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Abstract

Unsupervised learning techniques are employed to study the relationship be-
tween atmospheric circulation and precipitation over Central America and
its surrounding areas. Specifically, the clustering algorithm k-means++ is
applied to three coarse-grained datasets from ERA-interim reanalysis that
are the candidates for representing the atmospheric state vector, each candi-
date contains its full temporal variability. Datasets are composed of: a) wind
fields at 925, 800 and 200 hPa, b) same as “a)” plus convective available po-
tential energy and c) same as “a)” plus total column water vapor. Clustering
metrics, namely the variance ratio criterion, the silhouette criterion and the
mean squared error, are computed to quantify clustering quality. Clusters
are interpreted as weather types, recurrent configurations of the atmospheric
state vector associated with observable weather states. The correct number
of clusters for each dataset is determined with a Monte Carlo test of nor-
mality, to assure cluster existence. The main objective is to obtain a set
of weather types containing elements that characterize the transition from
and to the rainy season over the Pacific side of Central America as well as
other elements of the seasonal cycle of regional precipitation, such as the
Mid-Summer Drought. Besides the statistical metrics, in order to select be-
tween candidate datasets and plausible number of clusters, focus is given
to the temporal characteristics of the clusters. Existing literature does not
provide a set of weather types suitable to analyze seasonal transitions and
the differences in the mechanisms associated with rainfall maxima.

Keywords: Central America; precipitation; weather types; cluster analysis; seasonal cli-
mate variability.

Resumen

Técnicas de aprendizaje no supervisado se emplean para estudiar la relación
entre la circulación atmosférica y la precipitación sobre América Central
y sus áreas circundantes. Espećıficamente, el algoritmo de agrupamiento
k-means++ se aplica a tres conjuntos de datos de baja resolución del re-
análisis ERA-interim, estos son candidatos a representar el vector de estado
atmosférico y cada uno contiene su variabilidad temporal completa. Los
conjuntos de datos probados son: a) campos de viento a 925, 800 y 200
hPa, b) lo mismo que “a)” más la enerǵıa potencial convectiva disponible y
c) lo mismo que “a)” más el vapor de agua en la columna total. Se calcu-
lan métricas de agrupamiento, a saber, el criterio de relación de varianza,
el criterio de silueta y el error cuadrático medio, para cuantificar la calidad
del agrupamiento. Los grupos se interpretan como weather types, configu-
raciones recurrentes del vector de estado atmosférico asociadas con estados
observables del tiempo atmosférico. El número correcto de grupos para cada
conjunto de datos se determina con una prueba de normalidad de Monte
Carlo para asegurar la existencia de grupos reales. El objetivo principal es
obtener un conjunto de weather types que contengan elementos que carac-
tericen la transición de y hacia la temporada de lluvias en la vertiente del
Paćıfico de América Central, aśı como otros elementos del ciclo estacional de
precipitación regional, como las cańıculas. Además de las métricas estad́ıs-
ticas, para seleccionar entre conjuntos de datos y un número plausible de
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grupos, se presta atención a las caracteŕısticas temporales de los grupos. La
literatura existente no proporciona un conjunto de weather types adecuado
para analizar transiciones estacionales y las diferencias en los mecanismos
asociados con los máximos estacionales de lluvia.

Palabras clave: América Central; precipitación; tipos de tiempo atmosférico; análisis de

conglomerados; variabilidad climática estacional.

Mathematics Subject Classification: Primary: 62H30; secondary: 86A10, 86-08.

1 Introduction

Precipitation is a crucial climatic factor in Central America (CA) because it di-
rectly affects the availability of water resources. Its variability significantly in-
fluences agricultural productivity, hydroelectric power generation, and freshwater
availability for human consumption [40] [34]. Therefore, understanding the spa-
tial and temporal variability of precipitation, which entails explaining its modu-
lation by surrounding physical mechanisms, is essential for assessing and manag-
ing the impacts of climate variability and change on the region’s water resources
and ecosystems.

In general, the temporal variability of precipitation is characterized by vari-
ations across a continuous spectrum of time scales: from short-term variations
(hours to days) to long-term trends (decades to centuries). According to [47],
interannual climate variability in CA is mostly driven by El Niño-Southern Os-
cillation (ENSO) [77], the Atlantic Multidecadal Oscillation (AMO) [20] [24] and
the Pacific Decadal Oscillation (PDO) [82]. On shorter time scales, the seasonal
latitudinal migration of the solar radiation geographical maximum produces sea-
sonal variations in the Sea Surface Temperature (SST) and these are related to
variations in the regional atmospheric circulation and precipitation. These varia-
tions in the amount of rainfall that occur throughout the year are known as the
seasonal cycle of precipitation. In general, it is one of the most relevant modes of
the variability of precipitation within the tropics (ranging from 23.5°S to 23.5°N).
In CA, the amount of rainfall can vary greatly depending on the season, with
some seasons being characterized by heavy precipitation and others by dry condi-
tions. These variations regulate agricultural practices and other socio-economic
activities [37] [49] [40] [3]. For detailed reviews on the climate variability in
CA see [4] [7] [47] [22].

