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Abstract: Two methods for selecting a subset of simulations and/or general circulation models (GCMs) from a 
set of 30 available simulations are compared: 1) Selecting the models based on their performance on reproducing 
20th century climate, and 2) random sampling.  In the first case, it was found that the performance methodology 
is very sensitive to the type and number of metrics used to rank the models and therefore the results are not 
robust to these conditions. In general, including more models in a multi-model ensemble according to their rank 
(of skill in reproducing 20th century climate) results in an increase in the multi-model skill up to a certain point 
and then the inclusion of more models degrades the skill of the multi-model ensemble.  In a similar fashion when 
the models are introduced in the ensemble at random, there is a point where the inclusion of more models does 
not change significantly the skill of the multi-model ensemble. For precipitation the subset of models that pro-
duces the maximum skill in reproducing 20th century climate also showed some skill in reproducing the climate 
change projections of the multi-model ensemble of all simulations. For temperature, more models/simulations 
are needed to be included in the ensemble (at the expense of a decrease in the skill of reproducing the climate of 
the 20th century for the selection based on their ranks). For precipitation and temperature the use of 7 simulations 
out of 30 resulted in the maximum skill for both approaches to introduce the models. Citation: Hidalgo, H. & 
E.J. Alfaro. 2012. Global Model selection for evaluation of climate change projections in the Eastern Tropical 
Pacific Seascape. Rev. Biol. Trop. 60 (Suppl. 3): 67-81. Epub 2012 Dec 01.
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The impacts of anthropogenic forcings 
in the Earth’s climate are a reality that is 
already affecting and will continue to affect 
human and environmental systems (Barnett 
et al. 2008, Pierce et al. 2008, Hidalgo et 
al. 2009). Because anthropogenic causes and 
consequences represented by modifications of 
the natural climate patterns are lagged by a 
number of years (or even decades), it is neces-
sary to assess the state of future climates with 
some lead time using numerical global climate 
models, also known as General Circulation 
Models (GCMs). The final objective is that the 

GCMs would be used to estimate a range of 
possible climate change projections, given the 
uncertainties in the future climate forcing data 
and the limitations of the models in simulating 
climate in a realistic manner. This exercise is 
therefore crucial for guiding mitigation and 
adaptation actions associated with significant 
changes in policy and/or infrastructure which 
require some time for implementation (Amador 
& Alfaro 2009).

Unfortunately, the GCM climate raw data 
alone are not generally useful for regional 
impact studies (Hidalgo et al. 2009, Maurer 
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& Hidalgo 2008, Pierce et al. 2009). Not only 
does the current generation of models provide 
a much coarser spatial (and sometimes tempo-
ral) resolution that in many cases is needed, 
but also climate data have to be interpreted 
in terms of the impacts in diverse sectors (i.e. 
water supply, agriculture, hydropower genera-
tion, wildfire potential, social and economic 
aspects, public health) using statistical or phy-
sical models for downscaling the GCM climate 
data to a finer resolution and/or including 
additional analysis or models for the estima-
tion of these impacts (Amador & Alfaro 2009). 
For reasons of simplicity or for limitations in 
processing capacity or resources, this process 
of transforming the GCM climate data into 
regional climate change impacts assessments 
have been usually done using a subset of a few 
models from the range of all available models 
in the repositories of GCM data (i.e. Cayan et 
al. 2008). Therefore, selecting the models to 
use for a certain region needs to be evaluated 
using logical criteria (see examples in Pierce 
et al. 2009, Cayan et al. 2008, Brekke et al. 
2008). This article presents a comparison bet-
ween two methods of selecting models. The 
first method consists of selecting the models 
based on their performance of reproducing 
20th century’s climate, and the second method 
is simply choosing the models at random. In 
particular, the main objective of the article is 
to determine how many simulations are needed 
to be selected to form an n-ensemble from a 
total of N=30 simulations in order to optimize 
the skill in reproducing statistics of the climate 
of the 20th century or to obtain similar climate 
change projections of temperature and preci-
pitation changes as the multi-model ensemble 
of the N models (MMEN) at two projection 
horizons: 2000-2049 and 2050-2099. 

