 127 55°02’15” 65°48’24” 114 2016-04-06 1 bottom traw1 net
43287 AMP-N/BB-2016 - 11 - 338 54°30’06” 64°12’06” 107 2016-04-22 1 bottom trawl net
43288 AMP-N/BB-2016 - 23 - 226 54°45’34” 59°52’08” 182 2016-04-13 1 bottom trawl net
43289 AMP-N/BB-2016 - 26 - 24 54°24’13” 58°28’17” 135 2016-03-29 1 towed dredge
43290 AMP-N/BB-2016 - 26 - 27 54°24’57” 58°30’55” 137 2016-03-29 1 bottom trawl net
43291 AMP-N/BB-2016 - 28 - 50 54°28’50” 59°11’40” 122 2016-03-30 1 towed dredge
43292 AMP-N/BB-2016 - 30 - 185 54°16’40” 59°57’47” 96 2016-04-10 1 towed dredge
43293 AMP-N/BB-2016 - 31 - 197 54°29’58” 59°51’32” 109 2016-04-10 3 bottom trawl net
43294 AMP-N/BB-2016 - 32 - 77 54°32’36” 60°01’17” 98 2016-03-30 1 bottom traw1 net
43295 AMP-N/BB-2016 - 33 - 159 54°25’46” 60°38’52” 101 2016-04-08 5 bottom trawl net
43296 AMP-N/BB-2016 - 34 - 156 54°27’15” 60°58’49” 100 2016-04-07 15 bottom trawl net
43297 AMP-N/BB-2016 - 39 - 141 54°50’41” 63°59’54” 183 2016-04-06 1 bottom traw1 net
43298 AMP-N/BB-2016 - 39 - 141 54°50’41” 63°59’54” 183 2016-04-06 2 bottom trawl net
43299 AMP-N/BB-2016 - 41 - 350 54°19’55” 64°14’15” 122 2016-04-22 1 bottom trawl net
43300 AMP-N/BB-2016 - 41 - 350 54°19’55” 64°14’15” 122 2016-04-22 5 bottom trawl net
43301 AMP-N/BB-2017 - 5- 10 53°07’41” 65°47’08” 294 2017-04-23 2 towed dredge
43302 AMP-N/BB-2017 - 9 - 49 54°52’34” 64°17’46” 146 2017-04-24 1 towed dredge
18
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
in the National Invertebrate Collection of the
Museo Argentino de Ciencias Naturales “Ber-
nardino Rivadavia” (MACN-In) from Buenos
Aires, Argentina.
Gross morphology of specimens was stud-
ied under naked eye and using a stereomi-
croscope, while the ultrastructure of several
appendages was analyzed by scanning electron
microscopy (SEM). Test measures were made
with a digital caliper. To be able to reveal
the arrangement of the plates, some speci-
mens were carefully cleaned. Appendages and
soft tissue were removed from the test with
tweezers, and a small brush soaked with a
diluted solution of sodium hypochlorite was
used to remove the organic remains. When the
plates and sutures were exposed and visible, the
whole specimen was rinsed in distilled water.
Plates were labelled according to the standard
nomenclature for the test plating provided by
Lovén (1874).
For SEM images, appendages (spines,
pedicellariae, sphaeridia, and tube feet) were
removed from different parts of the test and
placed into distilled water. Organic remains
were cleared with a diluted solution of sodium
TABLE 1 (Continued)
MACN-In Expedition - Station - Site Lat. (S) Long. (W) Depth (m) Date (yy-mm-dd) Spms. Fishing gear
43303 AMP-N/BB-2017 - 23 - 173 54°26’06” 59°30’15” 91 2017-05-01 1 bottom trawl net
43304 AMP-N/BB-2017 - 24 - 184 54°19’57” 59°53’45” 97 2017-05-01 1 bottom traw1 net
43305 AMP-N/BB-2017 - 25 - 304 54°20’46” 60°20’46” 104 2017-05-09 1 bottom trawl net
43306 AMP-N/BB-2017 - 27 - 326 54°06’27” 60°52’46” 128 2017-05-09 1 bottom trawl net
43307 AMP-N/BB-2017 - 27 - 326 54°06’27” 60°52’46” 128 2017-05-09 1 bottom trawl net
43308 AMP-N/BB-2017 - 27 - 327 54°06’27” 60°52’46” 132 2017-05-09 2 towed dredge
43309 AMP-N/BB-2017 - 31 - 269 53°40’21” 61°38’15” 642 2017-05-07 38 bottom traw1 net
43310 GSJ 2017 - 3 - ID 55 43°43’12” 64°31’48” 65 2017-10-29 1 bottom trawl net
43311 GSJ 2017 - 11 - ID 42 44°53’24” 65°08’24” 84 2017-10-31 4 bottom trawl net
43312 GSJ 2017 -12 - ID 41 45°08’24” 64°50’60” 83 2017-10-31 1 bottom traw1 net
43313 GSJ 2017 - 13 - ID 39 45°14’24” 65°09’00” 91 2017-10-31 1 bottom trawl net
43314 GSJ 2017 - 17 - ID 36 45°13’12 “ 66°13’48” 78 2017-11-01 1 bottom trawl net
43315 GSJ 2017 - 23 - ID 32 45°34’48” 66°11’24” 94 2017-11-02 38 bottom trawl net
43316 GSJ 2017 - 24 - ID 31 45°32’24” 65°48 ‘36” 98 2017-11-02 2 bottom trawl net
43317 GSJ 2017 - 26 - ID 29 45°34’48” 66°07’48” 83 2017-11-02 1 bottom traw1 net
43318 GSJ 2017 - 29 - ID 26 45°55’12” 65°50’24” 99 2017-11-03 1 bottom trawl net
43319 GSJ 2017 - 31 - ID 24 45°53’60” 66°35’24” 96 2017-11-03 47 bottom traw1 net
43320 GSJ 2017 - 33 - ID 22 45°54’36” 67°18’36” 72 2017-11-03 1 bottom trawl net
43321 GSJ 2017 - 37 - ID 19 46°13’48” 66°33’36” 99 2017-11-04 4 bottom trawl net
43322 GSJ 2017 - 39 - ID 17 46°14’24” 65°49’12” 98 2017-11-04 26 bottom trawl net
43323 GSJ 2017 - 42 - ID 14 46°34’48” 65°08’24” 106 2017-11-05 1 bottom trawl net
43324 GSJ 2017 - 42 - ID 14 46°34’48” 65°08’24” 106 2017-11-05 1 bottom traw1 net
43325 GSJ 2017 - 54 - ID 68 46°54’36” 66°42’36” 57 2017-11-06 1 bottom trawl net
43326 GSJ 2017 - 55 - ID 69 46°45’36” 66°54’36” 74 2017-11-07 1 bottom trawl net
43327 GSJ 2017 - 56 - ID 8 46°32’24” 67°19’48” 74 2017-11-07 5 bottom traw1 net
43328 GSJ 2017 - 59 - ID 10 46°33’36” 66°36’36” 95 2017-11-07 11 bottom trawl net
43329 AMP-N/BB-2018 - 1 - 157 54°53’00” 67°48’36” 140 2018-09-01 3 bottom trawl net
43330 AMP-N/BB-2018 - 25- 120 54°30’48” 60°25’35” 100 2018-08-28 1 bottom trawl net
References: M II “Mejillon II” expedition; TC I “Talud Continental I” expedition; TC II “Talud Continental II” expedition;
TC III “Talud Continental III” expedition; AMP-N/BB-2016 “Area Marina Protegida Namuncurá - Banco Burdwood”
expedition; AMP-N/BB-2017 “PD BB ABR 17” expedition; AMP-N/BB-2018 “AMP Namuncurá/Banco Burdwood:
Ingenieros Ecosistémicos” expedition; GSJ 2017 “Pampa Azul Golfo San Jorge–BO/PD-GSJ-02-2017” expedition; and
Spms. number of specimens.