The seasonal cycles of precipitation within the tropics are tightly connected
with the seasonal variations of the atmospheric circulation [80] [10]. The atmos-
pheric circulation transports water vapor and over oceanic surfaces may also en-
hance evaporation. These processes determine moisture availability and its vertical
transport, both necessary conditions for precipitation to occur [11] [59]. Neverthe-
less, moisture arrangements that allow for organized convection to occur, in turn
affect upper and lower tropospheric circulation patterns [72] [52] [51] [14].
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The connection between the seasonal cycles of precipitation and lower tropo-
spheric circulation over the tropical areas is known as the Global Monsoon [80]
[77] [28] and is modulated by the heating gradients due to the unevenness of
the solar radiation and its seasonal march. According to [28], the Global Mon-
soon is composed of the regional migrations of the Intertropical Convergence Zone
(ITCZ), a belt of moist air and precipitation that converges within the larger
circulation pattern of the tropics, known as the tropical atmospheric overturning
circulation. However, [76] has pointed out that there are conceptual divergences
pointing to underlying physical processes between these terms. For comprehen-
sive analyses and technical details on the seasonal cycle of precipitation in the
tropics see [10] and [50], while its relationships with the atmospheric circulation
are addressed by [80].

The spatial variability of precipitation over this region is partly modulated by
the mountain chain that crosses the isthmus from Northwest to Southeast defin-
ing two drainage basins, namely: the Pacific and Caribbean slopes [74] [57] [47]
[57] [48]. A data-driven analysis through the application of Principal Component
Analysis (PCA) [81] [19] to monthly precipitation series by [1] has shown that most
of the spatial variability (80%) is accounted for by two regimes: one characteristic
of the Pacific basin (72%) and the other of the Caribbean basin (8%).

The Pacific slopes are characterized by a marked contrast between wet and dry
seasons. The wet season lasts from May to November-December with maximums
during June and September and a relative minimum during July-August known
as the Mid-Summer Drought (MSD) [46] [26]. Furthermore, the physical mech-
anisms responsible for these maxima differ [50] due to differences in large scale
atmospheric stability and also to the energy exchanges at the ocean-atmosphere
interface that are related with spatial variations of the sea-surface temperature
(SST) [68]. This variability regime is tightly connected to the Global Monsoon or
seasonal migrations of the ITCZ [80].

Over the Caribbean slopes, rainy conditions prevail throughout the year with
mild seasonality featuring maxima during July and November, a minimum in
March, as in the Pacific slope, and a Mid Autumn Decrease (MAD) in September-
October [2]. This region, especially its areas in Costa Rica and Nicaragua, is
subject to the direct impact of an intermittent east to west (easterly) flow located
over the Caribbean Sea known as the Caribbean Low-Level Jet (CLLJ) [5] [6].

The CLLJ is vertically located between 925 and 700 hPa with a mean intensity
that ranges from 12 to 14 m/s [27] and acts as moisture conveyor belt to CA
from the Caribbean Sea, which is its main moisture source [21] [54]. According to
[6], its seasonal cycle has its absolute (relative) maximum during July (January)
and its absolute (relative) minimum during October (March). Periods of intense
CLLJ favor mechanically forced convection over the Caribbean basin while favoring
stable conditions (if present) over the Pacific slopes. On monthly time scales,
the intensity of the CLLJ is negatively related with latitudinal center of mass of
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the ITCZ [35] affecting precipitation over the Pacific slopes. Furthermore, [26]
found that the CLLJ boreal summer maximum is the main factor modulating the
MSD. On interannual time scales, variations in CLLJ intensity, ENSO phase and
precipitation anomalies are intertwined [6] [35].

Summing up, spatiotemporal patterns of SST, atmospheric circulation and
precipitation interact in complex manners. These interactions are also modified by
the topographic features of this region. Hence, it is key to identify and understand
the regional scale covariability between these fields.