Previous studies have suggested that 
risk assessment could be influenced by the 
accounting for model credibility, and that this 
assessment is also sensitive to projected quan-
tity (Brekke et al. 2008). Like Brekke et al. 
(2008) we are interested in determining if selec-
ting fewer simulations than the total available 
in the dataset results in different climate change 

projections compared to the ensemble of all 
available simulations (in our case MMEN), 
but our approach is somewhat different than 
Brekke’s. We are interested in determining if 
the work spent of calculating the weights of 
the simulations for culling is worth it, or if 
instead a random selection of models results in 
a similar subset of n=nr models. (Also we are 
interested in determining if nr << N or not). 
Pierce et al. (2009) already showed that model 
selection using performance metrics showed 
no systematically different conclusions than 
random sampling on detection and attribution 
(D&A) analysis of January-February-March 
(JFM) temperature for the western United Sta-
tes (US) data. The authors also demonstrated 
that multi-model ensembles showed superior 
results compared to individual models and 
that enough realizations should be chosen to 
account for natural climate variability in D&A 
studies. The authors found that model skill tend 
to asymptote after a few numbers of models 
are considered in the ensemble, but their work 
does not refer to 21st century climate projec-
tions. They mention, however, that the ordering 
the models by performance has the effect of 
ordering them by climate sensitivity (during 
the 20th century) more than would be expec-
ted by chance, with the better models having 
higher sensitivities.  

The area of study of this article is the Eas-
tern Tropical Pacific Seascape (ETPS; Fig. 1). 
It is a very important region covering more 
than 2 million km2, the national waters of many 
countries, immense concentration of endange-
red pelagic species, unique variety of tropical 
and temperate marine life, and four UNESCO 
World Heritage Sites, including Costa Rica’s 
Isla del Coco National Park (Cortés 2008; 
Henderson et al. 2008). The ETPS is also an 
important center of action of El Niño-Southern 
Oscillation (ENSO) phenomena (Alfaro 2008; 
Quirós-Badilla & Alfaro 2009).

In the next section the used data will be 
described, then the analysis is divided in three 
parts: 1) Part I is the selection based on perfor-
mance criteria of the models on reproducing 
the 20th century climate features, 2) Part II is 
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the selection at random, and 3) Part III is the 
analysis of the results in terms of the 21st cen-
tury projections. The discussion of the results 
will be presented in the last section.

DATA

Global climate simulations corresponding 
to monthly precipitation and temperature runs 
for the climate of the 20th century (known as 
20c3m runs) and climate projections for the 21st 
century for the A1B greenhouse gas emission 
scenario were obtained from the US Lawrence 
Livermore National Laboratory Program for 
Climate Model Diagnosis and Intercomparison 
(PCMDI 2010) and from the Intergovernmen-
tal Panel on Climate Change (IPCC 2010). 
These data were collected as a response of an 
activity of the World Climate Research Pro-
gramme (WCRP) of the World Meteorological 
Organization (WMO) and constitutes phase 3 
of the Coupled Model Intercomparison Project 
(CMIP Phase 3) in support of research relied 
on by the 4th Assessment Report (AR4) of the 
IPCC (Meehl et al. 2007). Redundant runs from 
the PCMDI and IPCC datasets were compared 
and discarded. Only those models that had 
complete runs for all of the following periods 
were considered in the analysis: a) climate of 

the 20th century or 20c3m type of simulations 
(covering the time period 1950 to 1999), b) the 
climate change projection for the horizon 1 or 
CC1 (2000 to 2049), and c) the climate change 
projection for the horizon 2 or CC2 (2050 to 
2099). Some of the models that had more than 
one climate change realization were also consi-
dered in the analysis. There were a total of N=30 
simulations that met these requirements. The list 
of models and runs can be found in Table 1. 