19
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
hypochlorite for a few minutes. The append-
ages were rinsed in distilled water twice, fol-
lowed by a third rinse with 96 % ethanol to
allow rapid air drying. Finally, appendages
were transferred to aluminium stubs, sputtered
with gold-palladium, and examined and photo-
graphed with a Philips XL30 scanning micro-
scope at the Museo Argentino de Ciencias
Naturales “Bernardino Rivadavia” (MACN).
Complete specimens were photographed using
a Nikon D800 camera with a Micro-Nikkor 60
mm f/2.8 lens, and details of the plates from the
test were photographed with a Zeiss Discovery
V20 stereoscopic microscope.
This article is registered in ZooBank under
ID: urn:lsid:zoobank.org:pub:2FBDDA8F-
DB8A-4266-B606-553AF5C2F366.
RESULTS
In all, 299 specimens of spatangoids were
collected and studied, identifying eight species
distributed in two families, and six genera. In
the present study, we report a new genus and
species Corparva lyrida (Spatangoida: Pala-
etropidae) along with the occurrence and new
records in the SWAO of known species.
In the Taxonomic List are listed the spe-
cies identified following the classification of
Kroh (2020) for higher-level taxa, Saucède et
al. (2020) for the family Schizasteridae and its
lower-level taxa, and Kroh & Mooi (2020) for
the Palaeotropidae family.
Taxonomic List:
Phylum Echinodermata Bruguière, 1791
Class Echinoidea Leske, 1778
Order Spatangoida L. Agassiz, 1840
Suborder Paleopneustina Markov & Solovjev,
2001
Family Schizasteridae Lambert, 1905
Genus Tripylus Philippi, 1845
Tripylus excavatus (Philippi, 1845)
Tripylus reductus (Koehler, 1912)
Genus Abatus Troschel, 1851
Abatus cavernosus (Philippi, 1845)
Abatus philippii Lovén, 1871
Abatus agassizii Mortensen, 1910
Genus Brisaster Gray, 1855
Brisaster moseleyi (A. Agassiz, 1881)
Genus Tripylaster Mortensen, 1907
Tripylaster philippii (Gray, 1851)
Suborder Brissidina Kroh & Smith, 2010 (=
Brissidea of Stockley et al., 2005)
Family Palaeotropidae Lambert, 1896
Genus Corparva Flores, Penchaszadeh &
Brogger gen. nov.
Corparva lyrida Flores, Penchaszadeh &
Brogger sp. nov.
Systematics:
Order Spatangoida L. Agassiz, 1840
Suborder Brissidina Kroh & Smith, 2010
Family Palaeotropidae Lambert, 1896
Corparva Flores, Penchaszadeh & Brogger
gen. nov.
Diagnosis: Test ovoid, small size, trun-
cated posterior end. Semi-ethmolytic apical
system, four gonopores. No frontal notch.
Paired ambulacra apetaloid, pore-pairs small
and rudimentary. Fascioles absent. Periproct on
the posterior end, slightly inframarginal. Peri-
stome D-shaped, sunken. Labrum narrow, not
projecting over the peristome, reaching to rear
part of second adjacent ambulacral plate. Plas-
tron amphisternous, domed in profile. Primary
spines slender, more abundant on aboral side,
lacking on posterior ambulacral areas on oral
side. Pedicellariae present: tridentate, globifer-
ous, and triphyllous.
Type species: Corparva lyrida Flores, Pen-
chaszadeh & Brogger sp. nov.
Etymology: Cor alluding for heart and
parva for small (gender feminine).
ZooBank ID: urn:lsid:zoobank.
org:act:13ACEDA6-DA67-414A-BBEE-
9FB20288223F
Remarks: Corparva gen. nov. is included
into the family Palaeotropidae Lambert, 1896
based on structural features as a thin ovate test,
no frontal notch, paired ambulacra apetaloid,
reduced peristome D-shaped, sternal plates
symmetrical and fully tuberculate, episternal
plates paired, and aboral surface with scattered
small tubercles (Smith & Gale, 2009; Smith
20
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
& Kroh, 2011). However, Corparva gen. nov.
can be clearly separated from other genera of
Palaeotropidae by possessing an apical system
semi-ethmolytic, labral plate reaching to rear
part of second adjacent ambulacral plate, and
paired ambulacra deeply depressed forming
rounded pouches (at least in females). We con-
sidered these features serve to distinguish our
new species C. lyrida supporting the erection
of a new genus.
As Néraudeau, David & Madon (1998)
pointed out, the arrangement of the plates in
the apical system should not be used as a mor-
phological character to differentiate at family
level, due to changes in the structure of the
apical system occurred convergently in many
different groups of spatangoids. Thus, we con-
sider the semi-ethmolytic pattern of Corparva
gen. nov. and the labral plate extending to the
rear part of second adjacent ambulacral plate
as features to separates it from the other genera
of Palaeotropidae.
Palaeotropus Lovén, 1874 differs by pos-
sessing an apical system monobasal with fused
genital plates, anterior, two gonopores, paired
ambulacra flush, uniserial ambulacral plates
adapically, labral plate extending to rear of the
first adjacent ambulacral plate, episternal plates
strongly tapered to posterior, strong subanal
heel, rounded subanal fasciole, row of larg-
er tubercles and spines bordering the frontal
ambulacrum, and ophicephalus pedicellariae
present (Lóven, 1871; Lóven, 1874; Mortensen,
1950; Mironov, 2006; Kroh & Mooi, 2020).
Palaeobrissus A. Agassiz, 1883 differs by
its ethmolytic apical system with fused genital
plates, anterior, two gonopores in the posterior
genital plates surrounded by a rim and some-
times two smaller anterior gonopores in large
specimens, paired ambulacra flush, subpetaloid
with ambulacral pores double, peristome not
sunken and transversally oval, labral plate
extending to first adjacent ambulacral plate,
slightly projecting over peristome, and rounded
subanal fasciole present in juveniles (lost in
adults) (Agassiz, 1883; Mortensen; 1950; Kroh
& Mooi, 2020).
Paleotrema Koehler, 1914 differs by hav-
ing a test elongated, posterior end obliquely
truncated, monobasal apical system with fused
genital plates, anterior, three gonopores, paired
ambulacra flush, labral plate extending to first
adjacent ambulacral plate, episternal plates
strongly tapered to posterior, plastron form-
ing keel posteriorly, rounded subanal fasciole,
row of larger tubercles and spines bordering
the frontal ambulacrum, ophicephalus pedicel-
lariae present and globiferous absent (Agassiz,
1879; Koehler, 1914; Mortensen, 1950; Kroh
& Mooi, 2020).
Scrippsechinus Allison, Durham & Mintz,
1967 differs by possessing ethmolytic apical
system with fused genital plates, subcentral,
paired ambulacra flush, uniserial ambulacral
plates adapically, labral plate not extending
beyond first adjacent ambulacral plate, project-
ing over peristome, and globiferous pedicel-
lariae absent (Allison, Durham & Mintz, 1967;
Kroh & Mooi, 2020).