One way to describe the regional atmospheric circulation, its temporal vari-
ability and its relationships with other climate variables is by defining a set, or
sets, of weather types that occur daily and are connected with changes in the
spatial distributions of related variables [83] [9]. These weather types are recur-
rent configurations of the atmospheric state vector (X) associated with observable
weather states. Statistically speaking, they may be viewed as cluttered regions of
the atmospheric phase space or deviations from normality (multimodality) in the
X multivariate probability density function (PDF)[15].

This work is concerned with finding a representation of Xd with its full tem-
poral variability, that when partitioned, contains real clusters (weather types)
characterized by seasonal cycles that help explain relevant features of the seasonal
variability of precipitation in CA. Clusters representing features of key importance
such as the seasonal transitions from dry to wet seasons and vice versa, the distinct
physical mechanisms behind the annual maxima of precipitation over the Pacific
slopes [50] and the MSD, are expected.

The clustering procedure is based on the k-means++ algorithm [45] [44] [8],
which is recursively applied to a set of 3 approximations to Xd. This procedure
uses a Monte Carlo test for the normality of each Xd by also clustering surro-
gate datasets with their same temporal characteristics but drawn from Normal
distributions [15]. Here the existence of clusters (weather types) will be assessed
in conjunction with their relationships with precipitation variability. Specifically,
their adequacy to describe the above-mentioned characteristics of the seasonal
cycle of precipitation. Previous work [71] did not find any weather type character-
istic for the dry to wet seasonal transitions neither a different weather type for the
two rainfall maxima on the Pacific Slope, hence in this work additional variables
and different normalization procedures are tested to see if those features can be
identified in the new clustering output.

The implementation of circulation/weather types-based classifications has
proven to be effective in analyzing atmospheric circulation in tropical Americas,
revealing circulation patterns that exhibit significant seasonality. This has been
demonstrated in studies by [13], [55], [70], [30], [61] and [71]. Table 2, located
in Appendix A, summarizes the previous works applying clustering algorithms to
dynamic variables in the Intra-Americas Seas.
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This paper follows with a description of the datasets used for this research on
section 2.1. Section 2.2 presents the methods used for defining the best approxima-
tion to the daily atmospheric state vector and its correct partitioning, computing
the seasonal characteristics of the occurrence of the obtained clusters, and assessing
the statistical significance of the cluster-conditioned atmospheric fields. In section
3 the results are presented, and these are discussed in section 4. The concluding
remarks are presented in section 5.

2 Data and methods

2.1 Data

The representations of Xd studied in this work were composed of data extracted
from the European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-Interim reanalysis [18]. This dataset provides a high-quality, comprehensive
representation of the Earth’s atmosphere from 1979 to 2019, with a native hori-
zontal resolution of 0.75◦ (approximately 80 km at the equator) and 60 vertical
levels. This reanalysis incorporates data from various sources, including satellite
and ground-based observations, which are physically balanced by the output from
numerical weather prediction models. For this work we used wind fields at 200, 800
and 925 hPa, Convective Available Potential Energy (CAPE) and Total Column
Water Vapour (TCWV).

The variable CAPE is the vertically integrated positive buoyancy of an atmos-
pheric parcel ascending adiabatically 1 from the atmospheric level where buoy-
ancy becomes positive to the level where buoyancy becomes neutral [36]. Hence,
CAPE is related to the atmospheric updraft speed, and it is computed with the
following equation [78]:

CAPE =
∫ nb

pLFC

Rd

(
Tvp − Tve

)
dlnp, (2.1)

where Rd is the specific gas constant for dry air, Tvp is the virtual temperature 2

(Tv = T(1 + 0.61rv)), where rv is the ratio of the mass of water vapor to the mass
of dry air of the air parcel and Tve is the virtual temperature of the environment.

The variable TCWV is the amount of water present in a vertical atmospheric
column extending from the Earth surface to the top of the atmosphere. In ERA-
interim it is computed from vertically integrating the specific humidity (q), which
is the mass of vapor in a unit of moist air, over the atmospheric column:

TCWV =
∫ ptop

ps

q dp, (2.2)

1In atmospheric physics, parcel theory is an abstraction that enables posing analytically solv-
able models of atmospheric convection. Adiabatic motions refer to motions without heat exchange
between the parcel and its surrounding environment.

2Virtual temperature is a measure of temperature adequate to use dry-air equations with
moist air.
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Figure 1: Study region. The white rectangle is the geographical domain of the cluster-
ing. The black polygon is the Southern Central America (SCA) region from the IPCC
sub-regions [38].

where p is the atmospheric pressure (ps at the surface and ptop at the
top of the atmosphere).

