## SUPLEMENTARY MATERIAL

Table S1 Name and acronyms of each locality, as well as the basin and biogeographic province where are located. Samples 13 to 17 were obtained from García-Morales and Elías-Gutiérrez (2013).

| Locality | Code | Basin | Biogeographic province |
| :---: | :---: | :---: | :---: |
| 1. La Colorada | COL | Ameca River | Trans-Mexican Volcanic Belt (TMVB) |
| 2. La Vega | VEG |  |  |
| 3. Atotonilco | ATO | Sayula River |  |
| 4. Yuriria | YUR | Middle Lerma River |  |
| 5. La Joya | JOY |  |  |
| 6. Cuitzeo | CUI | Cuitzeo Lake |  |
| 7. La Zarcita | ZAR | Zacapu Lake |  |
| 8. Teremendo | TER |  |  |
| 9. Uranden | URA | Patzcuaro Lake |  |
| 10. La Magdalena | MAG | Tacambaro-Balsas River |  |
| 11. Ixtlahuaca | IXT | Upper Lerma River |  |
| 12. Lerma | LER |  |  |
| 13. Escondida | ESC | Papaloapan River | Gulf of Mexico (GM) |
| 14. Vernet | VER | Grijalva-Usumacinta Rivers |  |
| 15. Charco 1 | CH1 |  |  |
| 16. Parque Ecologico | PEC | Chetumal Bay | Yucatan Peninsula (YP) |
| 17. El Rosario | ROS | Caracol-Candelaria Stream | Baja California (BC) |

Table S2 PCR reaction mix and cycle profile for 18S gene.

| PCR reagents | PCR profile |  |
| :--- | :--- | :--- |
| Volumes for one reaction $(\mathbf{1 2} \boldsymbol{\mu L})$ | Initial step: $95^{\circ} \mathrm{C}$ for 5 min |  |
| DNA template | $4 \mu \mathrm{~L}$ |  |
| Trehalose $10 \%$ | $5.25 \mu \mathrm{~L}$ | 38 cycles of the following profile: |
| $\mathrm{ddH}_{2} \mathrm{O}$ | $1 \mu \mathrm{~L}$ |  |
| 10 X PCR buffer | $1.25 \mu \mathrm{~L}$ | Denaturing step: $95^{\circ} \mathrm{C}$ for 1 min |
| 50 mM MgCl |  | $0.625 \mu \mathrm{~L}$ |
| 0.05 mM dNTP | $0.0625 \mu \mathrm{~L}$ of each | Annealing step: $55^{\circ} \mathrm{C}$ for 1 min |
| 0.01 mM Primer 1 | $0.125 \mu \mathrm{~L}$ | Extending step: $72{ }^{\circ} \mathrm{C}$ for 2 min |
| 0.01 mM Primer 2 | $0.125 \mu \mathrm{~L}$ | Final step: $72^{\circ} \mathrm{C}$ for 10 min |
| Taq polymerase | $0.06 \mu \mathrm{~L}$ |  |

Table S3 Average percent of uncorrected genetic distances of COI gene. In diagonal genetic distances within the seven B. quadridentatus lineages and below the diagonal genetic distances among the seven lineages.

| Genetic <br> group | A | B | C | D | E | F | G |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | $\mathbf{0 . 0}$ |  |  |  |  |  |  |
| B | 14.8 | $\mathbf{2 . 0}$ |  |  |  |  |  |
| C | 15.6 | 16.4 | $\mathbf{0 . 5}$ |  |  |  |  |
| D | 16.4 | 18.3 | 14.8 | $\mathbf{1 . 5}$ |  |  |  |
| E | 17.3 | 16.5 | 17.2 | 18.1 | $\mathbf{0 . 0}$ |  |  |
| F | 13.4 | 16.6 | 16.5 | 16.8 | 15.2 | $\mathbf{0 . 2}$ |  |
| G | 15.3 | 17.0 | 16.8 | 18.1 | 16.2 | 12.4 | $\mathbf{3 . 1}$ |

Table S4 Measurements from some specimens belonging to the mitocondrial lineages discriminaed in the phylogenetic analyses. Total length in the lineages $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E comprises from the tips of the median anterior spines to the tips of the caudal spines. Total length in lineages F and G comprises from the tips of the median anterior spines to the caudal margin of the lorica. Measures correspond to only one individual from each location.