Global climate change data from their 
original resolution were interpolated to the 
resolution of the coarsest model (2o latitude x 
5o longitude) by the nearest grid-point method, 
but considering separate interpolations for the 
ocean and land grid-points according to the 
individual land-sea masks of the models. The 
data were visually inspected at selected grid-
points. The data were also changed to the 
same units and same file format for the rest 
of the analysis. 

Performance of the GCM 20c3m precipi-
tation and temperature data was estimated in 
reference to the US National Center of Envi-
ronmental Prediction (NCEP) and US Natio-
nal Center for Atmospheric Research (NCAR) 
Reanalysis (Kalnay et al. 1996), hereinafter the 
Reanalysis. The data for comparison covers 
the period from 1950 to 1999. It should be 

Fig. 1. Location of the Eastern Tropical Pacific Seascape (shadow). The center gridpoint of a darker shading is shown as a 
reference of the spatial resolution used in the analysis.
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mentioned that the precipitation of the Reanaly-
sis is modeled (not observed) and thus it may 
have larger errors than the temperature data.

Part I
Selection of models using 

performance metrics

In this part, the GCMs were culled 
according to their performance on repro-
ducing 20th century climate, as represented 
in the Reanalysis.

Metrics

Several metrics were used to determine 
the performance of the models on reproducing 
20th century statistics for the first part of the 
analysis (selection of models using perfor-
mance metrics). The metrics were divided in 
three categories: 1) metrics on the mean, 2) 
metrics on the variability and 3) metrics on the 
spectral characteristics. There are 13 metrics 

of the mean type corresponding to the mean 
of the annual averages (denoted by mY) plus 
the means for each of the 12 individual months 
(climatologies) of climate patterns (denoted by 
mJ, mF, … mD) over the shaded region (Fig. 
1). In a similar fashion there are 13 metrics 
on the variability corresponding to the stan-
dard deviations of the 13 annual and monthly 
averages defined before (denoted by sY, sJ, 
...sD) . Finally, there are two spectral types of 
metrics: the first was calculated by running a 
2 to 8 year elliptical band-pass filter (Ginde & 
Noronha 2012) on the annual precipitation or 
temperature time-series at each grid-point and 
calculating the ratio of the standard deviation 
of the filtered data to the standard deviation of 
the unfiltered data. This metric is a measure of 
how much “high-frequency” climate variability 
(a large part related to ENSO) is captured by 
the model (denoted as fH). The second spectral 
metric is defined similarly, except that it cap-
tures the “low frequency” climate variability 
contained in the spectral band between 9 and 
20 years (denoted as fL). There are no global 
climate metrics such as ENSO, Pacific Decadal 
Oscillation, Atlantic Multidecadal Oscillation 
or corresponding tele-connection metrics in 
the present analysis as in Brekke et al. (2008). 
Because the study region is almost at the 
equatorial Pacific, it was considered here that 
a large part of the dominating ENSO signal is 
represented in the temperature and precipitation 
metrics already (Alfaro 2008; Quirós-Badilla & 
Alfaro 2009) and that a similar analysis of the 
determination of nr due to global tele-connec-
tions will follow in a separate article.

Skill Score 

Following Pierce et al. (2009), the degree 
of similarity between any two climate patterns 
(for example between the Reanalysis metric 
and the same metric from one of the GCM 
simulations) was calculated using the Skill 
Score (SS) defined by:

(Eq. 1)