The precipitation estimates were obtained from the Climate Hazards Group In-
fraRed Precipitation with Station (CHIRPS) dataset [25]. This is a global dataset
that provides daily estimates of precipitation from 1981 to the present day, with a
spatial resolution of 0.05◦ (approximately 5 km at the equator) and it is based on
a combination of satellite and ground-based observations, specifically infrared and
microwave sensors, rain gauges, and weather radar. For this study we employed a
version of the CHIRPS dataset with a resolution of 0.25◦, which has been already
evaluated in our study region [73]. The grid points located inside the Southern
Central America (SCA), Intergovernmental Panel for Climate Change (IPCC) sub-
region were selected [38]. For some computations, the dataset was split between
Pacific and Caribbean grid points, derived from the Global Land One-kilometer
Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. [60].

The analysis period ranges from 1981 to 2015, it was chosen because it overlaps
the ERA-interim and the CHIRPS periods with the best quality rain-gauge series
over Central America [67] [71].

The geographical domain for the definition of the weather patterns is shown in
Figure 1. This region allows for the incorporation of the effects of the CLLJ, the
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westerly winds from the eastern tropical Pacific ocean and the circulations forced
during summer by the heating over the Sierra Madre in Mexico
or Monsoon [72] [14].

2.2 Methods

2.2.1 Defining the approximations to Xd

The procedure to determine weather types consists in finding an integer-valued
surrogate variable that represents the affiliation of the daily atmospheric vector
space (Xd) to a partition of Xd space (coarse-graining) [29]. Hence, it poses the
problem of finding a finite set of variables suitable to represent the practically
infinite Xd. Usually, Xd is represented by atmospheric variables of dynamic na-
ture such as daily wind fields at specific vertical levels [13] [70], mean sea-level
pressure [61] or geopotential height fields. Nonetheless, variables reflecting the
thermodynamic state of the study region may also be included [55] [79] [71].

In this work, the best approximation to Xd is selected between a set of 3
combinations of variables that can be purely dynamic: wind fields at lower (925
and 800 hPa) and upper tropospheric levels (200 hPa) or TCWV and CAPE with
daily resolution. In these datasets, we search for the smallest number of clusters
that produce a seasonal distribution adequate to be related with the seasonal
precipitation characteristics described above. The 3 possible representations of Xd
tested in this work were:

1. Wind fields at 200, 800 and 925 hPa.

2. Wind fields at 200, 800 and 925 hPa + CAPE.

3. Wind fields at 200, 800 and 925 hPa + TCWV.

Prior to the coarse-graining phase, preprocessing routines such as time and/or
space normalization [32], or standardization [19] may be applied to emphasize the
spatiotemporal scales relevant for the study in question. Furthermore, some tech-
niques for dimensionality reduction may also be applied to minimize the sampling
issues associated with the large dimensionality of the representations of Xd [31].
However, some works neglect either or both steps. Here, each representation of Xd
was subjected to a preprocessing phase that consist in:

1. Normalizing each variable by the square-root of the area-mean temporal stan-
dard deviation to reduce the influence that the data exerts in areas where the
temporal variability is larger, has on the subsequent data
analysis methods.

2. Each time series was multiplied by the cosine of its respective latitude [16].
This unifies the spatial representativity grid boxes, which are affected by the
cartographic projection.
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3. After the previous steps, each time series was centered by the removal of its
temporal mean and each new representation of Xd was mapped onto a lower-
dimensionality space via PCA by applying a Singular Value Decomposition
implemented in the Python package EOFs [17]. The principal components
that contained approximately 75% of the variability were retained.

2.2.2 Coarse-graining (clustering)

There exist a great variety of classification methods to coarse-grain a spatio-
temporal dataset. For example, [65] listed and grouped 35 methods into 8 groups:
subjective methods, threshold-based methods, based on principal component anal-
ysis, leader algorithms, hierarchical cluster analysis, optimization algorithms, mix-
ture models and random-process. However, optimization algorithms such as k-
means, self-organizing maps [53] and simulated annealing [66] are commonly used.

In this work, each preprocessed Xd was coarse-grained using a version of the
unsupervised machine learning algorithm k-means that is initialized by a particular
procedure that carefully selects the seeds for the original algorithm [8]. The method
is known as k-means++ and is available in the Python package scikit-learn [64].
This overcomes one of the major drawbacks of the original algorithm: its sensitivity
to seeding. The implementation used in this study works as follows:

1. From the N vectors to be clustered, let µ1 = xj, where j is a randomly chosen
index between 1 and N, be the first initial centroid (seed).