| Lineage B |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Specimen | Total length | Body width | Length of median <br> anterior spines | Length of caudal <br> spines |
| La Colorada (COL) | $275 \mu \mathrm{~m}$ | $175 \mu \mathrm{~m}$ | $62.5 \mu \mathrm{~m}$ | $75 \mu \mathrm{~m}$ |
| La Vega (VEG) | $230 \mu \mathrm{~m}$ | $162.5 \mu \mathrm{~m}$ | $52.5 \mu \mathrm{~m}$ | $62.5 \mu \mathrm{~m}$ |
| Lineage C |  |  |  |  |
| La Zarcita (ZAR) | $195 \mu \mathrm{~m}$ | $165 \mu \mathrm{~m}$ | $37.5 \mu \mathrm{~m}$ | $12.5 \mu \mathrm{~m}$ |
| Lineage D |  |  |  |  |
| Uranden (URA) | $232 \mu \mathrm{~m}$ | $162.5 \mu \mathrm{~m}$ | $45 \mu \mathrm{~m}$ | $52.5 \mu \mathrm{~m}$ |
| La Magdalena (MAG) | $225 \mu \mathrm{~m}$ | $172.5 \mu \mathrm{~m}$ | $35 \mu \mathrm{~m}$ | $42.5 \mu \mathrm{~m}$ |
| Yuriria (YUR) | $225 \mu \mathrm{~m}$ | $165 \mu \mathrm{~m}$ | $42.5 \mu \mathrm{~m}$ | $37.5 \mu \mathrm{~m}$ |
| La Colorada (COL) | $230 \mu \mathrm{~m}$ | $172.5 \mu \mathrm{~m}$ | $35 \mu \mathrm{~m}$ | $37.5 \mu \mathrm{~m}$ |
| La Zarcita (ZAR) | $230 \mu \mathrm{~m}$ | $175 \mu \mathrm{~m}$ | $35 \mu \mathrm{~m}$ | $37.5 \mu \mathrm{~m}$ |
| Lineage E |  |  |  |  |
| La Joya (JOY) | $230 \mu \mathrm{~m}$ | $180 \mu \mathrm{~m}$ | $35 \mu \mathrm{~m}$ | $35 \mu \mathrm{~m}$ |


| Lineage F |  |  |  |
| :--- | :--- | :--- | :--- |
| Specimen | Total length | Body width | Length of median <br> anterior spines |
| Cuitzeo (CUI) | $157.5 \mu \mathrm{~m}$ | $152.5 \mu \mathrm{~m}$ | $25 \mu \mathrm{~m}$ |
| Lerma (LER) | $167.5 \mu \mathrm{~m}$ | $152.5 \mu \mathrm{~m}$ | $30 \mu \mathrm{~m}$ |
| Lineage G |  |  |  |
| Teremendo (TER) | $200 \mu \mathrm{~m}$ | $177.5 \mu \mathrm{~m}$ | $25 \mu \mathrm{~m}$ |
| Ixtlahuaca (IXT) | $215 \mu \mathrm{~m}$ | $187.5 \mu \mathrm{~m}$ | $35 \mu \mathrm{~m}$ |
| Atotonilco (ATO) | $172.5 \mu \mathrm{~m}$ | $150 \mu \mathrm{~m}$ | $30 \mu \mathrm{~m}$ |

Table S5 Sample size (N), Number of haplotypes (H), Haplotype diversity $(H d)$ and nucleotide diversity ( $\pi$ ) of the seven Brachionus quadridentatus lineages based on the COI gene. The standard deviations of the parameters are within parentheses.

| Lineages | N | H | Hd | $\pi$ |
| :--- | :--- | :--- | :--- | :--- |
| A | 1 | 1 | NA | NA |
| B | 20 | 5 | $0.721(0.088)$ | $0.01993(0.00235)$ |
| C | 8 | 2 | $0.429(0.169)$ | $0.00473(0.00186)$ |
| D | 43 | 13 | $0.913(0.016)$ | $0.01495(0.00077)$ |
| E | 11 | 1 | 0.000 | 0.000 |
| F | 58 | 10 | $0.595(0.070)$ | $0.00250(0.00051)$ |
| G | 35 | 7 | $0.824(0.035)$ | $0.03123(0.00261)$ |

