Fauna de acompañamiento del camarón en el Pacífico de Costa Rica

Jorge A. Campos Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) y Escuela de Biología, Universidad de Costa Rica.

(Recibido: 12 de agosto de 1985)

Abstract: Discarded shrimp by-catch in Costa Rican Pacific waters was studied from samples collected on board commercial boats by trained observers. Four hundred and seventeen samples yielded a total weight of 7.32 metric tons. Two hundred and twenty one fish species were identified, none very abundant. The 50 more abundant species represented only 44% of the total discarded by-catch. Using ratios of the weight of the species discarded to the weight of the shrimp caught by sample, tow or fishing trip, the discarded shrimp by-catch was estimated to be as high as 6000 metric tons per year. A probable averague value is 4500 metric tons. Chemical analyses indicated that there is little variation in the protein and fat contents of these species.

El problema de fauna de acompañamiento descartada no se limita a las pesquerías de camarón. La misma situación se da con pesquerías demersales donde se descarta una variedad de especies que no tienen interés comercial (Saila, 1983). Lo mismo es cierto en la pesquería de atún, donde los delfines representan una captura incidental. En cualquier caso, existe la preocupación del qué hacer con la fauna de acompañamiento, especialmente en los casos donde está formada por especies de poco valor comercial, pero que pueden representar un porcentaje alto de la captura. En Costa Rica, la fauna de acompañamiento del camarón que es conservada está compuesta por todas aquellas especies que pueden ser comercializadas. La fauna descartada está compuesta por especies de poco o ningún valor comercial y por juveniles (de escasa talla) de especies que al crecer son utilizadas comercialmente (Campos, 1983a; 1983b), Campos (1983b) estimó el volumen de la fauna descartada por la flota camaronera de Costa Rica en cerca de 4.000 T.M. por año, y propuso estudiar una posible estacionalidad en la abundancia de los recursos. El presente trabajo comprende un año de muestreos en la costa Pacífica de Costa Rica. Se espera que los resultados puedan ser utilizados para confirmar los volúmenes que se descartan anualmente y que la metodología utilizada puede servir de modelo para establecer un sistema de monitoreo de tal fauna.

MATERIAL Y METODOS

El trabajo de campo se llevó a cabo durante 11 meses, a partir de octubre de 1983. Se completó 18 viajes de pesca cubriendo casi toda la costa Pacífica (Fig. 1). En cada viaje se muestrearon de 8 a 11 "lances" y de cada uno se recolectaron 3 muestras de la captura total por dos asistentes a bordo de embarcaciones camaroneras tipo Golfo de México. El total de muestras analizadas fue de 417 con un peso de 7,32 TM. Las muestras se recolectaron de la captura total del lance utilizando una pala ancha del tipo que convencionalmente se utiliza en barcos camaroneros y llenando una canasta plástica de aproximadamente 40 litros. Las muestras se recolectaron de tres puntos prefijados de la cubierta. El material se pesó y clasificó en las embarcaciones. La fauna descartable se colocó en bolsas agujereadas para asegurar un enfriamiento homogéneo de toda la muestra en la cámara fría del barco o en un tanque con salmuera. El proceso de recolección de muestras a bordo del barco tardó alrededor de una semana. En la mayoría de los casos un barco permanece pescando unas dos semanas, por lo que las muestras permanecieron de 2 a 3 se-

Término popular que indica que se ha completado un proceso de arrastre por un período definido.

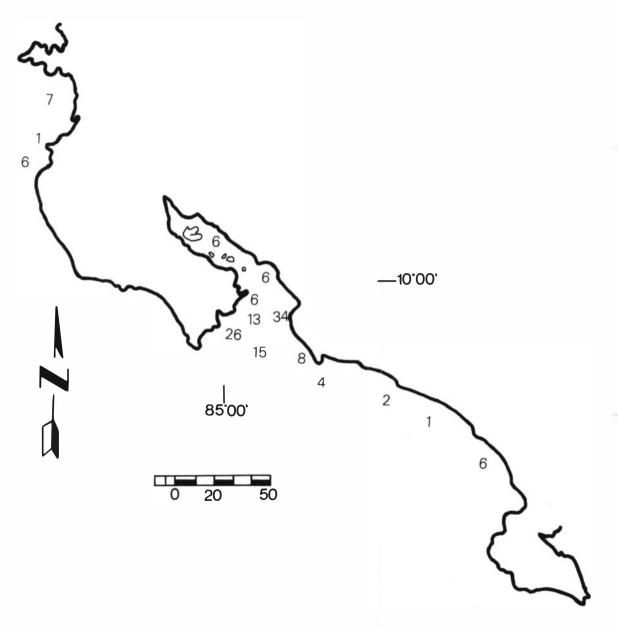


Fig. 1. Localidades de muestreo. Los números indican la cantidad de lances en cada localidad (Costa pacífica de Costa Rica).

manas en el barco o en las cámaras frías de la compañía antes de ser transportadas a los laboratorios de la Universidad de Costa Rica, en donde se le determinó el peso total a cada muestra y en algunos casos se midió los individuos.

La categoría de biomasa indeterminada agrupa los restos de peces e invertebrados que no pudieron ser clasificados debido a su estado de descomposición o porque eran sólo pedazos. De algunas de las especies más abundantes se realizó análisis químico.

Programas de Computador:

El programa analiza las tres muestras de cada arrastre de pesca y un máximo de once lances por viaie. El análisis se basa en el cálculo de la razón que existe entre el peso de una especie de la fauna de acompañamiento y el del camarón conservado de esa muestra. Se ofrecen los siguientes resultados: 1) el peso de la especie por muestra; 2) la razón del peso de la especie sobre el peso del camarón conservado de esa muestra; y 3) la razón del peso de la especie sobre el total del peso de la muestra. Este procedimiento se repite para cada muestra del lance, y para cada lance del viaje. Al final de cada lance se ofrece un resumen por grupos y los mismos cálculos antes descritos pero por grupos y para todo el lance. Después del análisis de todos los lances de un viaje se ofrece un "resumen final" donde aparecen todas las especies (o géneros o familias) y grupos capturados.