2. For i = 2 to N (number of vectors):

(a) Compute d(xi)2, the minimal distance from vector xi to each µk centroid
already chosen:

d(xi)2 = min
(
||xi − µk ||

2
)
. (2.3)

(b) Compute the probability of selecting each vector xi as the next centroid:

p(xi) =
d(xi)2∑N
j=1 d(xi)2

. (2.4)

Select the next centroid µi with probability proportional to p(xi).

3. Repeat until there is a seed for each k cluster.

4. Proceed with standard k-means, which works as follows:

(a) With the initial (seeds) centroids µk, assign each vector to the nearest
centroid using the Euclidean distance formula:

For i = 1 to N, assign xi to the cluster j that minimizes ||xi − µj||
2.
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(b) Recalculate the cluster centers as the mean of the vectors assigned to
them:

For j = 1 to k:

µ j =

∑s j

i=1 xi

s j
. (2.5)

Where µj the new cluster center.

(c) Repeat steps (a) and (b) until the cluster assignments no longer change.

The selection of the quantity of clusters is not a trivial question. This issue has been
addressed at large by [15] in the context of analyzing circulation regimes away from
the tropics. In the extratropics, circulation regimes are viewed as quasi-stationary
or persistent anomalies with residence time scales larger than transition scales
[63]. The existence of real clusters in a dataset, that are not artifacts of applying
a clustering algorithm to a finite sized sample, requires the rejection of the null
hypothesis of normality in the Xd PDF [15] and weather regimes correspond to
bumps where the PDF deviates from normality. If clusters are found on Xd, their
representation of weather types or regimes is subjectively verified analyzing their
characteristics. However, [15] remarked that the rejection of normality is not
sufficient, and the skewness of the dataset should be investigated because highly
skewed data can produce spurious clusters.

In the tropics, the theory of circulation regimes has not been developed, how-
ever, the application of clustering algorithms to find weather types suitable to
analyze the atmospheric circulation, its variability and relationships to other vari-
ables is common (e.g. [56] [42] [62]). Furthermore, [58] employed a set of 30
observed weather types and their analogues in model predictions to produce sea-
sonal precipitation forecast over India.

In this work, the theory of [15] was applied to assure statistical significance
of clusters. The definitive representation of Xd and its optimal partitioning were
selected by testing the null hypothesis that the clusters were mere artifacts of
the application of the algorithm to finite sized data in PC-space that is in fact
normally distributed. The alternative hypothesis is that the clusters exist and are
the regions where the PDF deviates from normality. The procedure is described
in the next section.

2.2.3 Definition of the optimal Xd and its partitioning

The procedure followed for the definition of the optimal representation of Xd and
its optimal partitioning is outlined next. First, for each Xd candidate a set of 200
surrogate normally distributed datasets [75] with the same spectral features as
the original data were generated using the Fourier phase randomization technique.
This can be achieved by randomly shuffling the phase values of the Fourier trans-
form. Mathematically, given a vector x of length N, its Fourier transform FT(k)
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can be expressed as:

FT (k) =
N−1∑
n=0

x (n) e−2π ink
N , (2.6)

where i is the imaginary unit and k is the frequency index. The Fourier phase
randomization method involves randomizing the phase of FT(k) while preserving
its magnitude [23]. This can be achieved by multiplying each complex Fourier
coefficient FT(k) by a complex number of unit magnitude, eiθk , where θk is a
random phase angle for each frequency index k.

The randomized Fourier coefficients, Y(k), can be expressed as:

Y(k) = |FT (k)|eiθk , (2.7)

where |FT(k)| is the magnitude of the original Fourier coefficient. To obtain the
randomized signal y(n) , the inverse Fourier transform is applied to Y(k):

y(n) =
1
N

N−1∑
k=0

Y(k)e2π nk
N , (2.8)

which results in a vector that has the same magnitude as the original x(n), but
with a randomized phase.

The k-means++ algorithm was then executed 100 times for each value between
3 and 9 on both the original data and each of the 200 surrogate datasets. For
each of these executions the variance ratio criterion (VRC)[12], silhouette criterion
(SC)[69] and mean-square-error (MSE) were calculated. The smallest k for which
the candidate Xd outperforms the 99% of the surrogates in all metrics is taken as its
optimal partitioning factor. Then the collection of parameter vectors describing the
clusters (Θ = {θ1, ..., θc}) is analyzed to find if its seasonality exhibits the required
characteristics, as described in the following section.

The VRC criterion or Calinski-Harabasz score, is a metric used to evaluate the
quality of clustering results in k-means++ clustering. It measures the ratio of the
between-cluster dispersion and the within-cluster dispersion, which indicates how
well separated the clusters are. The formula for VRC is:

VRC(k) =
B(k) k

k−1

W(k) k
N−K

, (2.9)

where k is the number of clusters, N is the total number of data points, B(k) is the
between-cluster sum of squares, which measures the variability between the means
of the clusters and W(k) is the within-cluster sum of squares, which measures the
variability within the clusters.