TABLE 1
Climate simulations used in this study

Database Model name Run 1 Run 2
PCMDI AOM Yes Yes 
PCMDI CGCM2 Yes Yes 
PCMDI CGCM3(47) Yes Yes 
PCMDI CGCM3(63) Yes No 
PCMDI CM2.0 Yes No 
PCMDI CM2.1 Yes No 
PCMDI CM3 Yes No 
PCMDI CM3.0 Yes No 
PCMDI CM4 Yes No 
PCMDI E-H Yes Yes 
PCMDI ECHAM4 Yes No 
PCMDI ECHAM5 Yes Yes 
PCMDI ECHO-G Yes Yes 
PCMDI FGOALS Yes Yes 
PCMDI MK3 Yes No 
IPCC BCM2 Yes No 
IPCC CCSM3 Yes Yes 
IPCC HadCM3 Yes No
IPCC HadGEM1 Yes No
IPCC MIROC3.2 hires Yes No
IPCC MIROC3.2 medres Yes Yes
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where rm,o is the Pearson´s spatial correlation 
between modeled (i.e. GCM) and “observed” 
(i.e. Reanalysis) patterns, sm and so are the sam-
ple spatial standard deviations for the modeled 
and observed patterns respectively. The ratio 
sm/so is denoted as g in following sections. The 
m and o over-bars correspond to the spatial 
average of the modeled and observed climate 
patterns respectively. SS varies from minus 
infinity (no skill) to 1 (perfect match between 
the patterns). Zero SS values correspond to 
cases in which the mean of the observations 
is reproduced correctly by the model in a cer-
tain region, but only as a featureless uniform 
pattern (Pierce et al. 2009). Inspection of the 
right hand side of Equation 1 shows that SS is 

composed of three squared terms, and therefore 
SS can also be expressed as:

(Eq. 2)

where RHO is the square of the spatial corre-
lation between the observed and modeled 
patterns; and CBIAS and UBIAS are the Con-
ditional and Unconditional Biases respectively 
(see Pierce et al. 2009). Note that SS not only 
reflects correlation coherence between the pat-
terns but also biases play an important role in 
SS’s calculation.

The spreads of the SS values calcula-
ted for individual models and by individual 
metrics are shown in Figure 2. As can be seen 

Fig. 2. Distribution of Skill Scores for individual metrics corresponding to the similarity of the Reanalysis patterns and the 
30 GCM simulations shown in Table 1. The vertical lines divides each figure in three types of metrics: 1) metrics on the 
mean (left), 2) metrics on the standard deviation (middle) and 3) metrics on the spectral characteristics (right). See text for 
definition of the metrics acronyms. The boxes represent the upper quartile, the median and the lower quartile. The whiskers 
extend to 1.5 the interquartile range or to the extend of the data. values outside the whiskers are shown with an asterisk.
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precipitation SSs are generally lower than for 
temperature. This suggests that precipitation 
is not reproduced well in this region of the 
world by many of the GCMs, compared to the 
Reanalysis. Temperature mean type of metrics 
showed good skill for many models, even for 
the spectral type of metrics. This calculation of 
metrics for each individual model is necessary 
in order to rank the models. The rank is actually 
computed by combining the SSs of individual 
metrics through calculation of the Euclidean 
distances (hereafter denoted by DSS) between 
the obtained SSs for each metric and the “per-
fect” or “optimal” vector SS=(1,1,1,…1). In 
order to determine the sensitivity to the type of 
metrics used, three types of Euclidean distan-
ces were calculated: 1) only the precipitation 

metrics were used in the calculation of DSS, 
2) the precipitation and temperature metrics 
were used and 3) only the temperature metrics 
were used. These distances were used to rank 
the models and for determining the order on 
which the models form the ensemble in groups 
of n=1,2,...30. That is, with the exception of 
Figures 2 and 3 the average SSs and DSSs will 
always be computed for model ensembles. The 
reason for this is that, as mentioned in Pierce et 
al. (2009), the model ensembles are generally 
better than the individual model results; a result 
also partially suggested in Figure 3. For preci-
pitation the median SS for the simple model 
ensemble at using the best 10 models n=10 
(MME10) is always better than the results for 
the best 10 individual models (Fig. 3); and also 

Fig. 3. Comparison between statistics of the ensemble and the individual GCMs results for the best 10 simulations shown in 
Table 1. g is the ratio of the standard deviation of the climate pattern of the model divided by the standard deviation of the 
Reanalysis. The boxes represent the interquartile ranges of the data and the asterisks the median values. The darker line and 
the larger asterisk simbols correspond to the multi-model ensemble.
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the MME10 showed g values close to the unity. 
Models or ensembles with g closer to the unity 
have a desirable feature that is discussed in 
Pierce et al. 2009. For temperature, some of the 
individual models showed better median SS.