Finalmente se realiza un análisis igual al descrito anteriormente pero considerando todos los viajes del estudio. Por razones de espacio, los resultados aquí expuestos se basan sólo en este último análisis. Los interesados pueden solicitar los listados de los programas al autor.

Estimación de las razones (R, RC/T):

Las razones se estimaron por dos métodos:

Esta razón sirve para estimar el peso bruto de una especie de acuerdo con el total de camarón capturado por viaje y por lance.

2) R. Sirve para estimar el peso de una especie descartada por medio de un cociente que toma en cuenta el total de la especie sobre el camarón conservado de aquellas muestras en que la especie también estuvo presente. Su estimación es siempre igual o mayor que la anterior y nos ofrece un valor más real si la especie apareció.

Se ofrece además el cálculo de %

T = Peso de la especie

Peso de todas las especies

que es la proporción que una especie representa del total de material capturado.

RESULTADOS Y DISCUSION

En el Cuadro 1 se ofrece una lista de las especies (o géneros o familias) y grupos del estudio.

Es importante aclarar que los grupos "camarón desechado" y "pescado conservado" aparecen en la posición 2 y 3, respectivamente, no porque representen un mayor volumen que el grupo pescado descartado y otros organismos descartados, sino porque para estos dos últimos se detalla la lista de las especies que los conforman y su contribución—en orden descendente—al total del peso de cada uno de estos grupos.

El Cuadro 2 presenta una lista de las 20 especies (o grupos o géneros) de los grupos "pescado descartado" y de "otros organismos descartados" con una mayor contribución al peso total caputrado. Nótese que cuando se consideran los porcentajes acumulados, estas 20 especies contribuyen tan solo un 35,7% al peso total descartado. Aunque no se muestra en el cuadro, si en vez de 20 utilizamos 50 especies, su contribución porcentual al total sería de un 44%. Estos números son típicos de sistemas tropicales con alta diversidad de especies.

Si se considera sólo los grupos "pescado descartado" y "otros organismos descartados" (% total₂ en Cuadro 2), las primeras 10 contribuciones de este cuadro representan más de un 50% de ambos grupos y las primeras 20 un 73.63%. Sobre estas especies debería concentrarse la atención como posibles candidatos para un proceso de industrialización si por heterogeneidad en calidades de pescado fuera necesario reducir el número de especies. Algunos crustáceos (cangrejos de varias especies, alacra-

CUADRO 1

Contribución de las especies (géneros, familia o grupos) encontradas al peso total de la fauna capturada.

No.	Organismos encontrados	N	Peso (kg)	R	R/CT	%
1	Camarón conservado	418	2501840	1.0000	1.0000	0.3418
2	Camarón desechado	354	716982	0.3562	0.2866	0.0979
3	Pescado Conservado	151	554524	0.8674	0.2216	0.0758
4	Aguas malas	106	488042	0.9977	0.1951	0.0667
5	Cangrejos	392	347647	0.1465	0.1390	0.0475
6	Syacium ovale	289	248603	0.1778	0.0994	0.0340
7	Synodus scituliceps	314	244159	0.1721	0.0976	0.0334
8	Squilla	322	204587	0.090	0.0818	0.0279
9	Isopisthus remifer	155	125673	0.1763	0.0502	0.0172
10	Selene peruviana	155	104600	0.1766	0.0418	0.0143
11	Stellifer illecebrosus	134	98600	0.1468	0.0394	0.0135
12	Porichthys nautopaedium	270	91105	0.0702	0.0364	0.0124
13	Biomasa indeterminada	128	88050	0.1224	0.0352	0.0120
14	Diplectrum eumelum	97	77926	0.1279	0.0311	0.0106
15	Peprilus snyderi	80	75680	0.1687	0.0302	0.0103
16	Muraenesox coniceps	52	71890	0.3073	0.0287	0.0098
17	Trichiurus nitens	230	56699	0.0333	0.0227	0.0077
18	Diapterus peruvianus	53	56172	0.4852	0.0225	0.0077
19 20	Calamar Cyclopsetta querna	204 179	53457 49673	0.0598	0.0214	0.0073
21	Diplectrum sp.	178	46765	0.0688	0.0199	0.0068
22	Peprilus sp.	37	42747	0.0561 0.1692	$0.0187 \\ 0.0171$	0.0064 0.0058
23	Synodus evermanni	87	40986	0.1092	0.0171	0.0056
24	Raja velezi	30	38224	0.0730	0.0164	0.0050
25	Cynoscion reticulatus	77	35161	0.0927	0.0133	0.0032
26	Bollmannia	261	34931	0.0223	0.0141	0.0048
27	Prionotus horrens	172	34085	0.0489	0.0136	0.0048
28	Lepophidium prorates	262	31146	0.0192	0.0134	0.0047
29	Bothidae	72	30040	0.0879	0.0120	0.0041
30	Priodonophrys ecuatorialis	72	27788	0.0615	0.0111	0.0038
31	Gastropoda	235	26734	0.0171	0.0107	0.0037
32	Brotula clarkae	165	25022	0.0316	0.0100	0.0034
33	Eucinostomus gracilis	74	24432	0.0569	0.0098	0.0033
34	Cynoscion stolzmanni	53	23134	0.0688	0.0092	0.0032
35	Peprilus medius	68	19660	0.0710	0.0079	0.0027
36	Prionotus sp.	83	19261	0.0342	0.0077	0.0026
37	Stellifer zestocarus	85	18494	0.0568	0.0074	0.0025
38	Micropogonias altipinnis	23	17994	0.3309	0.0072	0.0025
39	Symphurus sp.	110	17888	0.0464	0.0071	0.0024
40	Dyapterus aureolus	68	1695	0.0782	0.0068	0.0023
41	Polydactylus approximans	74	15584	0.0639	0.0062	0.0021
42	Larimus acclivis	104	15345	0.0429	0.0061	0.0021
43	Physiculus rastrelliger	66	15281	0.0180	0.0061	0.0021
44	Sphoeroides annulatus	48	15087 14927	0.1450	0.0060	0.0021 0.0020
45	Stellifer sp.	30		0.1603	0.0060	
46	Pomadas ys panamensis	23	14212	0.1678	0.0057	0.0019
47	Opisthopterus dovii	52	13470	0.0983	0.0054	0.0018
48	Shoeroides sechurae	144	13237	0.0197	0.0053	0.0018
49	Langostino	72 22	12690	0.0134	0.0051	0.0017
50	Zapterix exasperata		12130	0.1048	0.0048	0.0017
51 52	Rajidae Scorpaena russula	2 123	1!350 11126	0.8065 0.0192	0.0045 0.0044	0.0016 0.0015
53	Engyophrys sanctilaurentii	82	10909	0.0192	0.0044	0.0015
54	Lutjanus guttatus	44	10358	0.0219	0.0044	0.0013
55	Symphurus atramentatus	144	9734	0.0086	0.0039	0.0014
56	Neopisthopterus tropicus	86	9620	0.0358	0.0039	0.0013
57	Pronotogrammus eos	99	9490	0.0097	0.0038	0.0013
58	Diplectrum labarum	30	9437	0.0663	0.0038	0.0013
-	F	50	,	0.000	0.0000	0.0015