The silhouette score measures the similarity of a vector to its own cluster
compared to other clusters, and ranges from -1 to +1. A score of +1 indicates
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that a vector is well-matched to its own cluster and poorly matched to neighboring
clusters, while a score of -1 indicates the opposite. A score of 0 indicates that
the object is like its own cluster and neighboring clusters. The formula for the
silhouette score for a single object is:

si =
bi − ai

max{ai, bi}
, (2.10)

where si is the silhouette score for vector xi, ai is the average dissimilarity between xi
and all other vectors in its own cluster, and bi is the minimum average dissimilarity
between xi and all vectors in any other cluster. The max{ai,bi} is used to normalize
the score between -1 and +1. Here the average silhouette score across all objects
is used:

S =
1
N

N∑
i=1

si, (2.11)

where N is the total number of objects in the dataset. The MSE metric refers
to the error done when replacing each vector in PC space by the centroid of the
cluster it belongs to. This can be expressed as:

MS E =
1
N

N−1∑
i=1

(xi − ck)2 , (2.12)

where ck is the centroid of the cluster where xi was assigned.

2.2.4 Annual cycles of occurrence for the optimal X partition clusters (weather
types)

The condition that our optimal Xd partition should have at least one cluster char-
acteristic of the beginning of the rainy season and at least another for its ending
implies that the partitionings done for this work would result in clusters character-
ized by seasonality. This assumption stems from the fact that previous work (e.g.
[71]) have shown that if the annual cycles are not removed from the X representa-
tion, the clusters obtained from the partitioning do have marked seasonalities. The
annual cycles or climatologies of the probabilities of occurrence were computed by
computing the frequency of occurrence of each cluster, for each Julian day (1-365
or 1-366 for leap-years), during the 1981-2015 period. These series were smoothed
with a 10-day moving average. Weather types were numbered by the order of
occurrence of their climatological annual maximum.

2.2.5 Assessing field significances

The conditional composites of the standardized anomalies of precipitation were
computed to assess if a cluster from the partitioning of Xd is characterized by wet
or dry conditions over the Pacific, Caribbean or both slopes of the isthmus. Over
each sub-region, wet (dry) weather types are defined as those with more (less)
than 75 (25)% of grid points characterized by positive (negative) precipitation

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(1): 27–56, Ene – Jun 2024



weather types in central america 39

mean standardized anomalies, transition weather types are those between 25% to
75% of positive mean standardized anomalies. The statistical significance of these
fields is tested with a Monte Carlo approach with 1000 trials, analogous to the
applied by [41]. For each cluster a sample with its same quantity of elements was
randomly drawn from the precipitation data and the sample mean was computed
and stored. The procedure was repeated 1000 times, if the original conditional
composite of standardized anomalies were larger than the 97.5 sample percentile
or smaller than the 2.5 percentile, the conditional composite is significant at the
0.05 level. The same procedure was applied to all the fields shown.

3 Results

3.1 Best dataset (Xd) and its optimal partitioning

3.1.1 Clustering: significance and quality

Figure 2 shows, for each dataset, all clustering metrics plotted as functions of the
number of clusters. Also, the value of the 99th percentile of the corresponding set
of surrogates for VRC and SI and the 1th percentile in the MSE case, are plotted.
These plots show that all datasets can be partitioned in 6 clusters, rejecting the
null hypothesis of spurious clustering. Hence, we take 6 clusters as an adequate
solution for all Xd representations.

An analysis of the 3 Xd representations partitioned into 6 clusters, based on
the selected metrics shows that the partition of WND+CAPE outperforms the
remaining 6-cluster partitions. It is characterized by better quality clustering than
the other partitions (larger VRC), its clusters are more self-similar that those from
the other partitions (larger SI) and its centroids are more representative of their
respective clusters than those of the other partitions (smaller MSE).