Selection of model ensembles

Each model and metric has a particular SS. 
In order to determine the performance of any 
single particular model at representing all of the 
metrics, the Euclidean distance or DSS between 
the SSs of all the metrics of that model and the 
“perfect” or “optimal” vector SS=(1,1,1,...1) of 
length nm, where nm=number of metrics used, 
was computed. These distances were used to 
rank the models according to their distance 
to form multi-model n-ensembles (MMEn) 
composed of the best n individual models 

introduced in increasing ranking of DSS. The 
normalized Euclidean distances or DSS/DSSmax 
for each resulting ensemble are shown in Figu-
re 4, using different variables in the calculation 
of the metrics. In Figure 4 DSSmax is the DSS 
that showed the maximum deviation from the 
optimum vector SS=(1,1,1,…1). As mentio-
ned previously, regardless of the variable to 
be analyzed, the calculation of the Euclidean 
distances was performed using precipitation 
metrics only (nm=13+13+2=28, corresponding 
to the mean, variability and spectral types 
of metrics mentioned before), precipitation 
and temperature metrics (nm=28*2=56) and 
temperature metrics only (nm=28). Note that 
in Figure 4, only the normalized distances are 
of interest, and the different curves are not 
directly comparable to each other. From Figure 

Fig. 4. Normalized euclidean SS distances with respect to the unity (perfect or optimal SS), of ensembles of n models 
entering the ensembles according to their individual euclidean distance with the unity. Note that the absolute distances are 
not show, only their relative distance to the maximum distance.
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4 and for precipitation and temperature metrics 
(solid curves), it can be seen that the inclusion 
of more models generally increases the skill 
of the n-ensemble to reproduce the Reanalysis 
precipitation and temperature patterns up to a 
certain number of models and then the skill 
generally decreases when the worse models are 
included in the ensembles. Therefore, there is 
an optimum number of models to be included 
in the ensembles in order to obtain the greatest 
skill. Note also that there is a strong depen-
dence of the results on the type of metrics 
used and whether precipitation, temperature or 
both type of patterns are used to determine the 
order in which the models are introduced in 
the ensembles. Thus, it is clear that the varia-
bles included in the calculation of the metrics 
significantly influences the results. In fact, the 
type of metrics used also influenced the results, 
as the analysis was repeated using all possible 
combinations of type of metrics (mean, varia-
bility and spectral) which resulted in different 
results (not shown). This problem was also 
mentioned in Pierce et al. (2009) and Brekke 
et al. (2008). Precipitation’s DSS/DSSmax is the 
lowest (for the precipitation and temperature 
metrics) at around n=nr=7 (the lowest point 
for the solid curve of top Figure 4), and tempe-
rature results show a lowest distance value at 
n=nr=7 (the lowest point for the solid curve of 
bottom Figure 4).

Part II
Random selection of models

In this part of the analysis, the models 
form ensembles of size n, chosen randomly.