No.	Organismos encontrados	N	Peso(kg)	R	R/CT	%
59	Symphurus melanurus	82	9317	0.0193	0.0037	0.0013
60	Narcine entemedor	8	8915	0.1354	0.0036	0.0013
61	Syacium latifrons	47	8146	0.0283	0.0033	0.0011
62	Ar gentina aliceae	28	8094	0.0225	0.0032	0.0011
63	Pontinus sierra	59	7341	0.0093	0.0029	0.0010
64	Neobythites stelliferoides	59	7015	0.0090	0.0028	0.0010
65	Carcharhinus velox	2	6648	0.9152	0.0027	0.0009
66	Prionotus stephanophrys	102	6382	0.0115	0.0026	0.0009
67	Stellifer mancorensis	48	6225	0.0343	0.0025	0.0009
68 69	Eucinostomus sp. 1 Citharichthys platophrys	48 19	6006 5716	0.0418 0.0677	0.0024 0.0023	0.0008
70	Lophiodes caulinaris	134	5617	0.0062	0.0023	0.0008
71	Rhinoptera steindachnerii	1	5350	0.3864	0.0022	0.0003
72	Ophichthus	22	5261	0.0233	0.0021	0.0007
73	Dasyatis longus	3	5182	1.4644	0.0021	0.0007
74	Pseudupeneus grandisquamis	23	4954	0.1199	0.0020	0.0007
75	Cetengraulis mysticetus	61	4642	0.0208	0.0019	0.0006
76	Serranus sp.	32	4623	0.0105	0.0018	0.0006
77	Carane vinctus	13	4551	0.1279	0.0018	0.0006
78 79	Caracol con crustáceo	115 79	4432	0.0068	0.0018	0.0006
80	Anchoa sp. Trinectes sp.	22	4299 4256	0.0182 0.0968	0.0017 0.0017	0.0006
81	Selene oerstedii	8	3982	0.0988	0.0017	0.0006 0.0005
82	Zalieutes elater	108	3971	0.0039	0.0016	0.0003
83	Pomadas vs leuciscus	17	3728	0.1723	0.0015	0.0005
84	Chlorophthalmus mento	31	3474	0.0084	0.0014	0.0005
85	Pomadasys macracanthus	16	3443	0.0610	0.0014	0.0005
86	Achirus mazatlanus	39	3389	0.0283	0.0014	0.0005
87	Sphoeroides	6	3269	0.1486	0.0013	0.0004
88	Kathestostoma averruncus	57	3254	0.0044	0.0013	0.0004
89	Sphoeroides furthii	62	3204	0.0260	0.0013	0.0004
90	Eucinostomus sp. 2	31	3107	0.0562	0.0012	0.0004
91 92	Nebris occidentalis	31	2805	0.0204	0.0011	0.0004
92	Raja Centropomus unionensis	1 16	2724 2550	0.7500 0.0985	0.0011 0.0010	0.0004 0.0003
94	Muraenidae	6	2494	0.0405	0.0010	0.0003
95	Cynoscion	20	2409	0.0544	0.0010	0.0003
96	Achirus klunzingeri	12	2344	0.0734	0.0009	0.0003
97	Etropus crossotus	29	2341	0.0356	0.0009	0.0003
.58	Hemanthias peruanus	32	2152	0.0091	0.0009	0.0003
99	Anchoa eigenmannia	15	2026	0.1059	0.0008	0.0003
100	Larimus effulgens	17	2005	0.0512	0.0008	0.0003
101	Sciaenidae	14	1955	0.0358	0.0008	0.0003
102	Caracol vacío	84	1852	0.0039	0.0007	0.0003
103 104	Larimus Pacificus Anchoa naso	16 48	1792 1773	0.0159 0.0096	0.0007 0.0007	0.0002 0.0002
104	Diplectrum rostrum	12	1771	0.0096	0.0007	0.0002
106	Diplectrum euryplectrum	7	1749	0.0259	0.0007	0.0002
107	Larimus argenteus	14	1716	0.0256	0.0007	0.0002
108	Ibacus sp.	21	1676	0.0379	0.0007	0.0002
109	Antennarius	47	1656	0.0091	0.0007	0.0002
110	Stellifer erycymba	6	1542	0.1760	0.0006	0.0002
111	Paralabrax Loro	5	1440	0.0738	0.0006	0.0002
112	Rechias sp. 2	43	1423	0.0046	0.0006	0.0002
113	Epinephelus niveatus	44	1406	0.0061	0.0006	0.0002
114	Sphyraena ensis	13	1390	0.0270	0.0006	0.0002
115	Sphyrna lewini	3	1357 1325	0.2679	0.0005	0.0002
116 117	Bagre pinnimaculatus Hoplunnis pacífica	22	1323	2.2083 0.0068	0.0005 0.0005	0.0002 0.0002
118	Lycengraulis poeyi	13	1231	0.0440	0.0003	0.0002
119	Prionotus birostratus	6	1207	0.0210	0.0005	0.0002
120	Narcine vermiculatus	4	1184	0.3409	0.0005	0.0002
121	Estrellas de mar	28	1145	0.0083	0.0005	0.0002
122	Cynoscion phoxocephalus	10	1142	0.0122	0.0005	0.0002