Kermabrissoides Baker, 1998 differs by
its ethmolytic apical system, subcentral, gono-
pores on top of small cones, paired ambulacra
flush, subpetaloid, labral plate extending to
third adjacent ambulacral plate, rounded sub-
anal fasciole with 2-3 tube feet either side,
ophicephalus pedicellariae present and glo-
biferous absent (Baker & Rowe, 1990; Baker,
1998; Kroh & Mooi, 2020).
Corparva lyrida
Flores, Penchaszadeh & Brogger sp. nov.
Diagnosis: As for the genus.
Description: Test fragile, low in profile,
oval in outline with truncated posterior end,
anterior part wider than posterior part, rounded
at ambital edge, wedge-shaped in lateral profile
(Fig. 2A, Fig. 2B, Fig. 2C, Fig. 2D, Fig. 2E,
Fig. 3A, Fig. 3B, Fig. 3C, Fig. 3D, Fig. 3E).
Small test size, 18.2 mm long, 14.8 mm wide,
and 6.0 mm high. Fascioles absent (Fig. 2A,
Fig. 2B, Fig. 2C, Fig. 2D, Fig. 2E, Fig. 3A,
Fig. 3B, Fig. 3C, Fig. 3D, Fig. 3E). Apical
system central, sunken with respect to adjacent
interambulacral areas, semi-ethmolytic, with
21
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
four genital pores of same size opening on
inner part of genitals (Fig. 2A, Fig. 3A, Fig.
4A, Fig. 4D). Madreporic plate (G2) enlarged
posteriorly between genitals 1 and 4 but not
separating oculars V from I, hydropores scarce
(Fig. 4D). Frontal notch absent, ambulacrum
III flush with test (Fig. 2A, Fig. 2D, Fig.
3A, Fig. 3D). Non-petaloid paired ambulacra,
cruciform, deeply depressed forming rounded
pouches (Fig 3A), double row of ambulacral
plates adapically. Ambulacral tube feet simple
on aboral side, pore-pairs small and rudimen-
tary, there are no occluded plates at the end of
the paired ambulacra, posterior paired ambula-
cra slightly shorter than anterior. Paired ambu-
lacra pouches reaching fifth ambulacral plate
(from apex to ambitus) in ambulacrum IV and
V, tuberculation on these plates scarce. Plates
from ambulacra II and IV remain parallel-sided
on oral side (Fig 3B). Peristome D-shaped,
sunken, situated between 25-34% of test length
from anterior edge, upper peristome portion
occupied by many plates of different sizes,
becoming smaller surrounding mouth (Fig. 3B,
Fig. 4C, Fig. 4F). Phyllodes reaching fourth
plate in paired ambulacra. Penicillate tube feet
Fig. 2. Corparva lyrida gen. et sp. nov. (Holotype MACN-In 43280), complete specimen. A. Aboral view. B. Oral view. C.
Posterior view. D. Anterior view. E. Side view (anterior to the left).
22
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
conspicuous (Fig. 2B, Fig. 3B), terminating in
well-developed disc with finger-like projec-
tions, each supported by a skeletal rod (Fig.
5G). Interambulacrum 5 continuous, posterior
part forming slightly keel (Fig. 2E, Fig. 3E).
Labral plate not projecting over peristome, nar-
row, in contact with both sternal plates, extend-
ing to rear part of second adjacent ambulacral
plate (Fig. 4C, Fig. 4F). Plastron amphisternous
(Fig. 4F). Sternal plates symmetrical, slightly
bowed, extending to fifth adjacent ambulacral
plate, posterior suture of plate 5.b.2 coincides
with fifth plate in ambulacrum I (Fig. 4F). Epi-
sternal plates paired and opposite. Basicoronal
plate amphiplacous in interambulacrum 4. Peri-
proct circular, located on posterior vertical end,
inframarginal, visible from oral side, covered
by plates of variable sizes and shapes, larger
plates close to external edge and smaller plates
towards center (Fig. 2B, Fig. 2C, Fig. 3B, Fig.
3C). Distinct subanal tube feet absent. Primary
tubercles numerous and uniformly spaced on
aboral surface and absent on ambulacral areas
on oral side up to fifth plate in ambulacrum
Fig. 3. Corparva lyrida gen. et sp. nov. (Holotype MACN-In 43280), specimen partially cleaned. A. Aboral view. B. Oral
view. C. Posterior view. D. Anterior view. E. Side view (anterior to the left).
23
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
V and fourth plate in ambulacrum I (Fig. 2B,
Fig. 3B), mamelon well-developed with central
perforation and slightly crenulated base, areole
well-developed (Fig. 4B, Fig. 4E). Secondary
tubercles smaller, with same general shape as
primary ones, with mamelon usually reduced.
Spines scattered on oral side of ambulacra
I and V, but uniformly distributed in sternal
plates, ambital region, and apical side (Fig.
2A, Fig. 2B). Primary spines shorter, straight,
with pointed tip, and shaft with longitudinal
and ornamented striations (Fig. 5D). Longest
primary spines found on plastron. They are
large, curved and spatulate towards distal end,
with well-developed acetabulum and base,
poorly developed milled ring, and shaft with
longitudinal smooth striations (Fig. 5A, Fig.
5B, Fig. 5C). Spine cylinder with helicoidal
pore arrangement (Fig. 5E). Globiferous, tri-
dentate, and triphyllous pedicellariae (Fig. 5H,
Fig. 4. Morphological details and drawings of Corparva lyrida gen. et sp. nov. A. Apical system. B. Primary tubercle.
C. Peristome. D. Hemilytic (semi-ethmolytic) apical system plating drawing. E. Primary tubercle diagram. F. Peristome
and plastron plating drawing. References: D. 1–4 genital plates (2 also madreporite), and I–V ocular plates; E. a areole, c
crenulated platform, and m perforated mamelon; and F. p peristome, L labrum, S
2
sternal plates, I and V ambulacra, and 5
posterior interambulacrum.
24
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Fig. 5I, Fig. 5J, Fig. 5K, Fig. 5L). Globiferous
pedicellariae more frequently found on apical
side, head and stalk embedded in a yellowish
tissue, three-valved, valves whit large and wide
base, blade forms a curved semi-tube terminat-
ing in 3-6 sharp and tiny hooks (Fig. 5H, Fig.
5I). Tridentate pedicellariae on apical and oral
side, three-valved, shovel-shaped valves with
widen and finely serrated distal part separated
from triangular base by elongated, narrow, and
straight tubular part (Fig. 5J, Fig. 5K). Triphyl-
lous pedicellariae smallest, with minute base,
and large and wide blade with finely serrated
edge (Fig. 5L). Sphaeridiae swollen in shape,
irregularly rugose (Fig. 5F), on short stalks,
numerous along posterior ambulacral areas
on oral side. Test colour brown-brownish with
whitish spines in ethanol; denuded test white.
Etymology: lyrida refers to the April
Lyrids, the meteor shower that occurs each year
Fig. 5. SEM images of appendages of Corparva lyrida gen. et sp. nov. A-C. Primary spines from the plastron. D.
Ambulacrum spine from the oral side. E. View of the inner cylinder of a primary spine. F. Spheridium. G. Skeletal rod from
an oral penicillate podium. H-I. Valve of globiferous pedicellaria with three and four terminal teeth, respectively. J. Valve
of a tridentate pedicellaria. K. Tridentate pedicellaria. L. Valve of a triphyllous pedicellaria.
25
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
in the constellation Lyra. The specific name is a
noun in apposition (feminine).