Selecting a representative sample

In order to obtain statistical significance 
in the results it is necessary to obtain a certain 
sample from a population of possible combi-
nations of N models, taken in ensembles of n 
members. The possible number of combina-
tions for ensembles of n simulations from a 
total of N=30 individual possible simulations 
is given in any elementary combinatorics text-
book by (see for example Spiegel 1998):

(Eq. 3)

C(N,n) increases very rapidly until the 
maximum at n=15 where it reaches values 
higher than 1x108 possible combinations and 
then decreases rapidly to become equal to 1 
for n=N=30 (Fig. 5). Since the calculation of 
all possible combinations is extremely large, 
representative samples of the population of 
size SC(N,n) were taken that resulted in the same 
statistical distribution as the population with a 
95% confidence level using the following for-
mulas from Israel (2009):

Fig. 5. Total number of combinations for creating ensembles of n members from N=30 simulations according to Equation 3 
(solid line); and sample size to obtain a representative estimation of the statistical distribution of the population according 
to Equation 4 (dashed line).
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(Eq. 4a)

(Eq. 4b)

where “ceil” is the rounding to the higher inte-
ger, Z2 is the abscissa of the normal curve that 
cuts off an area at the tails (1-confidence level, 
e.g. 95%), p is equal to the estimate proportion 
that is present in the population, while the value 
of q is given by q=1-p. Since p has an unknown 
aspect, the most conservative option for p and 
q (p=q=0.5) was used as it produces the lar-
gest no value. Also e=0.05 is the error that is 
anticipated to be committed. Inspection of the 
equation showed that it converges to a plateau 
very rapidly (Fig. 5).

Equation 4 was tested using a Monte Carlo 
simulation for ensembles of sizes n=1 to n=6. 
The SS distributions for the populations were 
computed, and 100 000 samples of SC(N,n) 
combinations of n simulations were computed. 
The samples and the population distributions 
were compared using a Kolmogorov–Smirnov 
or K–S test. It was verified that the error com-
mitted was below 5% and therefore this serves 

as an indication that Equation 4 gives useful 
estimations of the needed sample size.

Selection of model ensembles

In Figure 6 the results for the random 
selection of simulations are shown. The same 
samples were selected for precipitation and 
temperature and therefore the results for both 
variables are the same in Figure 6. At around 
n=nr=7 there is a plateau in the values of DSS/
DSSmax, suggesting that the inclusion of more 
models at random does not substantially impro-
ve the skill beyond that point. 

Part III
Implication for climate change projections

In this section we are interested in determi-
ning whether the nr values obtained previously 
in Parts I and II result in similar projected 
precipitation and temperature change for two 
climate change horizons: CC1 (2000 to 2049) 
and CC2 (2050 to 2099). The difference in the 
mean January to December future conditions 
(CC1 or CC2) and the 20c3m “historical” 
scenarios were computed for the same ensem-
bles determined in Figure 4 and Figure 6 (See 
Brekke et al. 2008 for a discussion on how the 
climate change variable to be used affects the 
results). The SSs between the climate change 

Fig. 6. Normalized SS euclidean distances with respect to the unity (perfect or optimal SS), of ensembles of n models 
entering the ensembles at random. The same samples were taken for precipitation and temperature cases and therefore the 
results are valid for both variables and are shown in a single graph.
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patterns of each individual n-member ensem-
ble and the MMEN for the two climate change 
horizons are shown in Figures 7 and 8. For 
the CC1 climate change horizon (and for the 
precipitation and temperature metrics), preci-
pitation ensembles using the selection based on 
performance is positive (and stays positive) at 
around n=ncc1=6. In other words, the ensemble 
of 6 models (or more) is needed in order to gua-
rantee that there is some skill in reproducing 
the climate change pattern of the MMEN. This 
also implies that the most conservative number 
of models used to create the ensemble between 
nr=7 and ncc1=6 would ensure that 1) the best 
performance of the model in reproducing the 
features of the “historical” period as shown in 
the Reanalysis is found and 2) the ensemble 
also has some skill in reproducing the same 
climate projection using as basis the ensemble 
of all available simulations. As can be seen 
both numbers of models are very similar and 
with n=7 the maximum skill in reproducing 
20th century climate is found, along with some 
skill in reproducing the climate change pat-
terns of the MMEN. In the case of precipitation 
random sampling, all the simulations have 
SSs greater than zero at n=ncc1=8, while the 
less conservative value of nr=7 found in Part 
II suggests that the constraint of having some 
skill in reproducing the climate change of the 
MMEN is more conservative. Note that the nor-
malized Euclidean distances shown on figures 
4 and 6, do not say anything about the absolute 
distances and therefore both figures are not 
comparable to each other. But in Figures 7 and 
8, the use of the Skill Score (Equation 1) to test 
the similarity between the projected climate of 
the MMEn and MMEN allow comparison bet-
ween the charts for any single climatic parame-
ter (precipitation or temperature) and climate 
change scenario.