	Occasiones en contro de c	М	Peso (kg)	R	R/CT	%
No.	Organismos encontrados	M	reso (kg)	K	K/C1	7.0
123	Peristedion barbiger	24	1134	0.0035	0.0005	0.0002
124	Caulalotilus	2	1128	C.0801	0.0005	0.0002
125	Hildebrandia nitens	59	1108	0.0027	0.0004	0.0002
126	Anchoa walkeri	13	1044	0.0178	0.0004	0.0001
127	Merluccius gayi	8	1030	0.0125	0.0004	0.0001
128	Achirus scutum	17	1017	0.0554	0.0004	0.0001
129 130	Sphyrna corona	1 4	1000 920	4.4444	0.0004	0.0001 0.0001
131	Scorpaena Prionotus albirostris	12	920	0.0306 0.0177	0.0004 0.0004	0.0001
132	Peristedion	12	913	0.0059	0.0004	0.0001
133	Hemicaranx leucurus	17	829	0.0117	0.0004	0.0001
134	Anisotremus dovii	2	795	1.1778	0.0003	0.0001
135	Mustelus lunulatus	2	794	0.0652	0.0003	0.0001
136	Rypticus nigripinnis	9	758	0.0760	0.0003	0.0001
137	Hippoglossina tetrophthalmus	34	757	0.0031	0.0003	0.0001
138	Coelorhynchus scaphopsis	7	753	0.0095	0.0003	0.0001
139	Hippoglossina	22	736	0.0033	0.0003	0.0001
140	Arius das ycephalus	2	725	1.3810	0.0003	0.0001
141 142	Anemonas Haemulon maculicauda	11 17	707 692	0.0063 0.0278	0.0003	0.0001 0.0001
142	Scomberomorus	8	685	0.0278	0.0003 0.0003	0.0001
144	Serranidae	17	675	0.0042	0.0003	0.0001
145	Symphurus elongatus	40	651	0.0027	0.0003	0.0001
146	Holothuroidea	2	640	0.1285	0.0003	0.0001
147	Clupeidae	15	629	0.0114	0.0003	0.0001
148	Urotrygon	4	612	0.0562	0.0002	0.0001
149	Ophichthidae	5	609	0.0105	0.0002	0.0001
150	Synchiropus atrilabiatus	26	587	0.0024	0.0002	0.0001
151	Chaetodipterus zonatus	17	576	0.0226	0.0002	0.0001
152	Priodonophrys	3	572 547	0.0365	0.0002	0.0001
153 154	Peristedion crustosum OPhioscion sciera	16 7	541	0.0027 0.0379	0.0002 0.0002	0.0001 0.0001
155	Octopus sp.	15	532	0.0379	0.0002	0.0001
156	Larimus	9	530	0.0162	0.0002	0.0001
157	Scomberomorus sierra	7	503	0.0162	0.0002	0.0001
158	Albula vulpes	1	500	1.1111	0.0002	0.0001
159	Opisthonema libertate	9	487	0.0455	0.0002	0.0001
160	Prionotus gymnostethus	14	460	0.0024	0.0002	0.0001
161	Anchovia macrolepidota	10	456	0.0402	0.0002	0.0001
162	Pseudopriacanthus serrula	25	448	0.0038	0.0002	0.0001
163	Prionotus ruscarius	2	445	0.1032	0.0002	0.0001
164	Anchoa panamensis	5	437	0.0160	0.0002	0.0001
165 166	Eucinostomus argenteus Pluma de mar	10 19	425 420	0.0107	0.0002 0.0002	0.0001
167	Bivalvo vacío	22	419	0.0061 0.0043	0.0002	0.0001 0.0001
168	Anchoa lucida	8	408	0.0043	0.0002	0.0001
169	Eucinostomus	7	391	0.0177	0.0002	0.0001
170	Parapsettus panamensis	2	385	0.0808	0.0002	0.0001
171	Epinephelus acanthistius	8	380	0.0129	0.0002	0.0001
172	Ophioscion	2	374	0.1713	0.0001	0.0001
173	Umbrina galaparus	1	368	0.3271	0.0001	0.0001
174	Carangidae	5	366	0.0126	0.0001	0.0000
175	Ophidiidae	6	361	0.0074	0.0001	0.0000
176	Cloroscombrus orqueta	4	354	0.0389	0.0001	0.0000
177	Urotrygon aspidurus	7	338	0.0513	0.0001	0.0000
178 179	Carcharhinidae Panulirus gracilis	1 6	320 318	0.8533	0.0001	0.0000
180	Azevia panamensis	4	302	0.0515 0.0246	0.0001 0.0001	0.0000 0.0000
181	Bivalvo con molusco	12	300	0.0246	0.0001	0.0000
152	Nisha furthii	1	300	0.0071	0.0001	0.0000
183	Epinephelus multiguttatus	7	297	0.0190	0.0001	0.0000
184	Menticirrhus elongatus	6	295	0.0348	0.0001	0.0000
185	Artidae	7	290	0.0432	0.0001	0.0000
186	Plioteostoma lutipinnis	2	283	0.0445	0.0001	0.0000