Examined material: Holotype MACN-In
43280 (one half denuded specimen in ethanol
70 %, and external appendages mounted on
three SEM stubs) (Table 1).
Type locality: Mar del Plata Canyon
(38°06’34’ S & 53°42’50’ W), Argentine con-
tinental slope (Fig. 1B).
Depth: 2 950 m.
Distribution: Only know from the type
locality (Fig. 1B).
Zoobank ID: urn:lsid:zoobank.
org:act:9B936F7D-860D-4138-A991-
673821C3AF48
Remarks: C. lyrida sp. nov. is based on a
single complete specimen (holotype MACN-In
43280). Its test is fragile and small (18.2 mm
long, 14.8 mm wide, and 6.0 mm high), despite
this we consider that the specimen studied is an
adult, due to the presence of open gonopores.
Of course, this supposition is not conclusive
but it is in accordance with the characteristic
small form of adult specimens among the
family Palaeotropidae (Lovén 1871; Koehler,
1914; Mortensen, 1950; Allison, Duncan &
Mintz, 1967; Baker & Rowe, 1990; Mironov,
2006). Mortensen (1950) report the presence
of mature gonads containing a few ripe eggs
in a specimen of Palaeotropus josephinae of
14 mm length.
In some spatangoids, fascioles may be
present during all stage of development, in
others they are present in juveniles and then
maybe secondarily lost in adults, and in some
taxa there is no evidence that fascioles were
developed during ontogeny (Smith & Stockley,
2005; Stockley et al., 2005). Due to the holo-
type of C. lyrida sp. nov. does not present any
trace of fascioles, and it is the only specimen
that we have, we assumed that fascioles are
absent at least in adults. Additional specimens
in different stages of development are needed
to test if fascioles develop during ontogeny or
it is completely lost in C. lyrida sp. nov.
Corparva lyrida sp. nov. shows various
secondary morphological simplifications that
suggest an epibenthic lifestyle. As is observed
in many others deep-sea spatangoids (Larrain,
1985; Stockley et al. 2005; Saitoh & Kanazawa,
2012), C. lyrida sp. nov. has features related
with the building and maintenance of sanitary
funnels poorly developed (absence of fascioles
and distinctive tufts of spines on the aboral
side or at the posterior end of the test, and the
inframarginal position of the anus). Besides,
others ecological traits present in deep-sea taxa
and C. lyrida are the test thinner than shallow
waters spatangoids, and the poorly developed
(or completely lost in some groups) of petals
and specialized tube feet, due to in the deep-sea
the respiratory demanding is less than in shal-
low waters (Stockley et al., 2005).
Family Schizasteridae Lambert, 1905
Genus Tripylus Philippi, 1845
Tripylus excavatus (Philippi, 1845)
(Fig. 6A)
Examined material: MACN-In 43270
(Table 1).
Distribution: Tripylus excavatus occurs
northward in the SWAO at 39° S (this study),
and southward occurs along the Strait of
Magellan, Tierra del Fuego, Isla de los Estados,
and Cape Horn (Fig. 1C) (Fabri-Ruiz et al.,
2017). Also recorded at South Georgia Islands
(Saucède et al., 2020).
Depth: From the littoral to 110 m depth
(Saucède et al., 2020).
Remarks: Here we report the northern-
most record for T. excavatus at 39°05’49’ S
& 58°02’09’ W at 74 m depth (Table 1, Fig.
1C), resulting in a great extension in its range
of distribution. Despite its broad wide range,
T. excavatus seems to be an unusual species.
Among 299 spatangoids collected we found
only three specimens, this peculiarity also was
highlighted by Bernasconi (1953, 1966). In this
line, is to be expected that the disjunct distribu-
tion shown in figure 1C became continuous as
the sampling increasing in both effort and qual-
ity for this area.
26
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Tripylus reductus (Koehler, 1912)
Examined material: MACN-In 43285,
MACN-In 43286, MACN-In 43297, MACN-
In 43299 (Table 1).
Distribution: T. reductus is restricted to
the southern region of the SWAO (Tierra del
Fuego, Isla de los Estados) (Fig. 1D), and the
northern part of the Antarctic Peninsula, also
South Shetland Islands, and South Orkney
Islands (Saucède et al., 2020).
Depth: From 50 to 761 m depth (Saucède
et al., 2020).
Tripylus sp.
Examined material: MACN-In 43302
(Table 1).
Fig. 6. Images of specimens discussed in the present study. A. Aboral view of Tripylus excavatus (Philippi, 1845) (MACN-
In 43270, specimen partially cleaned). B. Aboral view of Abatus cavernosus (Philippi, 1845) (MACN-In 43314). C. Aboral
view of Abatus philippii Lovén, 1871 (MACN-In 43273). D. Aboral view of Abatus agassizii Mortensen, 1910 (MACN-In
43304). E. Aboral view of Brisaster moseleyi (A. Agassiz, 1881) (MACN-In 43309), specimen partially cleaned). F. Aboral
view of Tripylaster philippii (Gray, 1851) (MACN-In 43316).
27
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Distribution: Isla de los Estados.
Depth: 146 m.
Remarks: Test fragment identified at the
generic level due to the lack of diagnostic
characters.
Genus Abatus Troschel, 1851
Abatus cavernosus (Philippi, 1845)
(Fig. 6B)
Examined material: MACN-In 43314
(Table 1).
Distribution: Wide distribution along the
SWAO from 35° S to 55° S, including the Straits
of Magellan, and Malvinas Islands (Fig. 1E)
(Brogger et al., 2013). Also, along the Antarctic
Peninsula, South Orkney Islands, South Geor-
gia Islands, South Shetland Islands, and Bouvet
Islands (David, Saucède, Chenuil, Steimetz &
De Ridder, 2016; Saucède et al., 2020).
Depth: From 10 to 1 000 m depth (Saucède
et al., 2020). Abatus cavernosus is commonly
found in shallow waters southward of 44° S,
while northward off Buenos Aires it occurs
from 100 to 1 000 m depth (Brogger et al.,
2013; Saucède et al., 2020).
Abatus philippii Lovén, 1871
(Fig. 6C)
Examined material: MACN-In 43269,
MACN-In 43272, MACN-In 43273, MACN-
In 43276, MACN-In 43277, MACN-In 43287,
MACN-In 43288, MACN-In 43290, MACN-In
43291, MACN-In 43292, MACN-In 43294,
MACN-In 43295, MACN-In 43298, MACN-
In 43301, MACN-In 43305, MACN-In 43306,
MACN-In 43308, MACN-In 43323 (Table 1).
Distribution: Widely distributed along the
SWAO from 35° S to 55° S, including the Strait
of Magellan, Isla de los Estados, Malvinas
Islands (Bernasconi, 1964; Bernasconi,1966;
Fabri-Ruiz et al., 2017), and the MPA-N/BB
(this study). In the southeastern Pacific Ocean
at 52° S latitude. In the Southern Ocean record-
ed at South Georgia Islands, South Shetland
Islands, South Orkney Island, Sabrina Coast,
and Ross Sea (Saucède et al., 2020).
Depth: From 25 to 800 m depth (Saucède
et al., 2020).
Remarks: Here we report the first record
for A. philippi at the MPA-N/BB (Table 1). Due
to the occurrence of the species in surround-
ing areas, its presence in the AMP-N/BB was
expected (Fig. 1F).
Abatus agassizii Mortensen, 1910
(Fig. 6D)
Examined material: MACN-In 43293,
MACN-In 43296, MACN-In 43300, MACN-
In 43303, MACN-In 43304, MACN-In 43307
(Table 1).