In the case of temperature, the creation 
of ensembles using the performance crite-
ria suggests that n=ncc1=13 is needed (point 
where solid line is positive and stays positive 
in second panel from the top in Figure 7) in 
order to obtain positive SS values, contrasting 
with the n=nr=7 found in Part I of the analysis. 

This suggests that if the sampling is based on 
performance criteria, the ensemble of the best 
13 models are needed in order to guarantee 
some skill in reproducing the climate change 
patterns of the multi-model ensemble, and that 
the maximum skill is achieved. In the case of 
random sampling, n=ncc1=15 is needed, in 
contrast with n=nr=6 found before. In Table 2 
a summary of the results is presented for both 
climate change horizons. The results are very 
similar and support the same conclusions dis-
cussed in this part of the analysis.

TABLE 2
Summary of the results for Part III

Performance criteria 
sampling Precipitation Temperature

nr (20c3m) 7 7
ncc1 (CC1) 6 13
ncc2 (CC2) 8 13

Random sampling Precipitation Temperature
nr (20c3m) 7 7
ncc1 (CC1) 8 15
ncc2 (CC2) 6 14

DISCUSSION 

When selecting a subset of simulations 
and/or models for a regional study, it is very 
common to use some performance criteria to 
determine which simulations to use. Consistent 
with other studies, it was found here, that the 
selection and the results are very sensitive to 
the metrics used to rank the simulations. In 
this study, this multi-model ensemble of all 
available simulations was used as a benchmark 
to compare the results of the climate change 
simulations with the objective of determining 
if using a smaller subset of simulations results 
in very different climate projections. 

The results showed that culling the models 
based on performance criteria or on ran-
dom sampling, results in future precipitation 
projections that have some similarity to the 
projections obtained from the MMEN. For tem-
perature, more models are needed to be added 
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Fig. 7. Skill Score (SS) between projected change (CC1-20c3m) in precipitation and temperature mean using ensembles of 
n simulations and using the ensemble of all available simulations (n=N). The two top panels were constructed by selecting 
the models based on their performance and the lower two panels correspond to the random selection of models.
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Fig. 8. Same as Figure 7, but for the projected change between CC2-20c3m scenarios.
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to the ensemble to guarantee skill in reprodu-
cing climate change patterns of the MMEN. It 
could be argued that the use of the MMEN as a 
benchmark is not justified as it contains models 
with very low skill in reproducing observa-
tions, but it is assumed here that as more simu-
lations are included in the ensemble, the more 
noise is going to be filtered out and therefore 
this benchmark has superior characteristic than 
the multi-model ensemble of a subset of n<N 
simulations or MMEn. 

Among other aspects discussed here, this 
assumption depends also on the sensitivity of 
the models in the area of study and the para-
meter used. This particular area showed low 
sensitivity (in particular to precipitation) when 
the skill of individual models were compu-
ted (Fig. 2). Moreover the region also shows 
no clear and consistent trend in precipitation 
means during the projected 21st century cli-
mate (Maldonado & Alfaro 2011, Hidalgo & 
Alfaro 2012), although it does show an evident 
warming tendency (Hidalgo & Alfaro 2012). 
Studies in other regions may provide more 
information regarding the size of the ensembles 
needed in other cases.