No.	Organismos encontrados	М	Peso (kg)	R	R/CT	%
187	Engraulidae	12	283	0.0045	0.0001	0.0000
188	Cynoscion squamipinnis	1	280	0.0685	0.0001	0.0000
189	Erizos de mar	6	279	0.0144	0.0001	0.0000
190	Trinectes fonsecensis	4	277	0.1019	0.0001	0.0000
191	Ophiuroidea	2	271	0.0610	0.0001	0.0000
192 193	Urotrygon mundus Chaetodon humeralis	3 9	245 244	0.0812 0.0294	0.0001 0.0001	0.0000
193	Ophioscion strabo	5	235	0.0294	0.0001	0.0000 0.0000
195	Gadidae	7	225	0.0096	0.0001	0.0000
196	Cynoscion albus	3	214	0.0058	0.0001	0.0000
197	Cirripedios	4	200	0.0065	0.0001	0.0000
198	Myrichthys	1	200	0.0138	0.0001	0.0000
199 200	Stellifer chrysoleuca	2	193 175	0.0952	0.0001	0.0000
200	Urolophus Haemulon	1 1	163	0.1286 0.2415	0.0001 0.0001	0.0000 0.0000
202	Ancylopsetta dendritica	8	157	0.0104	0.0001	0.0000
203	Poliquetos	16	154	0.0027	0.0001	0.0000
204	Raja equatorialis	1	150	0.0367	0.0001	0.0000
205	Elattarchus archidium	3	149	0.0657	0.0001	0.0000
206	Menticirrhus nasus	2	144	0.0546	0.0001	0.0000
207 208	Stellifer oscitans Porichthys sp. 1	2 3	126 120	0.0577 0.0080	0.0001 0.0000	0.0000
208	Syacium	1	119	0.0874	0.0000	0.0000 0.0000
210	Batrachoides boulengeri	6	118	0.0236	0.0000	0.0000
211	Labridae	ĺ	117	0.0215	0.0000	0.0000
212	Trinectes fimbriatus	11	114	0.0045	0.0000	0.0000
213	Bothus constellatus	9	114	0.0016	0.0000	0.0000
214	Selene brevoortii	13	111	0.0025	0.0000	0.0000
215 216	Ophioscion typicus	3	105 100	0.0101 0.0315	0.0000	0.0000
217	Lutjanus Arius troschelii	4	93	0.0313	0.0000 0.0000	0.0000 0.0000
218	Conodon serrifer	4	89	0.0230	0.0000	0.0000
219	Cynoscion albus	i	85	0.0173	0.0000	0.0000
220	Hippoglossina bollmani	4	80	0.0016	0.0000	0.0000
221	Otto scrispi	3	72	0.0076	0.0000	0.0000
222	Lepophidium pardale	4	60	0.0017	0.0000	0.0000
223 224	Gobionellus	4	56 50	0.0099 0.2222	0.0000 0.0000	0.0000
224	Urotrygon asterias Gerres cinereus	2	49	0.0035	0.0000	0.0000 0.0000
227	Baird iella ensifera	3	48	0.0254	0.0000	0.0000
228	Huevo de raya	2	41	0.0060	0.0000	0.0000
229	Pomadas ys axillaris	1	36	0.0071	0.0000	0.0000
230	Porichthys sp. 2	5	35	0.0033	0.0000	0.0000
231	Gobiidae	10	33	0.0012	0.0000	0.0000
232 233	Pomadas ys Balistes pol ylepis	2 1	30 26	0.0052 0.0064	0.0000 0.0000	0.0000 0.0000
234	Citharichthys gilberti	1	18	0.0004	0.0000	0.0000
235	Bregmaceros bathymaster	4	17	0.0007	0.0000	0.0000
236	Porichthys sp. 3	2	17	0.0025	0.0000	0.0000
237	Hopplunnis	1	16	0.0117	0.0000	0.0000
238	Batrachoididae	1	16	0.0070	0.0000	0.0000
239	Porichthys	3	15 14	0.0013	0.0000	0.0000 0.0000
240 241	Rechias sp. 3 Antennarius avalonis	1	14	0.0039 0.0039	0.0000 0.0000	0.0000
242	Microgobius	1	14	0.0055	0.0000	0.0000
243	Urotrygon serrula	2	13	0.0249	0.0000	0.0000
244	Opisthopterus	1	9	0.0036	0.0000	0.0000
245	Diapterus	1	9	0.0018	0.0000	0.0000
246	Syngnathidae	1	8	0.0176	0.0000	0.0000
247	Selene Chlopsis apterus	1	4 4	0.0026 0.0022	0.0000 0.0000	0.0000
248 249	Gobiesocidae	1 1	4	0.0022	0.0000	0.0000 0.0000
250	Epinephelus sp.	1	2	0.000	0.0000	0.0000
		•	_			2.3000

Resumen por grupos

GRUPO	N	Peso	R	RGT	%
Camarón conservado ¹	418	2501840	1.0000	1.0000	0.3418
Camarón descartado ²	354	716982	0.3562	0.2866	0.0979
Pescado conservado ³	151	554524	0.8674	0.2216	0.0758
Pescado descartado4	411	2312152	0.9343	0.9242	0.3159
Otros organismos					
conservados ⁵	208	53989	0.0576	0.0216	0.0074
Otros organismos					
descartados ⁶	412	1180604	0.4769	0.4719	0.1613
TOTAL	418	7320091		2.9259	1.0000

¹ Camcon, 2 Camdes, 3 Pescon, 4 Pesdes, 5 Otcon, 6 Otrode

CUADRO 2

Lista de taxa con mayor contribución al totel de peso capturado (7.320 kg). Total, refleja el aporte porcentual acumulado. Para calcular %total, se utilizó el peso del 'pescado descartado'' y de "otros organismos descartados".