3.1.2 Weather types seasonality

Once the number of clusters was defined for each dataset and a candidate dataset
(WND+CAPE) had been selected, the seasonal cycles of the probabilities of oc-
currence of the weather types from this dataset were computed, and are displayed
in Figure 3. This figure shows that the seasonal cycles are characterized by high
seasonality, i.e. periods of high frequency occurring in a restricted set of months
and periods of almost no activity restricted to another set of months. Four weather
types feature a unimodal seasonal cycle, hence their occurrence tends to peak at
a certain time of the year surrounded by periods of increasing and decreasing fre-
quency (weather types numbered 1, 2, 3 and 4). The 2 remaining weather types
(5 and 6) feature bimodal seasonal cycles, characterized by relative maximum that
tends to occur before the absolute maximum. This maximum surrounds a relative
minimum of frequency of occurrence.
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Figure 2: Clustering metrics. Variance ratio criterion (VRC; panels a, b and c), silhouette
scores (SI; panel d, e and f) and mean squared errors (MSE; panels g, h and f). Each
metric was computed for the clustering, with k values from 3 to 9, of each dataset (black
dots and lines) and its respective 200-member surrogate dataset. For VRC and SI (MSE),
red dots and lines represent the 99th (1th) percentile of the values computed from the
clustering of the surrogate datasets.
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Figure 3: Climatology of observed occurrence probabilities for each cluster of the optimal
Xd partition. Each line represents the smoothed (10-day moving average) probabilities of
occurrence of each weather type for each Julian day.

The relative wetness of the weather types from all datasets is summarized in
Table 1. Here the areal percentage of positive standardized anomalies of condi-
tional precipitation over both the Pacific and the Caribbean is tabulated.

X1 X2 X3
WT1 0.0|0.0 0.0|0.0 0.0|0.0
WT2 0.0|0.0 0.0|1.2 0.0|0.0
WT3 0.0|0.0 65.3|14.4 0.0|0.0
WT4 100.0|99.7 100.0|99.2 100.0|99.7
WT5 100.0|97.4 100.0|99.1 100.0|97.3
WT6 3.0|15.5 30.5|80.9 6.8|19.1

Table 1: Spatial percentage of positive mean conditional standardized anomalies of pre-
cipitation for each weather type. Only anomalies significant at a 0.05 level are accounted.
The gridded precipitation dataset was divided between basins using the GLOBE Digital
Elevation Model [60] as a reference.

Table 1 shows that only WND+CAPE has weather types that characterize the
seasonal transitions over the Pacific in a way that is consistent with precipitation
anomalies. Recalling that in subsection 2.2.6 we defined a spatial criterion for
transition weather types: those with between 25% and 75% of the total basin
area with positive anomalies of conditional precipitation. From this dataset, WT3
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Figure 4: Climatological mean daily fields (1981-2015). a) Wind fields at 925 hPa (vec-
tors) [ms−1] and CAPE (shaded) [JKg−1]. b) Wind fields at 200 hPa (vectors) [ms−1] and
TCWV (shaded) [mm]

and WT6 present spatial distributions of precipitation consistent with the above
definition. Then its partitioning into 6 clusters is selected as the definitive Xd
partition. From a perspective of precipitation, WT3 and WT6 have fractions of
positive anomalies that imply mixed signals. While WT1 and WT2 (WT4 and
WT5) are purely dry (wet) weather types. Furthermore, the transition weather
types, as opposed to the wet and dry weather types, feature opposed fractions
of wetness between the Pacific and Caribbean basins. The transition from dry-
to-wet season (WT3) is characterized by a Pacific (Caribbean) slope dominated
by wet (dry) conditions. The transition from wet-to-dry in the Pacific features a
wetter Caribbean.

3.2 Spatial characteristics of the weather types

3.2.1 Mean climatological conditions

The climatological daily values of the wind fields at 925 and 200 hPa levels, CAPE
and TCWV are shown in Figure 4. These fields are shown as reference, because the
weather types are discussed in terms of their conditional standardized anomalies.

Figure 4.a shows that the CA region is climatologically subject to an easterly
wind regime, the trade winds, that are enhanced by the presence of the CLLJ.
This is coherent with the picture presented in the same panel for CAPE. Enhanced
winds at lower tropospheric levels induce evaporation over the oceanic areas: larger
water vapor mixing ratios and then larger CAPE values than over land areas.

Figure 4.b shows that, climatologically, upper tropospheric wind fields over
CA region are westerly with a south-north gradient of its magnitude, connected
to the northern hemispheric westerly regime. The climatological distribution of
TCWV features north-south gradient reflecting the effects of the trade winds and
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Figure 5: Conditional mean standardized anomalies of wind fields at 925 hPa level (vec-
tors) and CAPE (shaded). Stippling means NOT significant wind anomalies. Only
significant CAPE anomalies are drawn.

the Inter-Tropical Convergence Zone (ITCZ). Furthermore, there is a land-sea
contrast reflecting oceanic evaporation and atmospheric column thickness.