CONCLUSION

The inclusion of models in the multi-model 
ensemble based on their rank of reproducing 
20th century climate showed great variability 
depending on which type of metrics were used 
to determine their rank. For the precipita-
tion variable, ranks based on precipitation and 
temperature metrics (solid curve of top panel 
of Figure 4) showed that inclusion of models 
reach a maximum skill (lowest DSS/DSSmax) at 
around 7 models. When the models are introdu-
ced at random we found that around that same 
number of models the maximum skill is found. 
Therefore it seems that the inclusion of around 
7 models out of 30 is the optimum number of 
models to produce an ensemble if the ranks are 
based on precipitation and temperature metrics. 
Note that it is not suggested that the 7 models 
culled according to their rank or selected at 
random have the same absolute skill; it only 

means that beyond 7 models there is not much 
change in the skill (or actually there is a degra-
dation of the skill caused by models that do not 
contribute to improve the overall skill of the 
MMEn). If we use temperature metrics to deter-
mine the rank of the models for the precipitation 
variable (dark dash dotted line of top Figure 4), 
the maximum skill is found at the MMEN. It is 
difficult to interpret what this means in terms of 
the distribution of the skill of the MMEn. For 
the temperature variable, if we use precipitation 
and temperature metrics (solid curves of bottom 
Figure 4), when we reach 7 models there is a 
point of maximum skill (lowest ΔSS/ΔSSmax) 
and then the skill changes slightly until the 30 
models are introduced in the MMEN. This is the 
same than the 7 randomly selected models that 
can be combined to reach the plateau in skill in 
Figure 6. When the precipitation patterns are 
used to determine the ranks of the models to be 
used to compute the skill for the temperature 
variable, the maximum skill is reach at around 
21 models (light dashed line of bottom Figure 
4). It can be concluded from all this that in 
general there is an optimum number of models/
simulations to be used in the ensemble and that 
number could be significantly lower than the 
total number of models/simulations. However, 
finding this optimum number is difficult as it 
is heavily dependent on how the models are 
introduced into the multi-model ensemble and 
on the type of metrics used. This however, does 
not guarantee that the climate change patterns 
produced by the MMEn are similar to the pat-
terns produced by the MMEN as this has to be 
determined in a separate analysis.
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RESUMEN

Se emplearon dos métodos para escoger un subcon-
junto a partir de treinta simulaciones de Modelos de Circu-
lación General. El primer método se basó en la habilidad 
de cada uno de los modelos en reproducir el clima del siglo 
xx y el segundo en un muestreo aleatorio. Se encontró que 
el primero de ellos es muy sensible al tipo y métrica usada 
para categorizar los modelos, lo que no arrojó resultados 
robustos bajo estas condiciones. En general, la inclusión 
de más modelos en el agrupamiento de multi-modelos 
ordenados de acuerdo a su destreza en reproducir el clima 
del siglo xx, resultó en un aumento en la destreza del agru-
pamiento de multi-modelos hasta cierto punto, y luego la 
inclusión de más modelos/simulaciones degrada la destreza 
del agrupamiento de multi-modelos. De manera similar, en 
la inclusión de modelos de forma aleatoria, existe un punto 
en que agregar más modelos no cambia significativamente 
la destreza del agrupamiento de muti-modelos. Para el 
caso de la precipitación, el subconjunto de modelos que 
produce la máxima destreza en reproducir el clima del 
siglo xx también mostró alguna destreza en reproducir 
las proyecciones de cambio climático del agrupamiento de 
multi-modelos para todas las simulaciones. Para tempera-
tura, más modelos/simulaciones son necesarios para ser 
incluidos en el agrupamiento (con la consecuente disminu-
ción en la destreza para reproducir el clima del siglo xx). 
Para precipitación y temperatura, el uso de 7 simulaciones 
de 30 posibles resultó en el punto de máxima destreza para 
ambos métodos de inclusión de modelos. 

Palabras Clave: Corredor del Pacífico Tropical del Este, 
Modelos de Circulación General, Cambio Climático, Pre-
cipitación, Temperatura superficial del aire. 
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