Table S6 Hierarchical analysis of molecular variance of AMOVA for the seven COI lineages of B. quadridentatus complex.

| Source of <br> variation | df | Sum of <br> squares | Variance <br> components | Percentage <br> of variation | Fixation <br> indices | $P$ value |
| :--- | :---: | :---: | :--- | :--- | :--- | :--- |
| Genetic groups |  |  |  |  |  |  |
| Among genetic <br> groups | 5 | 6172.01 | 42.79 | 86.03 | $\mathrm{~F}_{\mathrm{CT}}=0.8602$ | 0.000 |
| Among <br> populations within <br> genetic groups | 13 | 557.85 | 6.05 | 12.17 | $\mathrm{~F}_{\mathrm{SC}}=0.8709$ | 0.000 |
| Within genetic <br> groups | 156 | 139.89 | 0.896 | 1.80 | $\mathrm{~F}_{\mathrm{ST}}=0.9819$ | 0.000 |
| Total | 174 | 6869.76 | 49.74 |  |  |  |

Table S7 GenBank accession numbers of the cytochrome c oxidase subunit 1 (COI gene) sequences. These 23 sequences belong to B. quadridentatus from Europe and China.

| Authors | Accessions | Individuals | Published data | Place |
| :--- | :--- | :--- | :--- | :--- |
| Gómez et al. (2002) | AF387294, AF387295 | 2 | Yes | Iberian Peninsula |
| Fontaneto et al. | EU499772-EU499779 | 8 | No | United Kingdom |
| Jiang | KU720083 | 1 | No | China |
| Moreno et al. (2017) | KY749403-KY749414 | 12 | Yes | Iberian Peninsula |



Fig. S1 Molecular based species delineation of B. quadridentatus. A. Bayesian tree generated with MrBayes from the COI marker. ABGD: Automatic Barcode Gap Discovery, SP: Statistical Parsimony, PTP: Poisson Tree Processes and GMYC: Generalized Mixed Yule-Coalescent analyses performed to COI and 18 S genes, as well as to the concatenated data set (Conca).


Fig. S2 Coalescent species tree of the concatenated data. Posterior probabilities are shown on branches. Putative species B to G are in accordance to the lineages in the concatenated phylogenetic analysis.


Fig. S3 Bayesian Inference phylogram of the mtDNA showing the relationship of $37 B$. quadridentatus haplotypes. In this case the sequence corresponding to the lineage A in Figure 3 was not included, in order to see how the absence of lineage A affects the relationships between the other lineages. Haplotype names are indicated by the acronym of the water body in which they were collected, plus a number. Numbers on major branches are the percent of branch support in the Bayesian and Maximun-Likelihood analyses, respectively.


Fig. S4 Bayesian Inference phylogram of the concatenated data, showing the relationship of the 30 B. quadridentatus haplotypes. Haplotype names are indicated by the acronym of the water body in which they were collected, plus a number. Numbers on major branches are the percent of branch support in the Bayesian and Maximun-Likelihood analyses, respectively. Lineages B to G correspond to the same lineages in the phylogenetic analysis of the COI gene.


Fig. S5 Median-joining network based on the mitochondrial COI gene. Haplotypes are represented as circles, their size being proportional to the number of individuals possessing the haplotype. Median vectors, which represent either extant unsampled sequences or extinct ancestral sequences are indicated by small black circles. Short black bars and numbers in white squares represent the number of mutational steps. Haplotype names are indicated by the acronym of the water body in which they were collected (see Table 1 and S1).


Fig. S6 Bayesian Inference phylogram of the mtDNA COI showing the relationship of $48 B$. quadridentatus haplotypes from Mexico, Europe and China. Lineages A-G corresponds to the lineages in Figure 3. Lineages 1-5 corresponds to the new lineages found when sequences from Iberian Peninsula, United Kingdom and China were added to our dataset. Haplotypes from Mexico are indicated by the acronym of the water body in which they were collected, plus a number. Number after name corresponds to the number of samples within each haplotype. Numbers on major branches are the percent of branch support in the Bayesian and Maximun-Likelihood analyses, respectively. A sequence of B. ibericus (accession GQ894740) was used as outgroup.