ESPECIE	Peso (gr)	Peso acumulado	%Total,	%Total₂
Aguas malas	488.000	488.000	5.55	17.97
Congrejos	347.600			
S. ovale	248.600			
S. scituliceps	244.200			
Squila	204.600	1.533.000	21	43.88
1. remifer	125.700			
S. peruviana	104.600			
S. illecebrosus	98.600			
P. nautopaedium	91.110	1.953.010	26	55.91
Biomasa indeterminada	88.050			
D. eumelum	77.930			
P. snyderi	75.680			
M. coniceps	71.890			
T. nitens	56.700	2.323.260	32	66.51
D. peruvianus	56.170			
Calamar	53.460			
C. querna	49.620			
Diplectrum	46.770			
Prepilus	42.750			
S. evermanni	40.990	2.613.070	35.7	73.63

CUADRO 3.

Resumen de la información por grupos del peso de la fauna conservada y descartada

GRUPO	N	Peso (gr)	Razón (R)	Coef.	Lmite inf	Lmite sup	RC/T	%Т
Camarón conservado	417	.2502E+07	1.0000	3.9560	1814	6474	1.0000	0.3418
Camarón descartado	354	.7170E+06	0.3562	5.1974		2235	0.2866	0.0979
Pescado conservado	151	.5545E+06	0.8674	5.9313		4107	0.2216	0.0758
Pescado descartado	411	.2312E+07	0.9343	2.3511		314	0.9242	0.3159
Otros organismos conservados	208	.5399E+05	0.0578	9.3328		292	0.0216	0.0074
Otros organismos descartados	412	.1181E+07	0.4769	6.4177		829	0.4719	0.1613

Totales 7320091.0

nes de mar del género *Squila*) y moluscos (calamares) también se encuentran entre los 20 más importantes.

El total de producto descartado es 1.35 veces superior al total de producto conservado (Cuadro 3), esto es 4210 kgrs en comparación con 3110 kgrs. De los 6 grupos que aparecen en este cuadro, "pescado descartado" es el que presenta un mayor volumen de los grupos que constituyen la fauna descartada. Le siguen en importancia "otros organismos descartados" y "camarón descartado".

Los cocientes R y RC/T nos confirman lo anterior. El "pescado conservado" es el único que presenta una diferencia considerable entre ambos cocientes. Esto se debe a la forma en que cada cociente es calculado y nos indica que si se considera todo un viaje, el pescado conservado puede no representar un alto volumen relativo al de otros productos capturados. Sin embargo, en algunos lances puede ser abundante como lo indica el valor de 0.8674 en la columna "Razón" (R). El pescado descartado y el camarón descartado son los grupos que pueden presentar un mayor potencial para su utilización por su homogeneidad relativa pues la categoría de otros organismos descartados incluye una variedad de invertebrados como calamares, pulpos, caracoles vacíos y con organismos adentro (crustáceos y moluscos), celenterados (anémonas, plumas de mar) y otros que podrían dificultar su industrialización.

El Cuadro 4 presenta los cálculos del volumen que se descarta de cada uno de los grupos antes mencionados. El valor de camarón desembarcado por viaje de pesca de 1735 kg se estimó con base en los informes de los barcos y en los suministrados por la Compañía Talmana, S.A. Utilizando cualquiera de los dos cocientes y considerando todos los tipos de pesca se puede esperar un volumen de fauna descartada que oscila entre 3087 y 3243 kilos, por viaje.

Con base en una producción de camarón en el período agosto 1983 y agosto 1984 (toma de muestras) de 1.325.614 kg suministrado por el Departamento de Pesca del Ministerio de Agricultura y Ganadería se calculó un total de fauna descartada que va de 2.227.149 kg (RCT = 16822) a 2.229.949 kg (R = 1.7674). Ambos resultados son similares e indican un valor cercano a las 2229 toneladas métricas anuales. Un estimado que se acerca más a un potencial utilizable se obtiene usando los valores R/CT y R solo de CAMDES y PESDES.

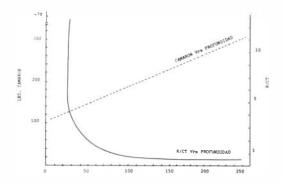


Fig. 2. Relación entre la captura de camarón por lance y el cociente R/CT con respecto a la profundidad. La línea de puntos representa la relación camarón Vrs. profundidad. La línea continua la relación

Siguiendo este criterio la estimación de fauna descartada va de 1.603 a 1.708 toneladas métricas anuales. Un componente de OTRODES como los crustáceos y los moluscos puede aprovecharse también por lo que la cifra antes mencionada sería mayor.

Las estimaciones ofrecidas son un promedio anual para todos los viajes por lo que de alguna forma se compensa la variación estacional en la producción y según la profundidad.

La figura 2 muestra una relación inversamente proporcional entre la captura de camarón por lance con respecto a la profundidad y el valor del cociente R/CT. Lo que esta relación indica es que al aumentar la profundidad, el volumen de fauna descartada disminuye.

Es de esperar que la pesca del camarón blanco, rosado y pequeño que se hace en aguas menos profundas contribuya con la mayoría de la fauna descartada que pueda ser aprovechada.