Distribution: A. agassizii occurs in the
southern region of the SWAO, including Tierra
del Fuego, Isla de los Estados, Malvinas Islands
(Bernasconi, 1964; Saucéde et al., 2020), and
the AMP-N/BB (this study) (Fig. 1G). Also
recorded in the Southern Ocean at South Geor-
gia Islands, South Shetland Island, the northern
end of the Antarctic Peninsula, and in the east-
ern Weddell Sea (Saucède et al., 2020).
Depth: From the littoral to 600 m depth
(Saucède et al., 2020).
Remarks: Here we report the first record
for A. agassizii at the MPA-N/BB (Table). The
range of distribution known for A. agassizii
seems to have a north limit at Malvinas Islands.
These new records for the AMP-N/BB are in
accord with the distribution area known for the
species (Fig. 1G).
Abatus sp.
Examined material: MACN-In 43289,
MACN-In 43330 (Table 1).
Distribution: MPA-N/BB.
Depth: MACN-In 43289 at 135 m depth,
and MACN-In 43330 at 100 m depth
Remarks: Two test fragments identified at
the generic level due to the lack of diagnostic
characters.
28
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Genus Brisaster Gray, 1855
Brisaster moseleyi (A. Agassiz, 1881)
(Fig. 6E)
Examined material: MACN-In 43274,
MACN-In 43275, MACN-In 43278, MACN-
In 43279, MACN-In 43281, MACN-In 43282,
MACN-In 43283, MACN-In 43284, MACN-In
43309 (Table 1).
Distribution: B. moseleyi is recorded on
both side of South America, in the southeastern
Pacific Ocean off Chile from 45° S to 54° S, the
Straits of Magellan, and in the SWAO recorded
at Malvinas Islands (Saucède et al., 2020). We
report the first record of B. moseleyi at both the
northwest slope surrounding the MPA-N/BB,
and the Mar del Plata Canyon (Fig. 1H). In
the Southern Ocean recorded at South Orkney
Islands (Saucède et al., 2020).
Depth: From 400 m (Saucède et al., 2020)
to 2 212 m depth (this study) (Table 1).
Remarks: According to Saucède et al.
(2020) the known geographic and bathymetric
limit for B. moseleyi was the Malvinas (Falk-
land) Islands in the SWAO and 1 400 m depth,
respectively. Here we report the northernmost,
as well as the deepest distribution for B. mose-
leyi so far known. The former is the Mar del
Plata Canyon on the Argentine continental
slope (38°01’23’ S & 53°51’00’ W), and
the second 2 212 m depth (MACN-In 43281)
(Table 1). In addition, we report its occur-
rence at the northwest slope of the MPA-N/
BB at 642 m depth (MACN-In 43309) (Fig.
1H). While B. moseleyi is a typical deep-sea
species, it should be mentioned that also was
found in the shallow waters from the Strait of
Magellan by Larraín et al. (1999). Thus, the
records here presented confirm for the first
time the presence of B. moseleyi in deep waters
off Argentina, an extraordinary extension to its
geographic and bathymetric range.
Hood and Mooi (1998) pointed out that
examined specimens labelled as B. moseleyi
from Chile (southeastern Pacific Ocean) were
distinct from other B. moseleyi from the Malvi-
nas Islands and Patagonia (SWAO) and con-
sidered them as two distinct taxa termed “B.
moseleyi (north)” and “B. moseleyi (south)”
respectively. Also, their phylogenetic analysis
based in morphological characters revealed that
B. moseleyi (north) is more closely related to
those species of Brisaster from the west coast
of the Americas, while B. moseleyi (south) is
a sister taxon of B. antarcticus (Döderlein,
1906). Brisaster moseleyi (south) and B. ant-
arcticus differ from B. moseleyi (north) by pos-
sessing narrow petals IV and V, and long and
narrow plastron (Hood & Mooi, 1998), these
features were also present in the specimens
treated in this study (Fig. 6E). Besides, follow-
ing the identification key provided by Saucède
et al. (2020) the specimens collected match
well with their B. moseleyi entity, differing
from B. antarcticus by having the apical system
slightly displaced posteriorly, and the posterior
petals short, slightly more than 1/3 the length
of the anterior paired petals (Fig. 6E). Due to
the uncertainty in taxonomic distinctiveness
and to avoid possible futures nomenclature
troubles, the specimens treated in this study are
provisionally assigned to B. moseleyi. Genetic
studies could help reveal the specific valida-
tion of the north/south groups and possible
synonyms, enriched through the inclusion of
samples from the northernmost population of
B. moseleyi found at the Mar del Plata Canyon
on the Argentine continental slope SWAO,
and to reconstruct phylogenetic relationships
among Brisaster species.
Genus Tripylaster Mortensen, 1907
Tripylaster philippii (Gray, 1851)
(Fig. 6F)
Examined material: MACN-In 43271,
MACN-In 43310, MACN-In 43311, MACN-
In 43312, MACN-In 43313, MACN-In 43315,
MACN-In 43316, MACN-In 43317, MACN-In
43318, MACN-In 43319, MACN-In 43320,
MACN-In 43321, MACN-In 43322, MACN-
In 43324, MACN-In 43325, MACN-In 43326,
MACN-In 43327, MACN-In 43328, MACN-In
43329 (Table 1).
Distribution: T. philippii occurs at the
SWAO from 35° S up to the southeastern
29
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Pacific Ocean at 41° S, including the Strait of
Magellan, Tierra del Fuego, Isla de los Estados,
and Malvinas Islands (Fig. 1I) (Bernasconi,
1964; Fabri-Ruiz et al., 2017). Also recorded at
the South Georgia Islands, and close to Prince
Edward Island (Saucède et al., 2020).
Depth: From the littoral to 600 m depth
(Saucède et al., 2020).
DISCUSSION
The family Palaeotropidae comprises six
genera including the new genus here described.
Comparing structural features and shape of
the test, development of petals, the shape of
peristome, and aboral tuberculation, Corparva
gen. nov. conform within the Palaetropidae.
Besides, Corparva gen. nov. can be differ-
entiated from the rest Palaeotropidae by its
apical system semi-ethmolytic and its labral
plate reaching to rear part of second adjacent
ambulacral plate. C. lyrida sp. nov. is known
only from abyssal depths at the Mar del Plata
Canyon on the Argentine continental slope, and
it is sympatric with others spatangoids herein
treated. This new genus and species represent
the first report on the family Palaeotropidae
from Argentina.
Many authors have pointed out the high
incidence of benthic marine invertebrates with
non-pelagic development and high rates of
parental care in the SWAO and the Southern
Ocean (Poulin & Féral, 1996, 1998; Pearse,
Mooi, Lockhart & Brandt, 2009), and echi-
noids are not an exception. Although spe-
cies of the genera Brisaster, and Tripylaster
are broadcast spawners with indirect develop-
ment through planktotrophic larvae, members
of the genera Abatus, Tripylus, Parapneustes
and Delopatagus are brooders and present a
lecithotrophic development (Mortensen, 1951;
Pearse & Cameron, 1991; Poulin & Féral,
1996; Gil, Zaixso & Tolosano, 2009). Also, the
distinction between sexes in echinoids is fre-
quently expressed by sexual dimorphism, such
as the form of genital papillae and the size of
genital pores (among others). Mostly in brood-
ing spatangoids, the females present extreme
secondary sexual features associated with this
reproduction strategy, such as the modifica-
tion of the aboral region of the test into mar-
supial brood pouches that give protection for
the development of embryos and juveniles
(David & Mooi, 1990; Gil, Zaixso & Tolosano,
2020). The depressed ambulacra as an aboral
brooding system were widely described for
different spatangoids taxa (Mortensen, 1951;
Philip & Foster, 1971; Schinner & McClintock,
1993). Corparva lyrida sp. nov presents large
gonopores and the paired ambulacra are deeply
depressed forming rounded pouches. A leci-
thotrophic developmental mode for the species
can be suspected, due to large gonopores is
associated with the production of large yolky
eggs (Pearse & Cameron, 1991). The apical
system of C. lyrida sp. nov is sunken with
respect to the extreme of the interambulacral
areas and the ambulacral pouches are slightly
deeper than the apical system as well, form-
ing a wide sunken cruciform area (Fig. 3A).