Según se ilustra en el cuadro 5 los cocientes R/CT toman valores que van desde 0,52 hasta 11.7. Esto quiere decir que según la profundidad de pesca se pueden obtener volúmenes de fauna descartada desde 954 hasta 21.470 kg por via je de pesca.

En profundidades de 20 a 35 metros (zona 1) el esfuerzo de pesca se dedica a la pesca de camarón blanco y titi y los cocientes R/CT y R van de 7.47 a 11.75. A estas profundidades también se pesca camarón rosado y café en pequeñas cantidades. En profundidades de 40-90 metros (Zona II) el esfuerzo de pesca se dedica a la extracción de camarón rosado, aunque también aparece camarón blanco y tití. Los cocientes R/CT y R tienen valores promedio desde

CUADRO 4. Cálculos de la fauna descartada en kilogramos por viaje de pesca utilizando los cocientes RCT y R (ver texto) y con un valor promedio de camarón desembarcado por viaje de pesca de 1835 kg.

	RCT	Descartado	R	Descartado
Pescado descartado	0.9242	1696	0.9343	1714.44
Otros organismos descartados	0.472	866.12	0.4769	875.11
Camarón descartado	0.286	524.81	0.3562	653.63
TOTAL	1.6822	3087	1.7674	3243

CUADRO 5.

Valores de los cocientes R/CT y R según la profundidad de pesca

Prof	28	35	35	38	41	46	52	54	67	67	83	106	160	166	238	266
R/CT	8.49	9.79	11.7	0.75	1.65	2.17	1.72	1.81	2.18	1.78	1.65	0.77	0.52	0.70	0.57	7.83
R	8.5	9.79	11.7	0.68	1.72	2.2	1.73	2.08	2.18	1.83	1.69	0.78	0.79	0.70	0.58	

Estimaciones del promedio de fauna descartada para los grupos PESDES, CAMDES Y OTRODES por profundidad de pesca utilizando los cocientes RCT y R. El camarón desembarcado corresponde a los desembarques de agosto de 1983 a

CUADRO 6.

julio de 1984, según datos del Departamento de Pesca del Ministerio de Agricultura y Ganadería

Zona	Prof. metros	R/CT	Camarón desembarcado	Faca desc. kg.	R	Faca desc. kg.	x
I	26.6	7.88	627894	4947804	7.83	4916410	
	27.8	8.49		5330820	8.49	5330820	
	35.0	9.79		6147082	9.79	6147082	
	35.5	11.75		7377755	11.75	7377755	
$\overline{\mathbf{x}}$				5950865		5943017	5946941
11	41	1.64	667332	1094424	1.72	1147811	
	47	2.17		1448110	2.2	1468130	
	52	1.72		1147811	1.73	1154484	
	54	1.81		1207871	2.08	1388051	
	66	1.78		1887851	1.83	1221218	
	67	2.18		1454783	2.18	1454784	
	83	1.65		1101098	1.69	1127791	
\bar{x}				1234564		1280324	1257444
111	106	0.77	330182	254240	0.78	257542	
	160	0.52		171695	0.79	260844	
	166	0.70		231127	0.70	231127	
	238	0.57		188204	0.58	191506	
$\bar{\mathbf{x}}$				211317		235255	268286
				TOTAL			7472671 kg.

CUADRO 7.

Estimación del promedio de fauna descartada por profundidad de pesca para los grupos PESDES y CAMDES utilizando los cocientes RCT y R. El camarón desembarcado corresponde a los desembarques de agosto de 1983 a julio de 1984 según datos del Departamento de Pesca del Ministerio de Agricultura y Ganadería.

Zona	Prof. metros	Camarón de- sembarcado	RCT	Faca desc. Kg	R	Faca desc. Kg	$\bar{\mathbf{x}}$
I	26.6	627894	6.13	3848990	6.15	3861548	
	27.8		27.79	4891294	7.79	4891294	
	35.0		7.64	4797110	7.64	4797110	
	35.5		10.16	6379403	10.19	6398240	
$\overline{\mathbf{x}}$				4979199		4987048	4983124
11	41	667332	0.979	653318	1.012	675340	
	47		1.21	807472	1.24	827492	
	52		0.718	479144	0.72	480479	
	54		1.44	960958	1.705	1137801	
	66		1.462	975639	1.513	1009673	
	67		1.815	1211208	1.815	1211208	
	83		1.498	999663	1.498	999663	
$\overline{\mathbf{x}}$				869629		905951	887790
111	106	330182	0.583	192496	0.583	192496	
	160		0.381	125799	0.652	215279	
	166		0.45	148582	0.45	149582	
	238		0.352	116224	0.362	119526	
$\bar{\mathbf{x}}$				145775		169221	157498
				TOTAL		•••••	6028412 kg

CUADRO 8

Cálculos de camarón descartado durante el período de estudio

	Camarón desembarcado	RCT	Camarón desc.	R	Camarón desc.
25-40 m	627894	1.805	1133349	1.82	1142767
41 - 85 m	667332	0.3382	225692	0.4182	279078
100-250 m	330182	0.0846	29933	0.1178	38895
TOTAL			1388974 kg		1460740 kg

1.64 hasta 2.18. Cuando se pesca camarón fidel a profundidades de 50 a 100 m (Zona III) los cocientes R/CT y R tienen valores desde 0.52 hasta 0.79. Con base en estos datos y en los volúmenes de captura de los desembarques de camarón, se calculó la fauna descartada para cada zona (I, II, III) y de acuerdo a la profundidad de pesca (Campos 1983a) (Cuadros 6 y 7).

Con base en estos cálculos se podría esperar una producción máxima de 6000 toneladas métricas por año. El mínimo esperado es de 1603 a 1708 T.M. por año. Un valor de 4000 a 4500 T.M. debería ser un promedio anual cercano a lo que realmente se descarta por año.