This area is cover by long primary spines that
emerge leaned over towards the center of the
animal body from the upper external edges of
the ambulacral plates and surrounding interam-
bulacral plates, and by pedicellariae (Fig. 2A),
resulting in a protected chamber. Although no
embryos, nor juveniles were found into the
chamber, the morphological features previously
mentioned suggesting that the specimen could
be a female with marsupial brood chamber
Although is necessary to increase the sam-
pling effort and use a proper experimental
design to conclude on biogeographical issues,
from this study some exploratory trends can be
observed in the distribution of the spatangoids
here studied (Fig. 1). The species composition
in the SWAO has sub-Antarctic and Antarctic
affinities. This could be explained in part by
the presence of water masses formed in these
regions of the world and they are carried to
the SWAO by the MC, which could be acting
as a dispersal vector of propagules and larvae.
Recently studies about biogeographical pat-
terns and benthic eco regionalization based on
echinoids from the Southern Ocean, highlights
the strongly faunal affinities between South
30
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
helpful comments by four anonymous review-
ers. We thank Fabián Tricárico for his assis-
tance with the SEM and to Daniel Lauretta for
facilitating the camera and lens. We acknowl-
edge the Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET) of Argen-
tina, to which JNF belong as a PhD fellow, and
PEP and MIB as members of the “Carrera del
Investigador Científico y Tecnológico”. This
work is the contribution N° 44 to the Área
Marina Protegida Namuncurá (MPA-N/BB,
Ley 26.875).
RESUMEN
Erizos corazón de las profundidades: Corparva lyrida
gen. et sp. nov. (Palaeotropidae) y nuevos registros
para el Océano Atlántico sudoccidental
Introducción: Los erizos de mar del orden Spatan-
goida son el grupo más diverso de equinoideos recientes.
Objetivo: Describir un nuevo género y una nueva especie
de Spatangoida de profundidades abisales, y reportar
nuevos registros para especies conocidas. Métodos: Los
ejemplares fueron recolectados durante varias expedicio-
nes a diferentes áreas del Océano Atlántico sudoccidental
(OAS), entre las latitudes 37-55° S y abarcando profun-
didades desde 55 a 3 000 metros. Presentamos análisis
morfológicos y de ultraestructura. Resultados: Corparva
lyrida gen. et sp. nov. (Palaeotropidae) fue descripta para
el cañón submarino Mar del Plata en el talud continental de
Argentina (2 950 m de profundidad), el primer registro de
esta familia para Argentina. Corparva gen. nov. difiere en
tener un sistema apical semi-etmolítico y labrum que llega
a la parte posterior de la segunda placa ambulacral adya-
cente. También informamos la distribución más septen-
trional y el registro más profundo para Brisaster moseleyi
(latitud 38° S, 2 212 m de profundidad), la extensión hacia
el norte del rango de distribución de Tripylus excavatus
(latitud 39° S, 74 m de profundidad) y el primer registro
de Abatus philippii y Abatus agassizii en el Banco Burd-
wood/AMP Namuncurá. Conclusiones: El presente trabajo
aporta datos novedosos y actualizados sobre la diversidad
y distribución de erizos de mar espatangoideos del OAS,
incluyendo la descripción de C. lyrida gen. et sp. nov., y
nuevos registros para especies conocidas. Esto muestra
cuánto queda por conocer sobre la diversidad y distribu-
ción de los erizos corazón en el OAS, especialmente de las
profundidades marinas.
Palabras clave: Atelostomata; erizos de mar; mar profun-
do; diversidad; Argentina; AMP-N/BB.
America and sub-Antarctic islands, possibly
due to the connectivity by the flow of the Ant-
arctic Circumpolar Current (Pierrat, Saucède,
Brayard & David, 2013; Fabri-Ruiz, Danis,
Navarro, Koubbi, Laffont & Saucède, 2020).
However, is interesting to highlight that C.
lyrida sp. nov. was found at 2 950 m depth at
the Mar del Plata Canyon on the Argentine con-
tinental slope, and in this region between 2000
to 3000 m there is present the North Atlantic
Deep Water (Voigt et al., 2013), which is origi-
nated at the North Atlantic Ocean, and flush
southward along the continental slope of the
American continent (Piola & Matano, 2001)
The present work brings novel and updated
data about the diversity and distribution of spa-
tangoid sea urchins from the SWAO, including
the description of C. lyrida a new genus and
species from abyssal waters off Argentina, new
records, and occurrence of species previously
reported. This reveals that there is still much
to know about the diversity and distribution of
heart urchins in the SWAO, especially from the
deep-sea. Moreover, the knowledge in these
aspects will contribute to clarify the matted
phylogenetic and evolutionary relations among
the Spatangoida taxa.
Ethical statement: authors declare that
they all agree with this publication and made
significant contributions; that there is no con-
flict of interest of any kind; and that we fol-
lowed all pertinent ethical and legal procedures
and requirements. All financial sources are
fully and clearly stated in the acknowledge-
ments section. A signed document has been
filed in the journal archives.
ACKNOWLEDGMENTS
We are grateful to the different crews of
the R/V Puerto Deseado, and the scientific
staff involved in each cruise. JNF would like to
thank Carlos Conejeros-Vargas for his obser-
vations that enriched an early version of this
work. The final version greatly benefitted from
31
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
REFERENCES
Agassiz, A. (1879). Preliminary Report on the Echini of
the Exploring Expedition of H.M.S. “Challenger”,
Sir C. Wyville Thomson Chief of Civilian Staff.
Proceedings of the American Academy of Arts and
Sciences, 14, 190-212.
Agassiz, A. (1881). Report on the Echinoidea dredged by
HMS “Challenger” 1873-76. Reptort on the Scientific
Results of the Voyage of H.M.S. Challenger, 3, 1-321.
Agassiz, A. (1883). Report on the Echini. Reports on the
results of dredging, under the supervision of Alexan-
der Agassiz, in the Gulf of Mexico (1877–78), in
the Caribbean Sea (1878–79), and along the Atlantic
coast of the United States (1880), by the U.S. coast
survey steam. In Memoirs of the Museum of Compa-
rative Zology at Harvard Collegelogy, 10(1), 1-227.
Agassiz, L. (1840). Catalogus systematicus Ectyporum
Echinodermatum fossilium Musei Neocomiensis,
secundum ordinem zoologicum dispositus; adjectis
synonymis recentioribus, nec non stratis et locis in
quibus reperiuntur. Sequuntur characters diagnostici
generum novorum vel minus cognitorum. Petitpierre,
Neuchâtel (pp. 20).
Allison, E. C., Durham, J. W., & Mintz, L. W. (1967). New
southeast Pacific echinoids. Occasional Papers of the
California Academy of Sciences, 62, 1-23.
Baker, A.N. (1998). The rediscovery of Echinus elevatus
Hutton 1872 in New Zealand, and a new name for
Acanthotrema Baker & Rowe 1990 (Echinodermata:
Echinoidea). Journal of the Royal Society of New
Zealand, 28, 281-286.
Baker, A.N. & Rowe, F.W.E. (1990). Atelostomatid sea
urchins from Australian and New Zealand waters
(Echinoidea: Cassiduloida, Holasteroida, Spatangoi-
da, Neoplampadoida). Invertebrate Taxonomy, 4,
281-316.
Bastida, R., Roux, A., & Martínez DE. (1992). Benthic
communities of the Argentine continental shelf.
Oceanologica Acta, 15, 687-698.
Bernasconi, I. (1953). Monografia de los equinodermos
argentinos. Anales Del Museo de Historia Natural,
6(2), 1-58.
Bernasconi, I. (1964). Distribución geográfica de los
equinoideos y asteroideos de la extremidad austral
de Sudamérica. Boletín Del Instituto de Biología
Marina, 7, 43-50.
Bernasconi, I. (1966). Los equinoideos y asteroideos colec-
tados por el buque oceanográfico R/V ‘‘Vema’’, fren-
te a las costas argentinas, uruguayas y sur de Chile.
Revista del Museo Argentino de Ciencias Naturales
“Bernardino Rivadavia”, 9(7), 147-175.
Brogger, M.I., Gil, D.G., Rubilar, T., Martinez, M.I., Díaz
De Vivar, M.E., Escolar, M., . . . Tablado, A. (2013).
Echinoderms from Argentina: Biodiversity, distribu-
tion and current state of knowledge. In J.J. Alvarado
& F.A. Solís-Marin (Eds.), Echinoderm Research
and Diversity in Latin America (pp. 359-402). Berlín:
Springer Heidelberg.
David, B., & Mooi, R. (1990). An echinoid that “gives
birth”: morphology and systematics of a new Antarc-
tic species, Urechinus mortenseni (Echinodermata,
Holasteroida). Zoomorphology, 110, 75-89.
David, B., Saucède, T., Chenuil, A., Steimetz, E., & De
Ridder, C. (2016). The taxonomic challenge posed
by the Antarctic echinoids Abatus bidens and Abatus
cavernosus (Schizasteridae, Echinoidea). Polar Bio-
logy, 39(5), 897-912.
De Ridder, C., Jangoux, M., & De Vos, L. (1987). Frontal
ambulacral and peribuccal areas of the spatangoid
echinoid Echinocardium cordatum (Echinodermata):
a functional entity in feeding mechanism. Marine
Biology, 94, 613-624.
Doti, B.L., Roccatagliata, D. & López Gappa, J. (2014).
An inverse latitudinal biodiversity pattern in asellote
isopods (Crustacea, Peracarida) from the Southwest
Atlantic between 35° and 56°S. Marine Biodiversity,
44(1), 115-125.
Döderlein, L.H.P. (1906). Die Echinoiden der deutschen
Tiefsee-Expedition. Wissenschaftliche Ergebnisse der
Deutschen Tiefsee-Ex-pedition auf dem Dampfer
‘Valdivia’ 1898-1899, 5(2), 61-290.
Fabri-Ruiz, S., Danis, B., Navarro, N., Koubbi, P., Laffont,
R., & Saucède, T. (2020). Benthic ecoregionalization
based on echinoid fauna of the Southern Ocean sup-
ports current proposals of Antarctic Marine Protected
Areas under IPCC scenarios of climate change. Glo-
bal Change Biology, 26(4), 2161-2180.
Fabri-Ruiz, S., Saucède, T., Danis, B., & David, B. (2017).
Southern ocean echinoids Database - An updated ver-
sion of Antarctic, Sub-Antarctic and cold temperate
echinoid database. ZooKeys, 697, 1-20.
Gil, D.G., Zaixso, H.E., & Tolosano, J.A. (2009). Brooding
of the sub-Antarctic heart urchin, Abatus cavernosus
(Spatangoida: Schizasteridae), in southern Patagonia.
Marine Biology, 156, 1647-1657.
Gil, D.G., Zaixso, H.E., & Tolosano, J.A. (2020). Sex-
specific differences in gonopore and gonadal growth
trajectories in the brooding sea urchin, Abatus caver-
nosus (Spatangoida). Invertebrate Biology, 139(1),
1-8.
Gray, J.E. (1851). Descriptions of some new genera and
species of Spatangidae in the British Museum. The
Annals and Magazine of Natural History, 2(7),
130-134.
32
Revista de Biología Tropical, ISSN electrónico: 2215-2075 Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Gray, J.E. (1855). Catalogue of the Recent Echinida, or sea
eggs, in the collection of the British Museum. Part
1 - Echinida Irregularia (69 pp.). London: Woodfall
and Kinder.
Hood, S., & Mooi, R. (1998). Taxonomy and phylogene-
tics of extant Brisaster (Echinoidea: Spatangoida).
In R. Mooi & M. Telford (Eds.), Echinoderms: San
Francisco (pp. 681-686). Netherlands: Balkema,
Rotterdam.
Koehler, R. (1907). Astéries, ophiures et échinides recuei-
llis dans les mers australes par la Scotia 1902-1904.
Zoologischer Anzeiger, 32, 140-147.
Koehler, R. (1912). Deuxième Expédition Antarctique
Française (1908-1910). Echinodermes (astéries,
ophiures et échinides) (pp. 1-270). Paris: Masson
et Cie.
Koehler, R. (1914). Échinides du Musée Indien à Calcutta.
I. Spatangidés. Echinoderma of the Indian Museum.
Part 8, Echinoidea (1). Zoological Survey of India.
Calcutta, 1-258.
Kroh, A. (2020). Chapter 1. Phylogeny and classification
of echinoids. In: Lawrence, J.M. (ed.): Sea Urchins:
Biology and Ecology, 4
th
Edition (pp. 1-17). Develo-
pments in Aquaculture and Fisheries Science,vol. 43).
Amsterdam: Elsevier.
Kroh, A. & Smith, A.B. (2010). The phylogeny and clas-
sification of post-Palaeozoic echinoids. Journal of
Systematic Palaeontology, 8(2), 147-212.
Kroh, A. & Mooi, R. (2020). World Echinoidea Database.
Accessed at http://www.marinespecies.org/echinoi-
dea on 2020-09-25.
Lambert, J. (1896). Note sur quelques échinides crétacés
de Madagascar. Bulletin de la Société Géologique de
France, Series 3, 24, 313-332.
Lambert, J. (1905). Echinides du sud de la tunisie (environs
de tatahouine). Bulletin de La Société Géologique de
France, Series 4, 6, 695-723.
Larrain, A.P. (1985). Brachysternaster, new genus, and
Brachysternaster chesheri, new species of Antarctic
echinoid (Spatangoida, Schizasteridae). Polar Biolo-
gy, 4(3), 121-124.
Larraín, A., Mutschke, E., Riveros, A., & Solar, E. (1999).
Preliminary report on Echinoidea and Asteroidea
(Echinodermata) of the joint Chilean-German-Italian
Magellan “Victor Hensen” campaign, 17 October - 25
November 1994. Scientia Marina, 63(1), 433-438.
Leske, N.G. (1778). Jacobi Theodori Klein naturalis dis-
positio echinodermatum . . ., edita et descriptionibus
novisque inventis et synonomis auctorem aucta.