Es posible que se de alguna variación estacional en la cantidad de fauna descartada y Cam-

CUADRO 9

Análisis químico del contenido porcentual de humedad, proteína, grasa, ceniza, fosfatos y calcio de algunas de las especies más abundantes encontradas en el estudio

	Parámetros analizados (%)					
	Humedad	Proteína	Grasa	Ceniza	Fosfato	Calcio
Pronotogramos eos	75.2	16.0	2.4	5.5	2.7	-
Symphurus atramentatus	82.8	13.9	0.9	2.3	1.2	1.0
Opthischthus sp.	66.4	12.2	18.4-	2.4	1.0	1.0
Lepophidium prorates	78.4	17.5	1.7	5.0	2.3	1.8
Diplectrum eumulum	73.5	16.8	5.2	4.6	1.7	1.6
Synodus scituliceps	74.9	18.9	0.5	5.1	2.4	1.8
Bollmania sp.	80.4	13.6	0.9	4.1	1.6	1.3
Micropogonias altipinnis	77	17.2	0.5	5.7	2.5	2.0
Trichiurus nitens	78.7	13.4	5.0	2.4	1.0	1.0
l'sopisthus remifer	76.5	16.9	1.6	4.5	1.6	.13
Prepilus sp.	72.3	16.5	7.7	3.0	1.2	0.7
Brotula clarkae	79.5	15.1	0.2	4.8	1.4	0.9
Cetengraulis mysticetus	76.2	13.2	4.9	5.0	2.2	1.8
Syacium ovale	79.5	16.4	0.5	4.0	1.5	1.5
Stellifer illecebrosus	74.6	17.3	2.8	4.9	2.1	1.6
Prionotus horrens	76.8	16.1	1.0	5.8	3.0	1.8
Camarón	81.1	11.6	0.7	4.5	1.0	1.7
Cangrejo	79.4	7.9	0.5	6.1	1.8	2.9
Squila	79.4	10.0	0.5	6.1	1.8	2.9

pos (183a) expone algunas consideraciones sobre la variación del recurso mismo. Sin embargo es muy probable que el factor que determina el volumen de producción de fauna de acompañamiento descartada sea la profundidad de pesca. Cuando se pesca el camarón blanco y tití en aguas someras, debería esperarse una mayor producción seguido por el pico en la pesca de camarón rosado y café.

El camarón descartado de la fauna de acompañamiento es del orden de las 1.400 toneladas métricas (Cuadro 8). Esta cifra es apenas un poco menor al total de camarón desembarcado comercialmente para el período de estudio, que es de 1.600 toneladas métricas. Este camarón descartado podría conservarse e industrializarse para concentrados animales para lograr un producto altamente proteínico y probablemente con mucha demanda en mercados como el de la maricultura y acuacultura.

Si se quisiera lograr una estimación más exacta de la fauna descartada es conveniente utilizar los cocientes R/CT y R calculados para los rangos de profundidad de pesca y multiplicarlos por el desembarque de camarón por viaje de pesca. Esta es una forma de considerar la diferencia en diversidad y abundancia de la ictio-

fauna de acompañamiento en los hábitats en que se lleva a cabo la explotación camaronera.

El cuadro 9 muestra los resultados de los análisis químicos realizados para algunas de las especies más abundantes de la fauna de acompañamiento. El contenido de humedad es relativamente homogéneo para todas las especies de peces y de crustáceos que se analizaron. Lo mismo se cumple con el contenido de proteínas con excepción del cangrejo que es más bajo que los demás. El contenido de grasa presenta más variación pero sin grandes diferencias con excepción de *Ophichthis* que es bastante superior.

Un análisis de esta naturaleza puede servir como criterio para determinar cuáles especies pueden ser manejadas en conjunto si se pensara en algún proceso de industrialización. Estos resultados son producto del análisis de una sola muestra y no deben ser considerados como definitivos.

RESUMEN

La fauna de acompañamiento del camarón descartada en el Pacífico de Costa Rica se estudió por medio de observadores en barcos comerciales. Se procesaron 417 muestras que sumaron un peso de 7.32 toneladas métricas. Se identificó un total de 221 especies, ninguna abundante. De éstas 50 constituyen un 44% de fauna descartada. Utilizando cocientes que relacionan la especie descartada con el camarón capturado por muestra (arrastre) se estimó la fauna descartada en 6000 toneladas métricas por año, con un posible promedio de 4500. Existe poca variación en el contenido graso y proteínico de estas especies.

AGRADECIMIENTOS

En este estudio participaron Carlos Gamboa, Bernal Burgos, Adolfo Corrales y Alexis Cruz. Albert Bornemisza (programador) y Raúl Rojas (digitador) invirtieron largas horas asegurándose que los programas funcionaran adecuadamente. Carlos Villalobos ayudó a agilizar los numerosos trámites administrativos para que el proyecto avanzara y clasificó los moluscos. William Bussing y Myrna López prestaron su valioso tiempo para la clasificación de toda la ictiofauna. Juan Bautista Chavarría criticó y corrigió una versión preliminar. Finalmente, agradezco la ayuda de Norma Bermúdez, el CIMAR; Vicerrectoría de Investigación, CONICIT y la Compañía Talmana.

REFERENCIAS

- Campos, J. 1983a. Estudio sobre la fauna de acompañamiento del camarón en Costa Rica. Rev. Biol. Trop., 31: 291-296.
- Campos, J. 1983b. Talla de los peces descartados de la fauna de acompañamiento del camarón como un indicador de su posible utilización. Rev. Biol. Trop., 31: 209-212.
- Saila, S. B. 1983. Importance and Assessment of Discards in Commercial Fisheries. FAO Fisheries Circular No. 765. FIRM/C765.