Addimenta ad I. T. Klein naturalem dispositionem
Echinodermatum. G. E. Beer, Leipzig, 278 pp.
Lohrer, A.M., Thrush, S.F., Hunt, L.,Hancock, N., &
Lundquist, C. (2005). Rapid reworking of subtidal
sediments by burrowing spatangoid urchins. Journal
of Experimental Marine Biology and Ecology, 321,
155-169.
López Gappa, J., Alonso, G.M. & Landoni, N.A. (2006).
Biodiversity of benthic Amphipoda (Crustacea: Pera-
carida) in the Southwest Atlantic between 35
o
S and
56
o
S. Zootaxa, 1342, 3-66.
Lovén, S. (1871). Om Echinoideernas byggnad. Öfversigt
af Kongl. Vetenskaps-Akademiens Förhandlingar,
28(8): 1065-1111.
Lovén, S. (1874). Études sur les échinoïdées. Kongeli-
ge Svenska Vetenskaps-Akademiens Handlingar, 11,
1-91.
Markov, A.V., & Solovjev, A.N. (2001). [Echinoids of the
family Paleopneustidae (Echinoidea, Spatangoida),
morphology, taxonomy, phylogeny]. [in russian].
Trudy Paleontologicheskogo Instituta, Rossikaia
Akademia Nauk, 280, 1-108.
Matano, R.P., Palma, E.D., & Piola, A.R. (2010). The
influence of the Brazil and Malvinas Currents on
the Southwestern Atlantic Shelf circulation. Ocean
Science, 6(4), 983–995.
Mironov, A.N. (1978). [The most deep-sea species of sea
urchins (Echinoidea, Pourtalesiidae)]. Zoologicheskii
Zhurnal, 57(5): 721-726.
Mironov, A.N. (2006). Echinoids from seamounts of the
north-eastern Atlantic; onshore/offshore gradients in
species distribution. In A. N. Mironov, A. V. Gebruk,
& A. J. Southward (Eds.), Biogeography of the North
Atlantic Seamounts KMK Scientific Press, Russian
Academy of Sciences (pp. 96-133). Moscow.
Mortensen, T. (1907). Echinoidea (part. 2). The Danish
Ingolf-Expedition. 4(2): 1-200. Copenhague: Bianco
Luno impr.
Mortensen, T. (1910). The Echinoidea of the Swedish
South Polar Expedition. Schwedischen Südpolar
Exp. 1901-1903. Wissenschaftliche Ergebnisse Der
Schwedischen Südpolar Expedition, 6(4), 1-114.
Mortensen, T. (1950). A monograph of the Echinoidea. V. 1
Spatangoida. I. Copenhagen: Reitzel, C.A.
Mortensen, T. (1951). A monograph of the Echinoidea. V. 2
Spatangoida II. Copenhagen: Reitzel, C.A.
Néraudeau, D., David, B., & Madon, C. (1998). Tubercu-
lation in spatangoid fascioles: Delineating plausible
homologies. Lethaia, 31(4), 323-333
Pierrat, B., Saucède, T., Brayard, A., & David, B. (2013).
Comparative biogeography of echinoids, bivalves
and gastropods from the Southern Ocean. Journal of
Biogeography, 40(7), 1374-1385.
33
Revista de Biología Tropical, ISSN electrónico: 2215-2075, Vol. 69(S1): 14-34, March 2021 (Published Mar. 30, 2021)
Piola, A.R. & Matano, R.P. (2001). Brazil and Falklands
(Malvinas) currents. In J.H. Steele, S.A. Thorpe
& K.K. Turekian (Eds.), Encyclopedia of Oceans
Science: Ocean Currents (pp. 340-349). London:
Academic Press.
Pearse, J.S., & Cameron, R.A. (1991). Echinodermata:
Echinoidea. In Giese, Pearse & Pearse (Eds.), Repro-
duction of marine invertebrates, Echinoderms and
lophophorates (pp. 513-662). California: Boxwood
Press.
Pearse, J.S., Mooi, R., Lockhart, S.J., & Brandt, A. (2009).
Brooding and Species Diversity in the Southern
Ocean: Selection for Brooders or Speciation within
Brooding Clades?. Smithsonian at the Poles : Con-
tributions to International Polar Year Science, 1971,
181-196.
Philip, G.M., & Foster, R.J. (1971). Marsupiate tertiary
echinoids from south-eastern Australia and their
zoogeographic significance. Palaeontology, 14(4),
666-695.
Philippi, A. (1845). Beschreibung einiger neuen Echino-
dermen nebst kritischen Bemerkungen über einige
weniger bekannte Arten. Archiv für Naturgeschichte,
11, 344-359.
Poulin, E., & Féral, J.P. (1996). Why are there so many
species of brooding antarctic echinoids?. Evolution,
50(2), 820.
Poulin, E., & Féral, J.P. (1998). Consequences of brood
protection in the diversity of antarctic echinoids.
Oceanis, 24(4), 159-188.
Saitoh, M., & Kanazawa, K. (2012). Adaptative morpho-
logy for living in shallow water environments in
spatangoid echinoids. Zoosymposia, 7(1), 255-265.
Saucède, T., Eléaume, M., Jossart, Q., Moreau, C., Dow-
ney, R., Bax, N., Sands, C., Mercado, B., Gallut, C.,
& Vignes-Lebbe, R. (2020). Synthesis Taxonomy
2.0 : computer-aided identification tools to assist
Antarctic biologists in the fiel and in the laboratory.
Antarctic Science, 1-13.
Schinner, G.O., & McClintock, J.B. (1993). Structural
characteristics of marsupial brood pouches of the
antarctic sea urchins Abatus nimrodi and Abatus
shackletoni (Echinoidea: Spatangoida). Journal of
Morphology, 216(1), 79-93.
Smith, A.B., & Gale, A.S. (2009). The pre-Messinian deep-
sea Neogene echinoid fauna of the Mediterranean:
Surface productivity controls and biogeographical
relationships. Palaeogeography, Palaeoclimatology,
Palaeoecology, 281(1-2), 115-125.
Smith, A.B., & Kroh, A. (Eds.). (2011). The Echinoid
Directory. World Wide Web electronic publication.
Retrieved from http://www.nhm.ac.uk/research-
curation/projects/echinoid-directory [accessed April,
2020].
Smith, A.B., & Stockley, B. (2005). Fasciole pathways in
spatangoid echinoids: A new source of phylogeneti-
cally informative characters. Zoological Journal of
the Linnean Society, 144(1), 15-35.
Stockley, B., Smith, A.B., Littlewood, T., Lessios, H.A.,
& Mackenzie-Dodds, J.A. (2005), Phylogenetic rela-
tionships of spatangoid sea urchins (Echinoidea):
taxon sampling density and congruence between
morphological and molecular estimates. Zoologica
Scripta, 34, 447-468.
Troschel, F.H. (1851). Ueber die Gattung Tripylus. Archiv
für Naturgeschichte, 17, 67-74.
Villier, L., Néraudeau, D., Clavel, B., Neumann, C., &
David, B. (2004). Phylogeny of early cretaceous
spatangoids (Echinodermata: Echinoidea) and taxo-
nomic implications. Palaeontology, 47(2), 265-292.
Voigt, I., Henrich, R., Preu, B. M., Piola, A. R., Hanebuth,
T. J. J., Schwenk, T., & Chiessi, C. M. (2013). A
submarine canyon as a climate archive - Interaction
of the antarctic intermediate water with the mar del
plata canyon (southwest atlantic). Marine Geology,
341, 46–57.