3.2.2 Conditional atmospheric circulation and thermodynamic features

The mean conditional standardized anomalies of the wind fields at 925 hPa and
CAPE are shown in Figure 5 while the same computations for wind fields at 200
hPa and TCWV are shown in Figure 6.

Dry season weather types, WT1 and WT2, are characterized by an anticy-
clonic anomalous wind field at 925 hPa that signal an enhancement of the easterly
wind regime and the influence of episodic northerly winds (Figure 5.a and Fig-
ure 5.b). While at 200 hPa level the anomalous wind fields are southwesterly,
which imply an enhancement of the upper-tropospheric westerly regime connected
to the midlatitudes circulation (Figure 6.a and Figure 6.b). For both circulation
types, CAPE anomalies are only significant South of nearly 14◦N but differ be-
tween the two weather types. For WT1, CAPE significant anomalies are mostly
negative while for WT2 they are mostly positive, especially over the eastern trop-
ical Pacific. In terms of atmospheric column moisture, both weather types feature
negative TCWV anomalies, with WT1 being the driest weather type.

The WT3 is characteristic of the transition from dry-to-wet, its wind field at
925 hPa shows southwesterly anomalies over the eastern tropical Pacific and the
northmost portion of the isthmus, that converge over the Gulf of México, where
there are large positive CAPE anomalies (Figure 5.c). Column moisture presents
mostly neutral anomalies over the domain, with patches of positive anomalies south
of 8◦N, where the ITCZ is located and over the northern part of the CA isthmus
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Figure 6: Conditional mean standardized anomalies of wind fields at 200 hPa level (vec-
tors) and TCWV (shaded). Stippling means NOT significant wind anomalies. Only
significant TCWV anomalies are drawn.

(Figure 6.c). Over the Caribbean there are no significant anomalies neither of low-
level winds nor CAPE. The 200 hPa level wind field is close to its climatological
values (Figure 6.c).

The weather types characteristic of the established rainy season, WT4 and
WT5, feature conditional anomalies with similar structures for CAPE, TCWV
and upper tropospheric circulations. For these weather types, CAPE anomalies are
mostly positive with larger anomalies over the Caribbean (Figure 5.d and Figure
5.e), TCWV anomalies are also positive (Figure 6.d and Figure 6.e) and the upper
tropospheric circulation features easterly anomalies. The main difference between
these weather types is in the 925 hPa level circulations: WT4 is characterized
by large southeasterly anomalies over the Caribbean and the northern areas of
CA while WT5 is characterized by southwesterly anomalies over the Pacific, the
southern areas of CA and the Caribbean.

The WT6 is characteristic of the wet-to-dry seasons transition, its significant
wind anomalies on the 925 hPa level are northeasterly (Figure 5.f). CAPE anoma-
lies are mostly positive over the ocean while negative anomalies are found over
the northern region of CA (Figure 5.f). As with WT3, TCWV anomalies are
small and positive and the 200 hPa level wind field is close to its climatological
values (Figure 6.f).

3.2.3 Conditional precipitation fields

The conditional mean standardized anomalies for the weather types are presented
in Figure 7 while Figure 8 shows the difference between the mean precipitation
fields for climatologically consecutive weather types.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 31(1): 27–56, Ene – Jun 2024



weather types in central america 45

Figure 7: Conditional mean standardized anomalies of precipitation for each weather
type. CHIRPS over SCA. Black dots denote significant anomalies at 0.05 from a Monte-
carlo test.

Figure 8: Differences between mean conditional precipitation of climatologically subse-
quent weather types [mm].
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Dry season weather types, WT1 and WT2, feature negative precipitation
anomalies along the entire domain (Figure 7.a and Figure 7.b). However, WT2
is characterized by wetter conditions (Figure 8.b), with greater difference over
southeastern Costa Rica and Panama.

Weather type WT3 is characterized by positive precipitation anomalies over
the coastal regions of the Pacific slopes of CA and negative anomalies over the
Caribbean (Figure 7.c). The difference with WT2 (Figure 8.c) highlights this
contrast. The wet season WT4 is characterized by positive precipitation anomalies
along the entire domain, except for small patches over the Nicaragua, Honduras
and southernmost Gulf of México coast (Figure 7.d). However, it features drier
conditions than WT3 in some regions along the Pacific slope of CA (Figure 8.d).
The other wet season weather type, WT5 is also characterized by generalized
positive precipitation anomalies, except for a small patch along the Caribbean
coast of Nicaragua and Costa Rica (Figure 7.e). The difference between these
weather types shows that WT5 is characterized by wetter conditions than those
of WT4 for most CA, except in southern México and the Caribbean coasts of
Nicaragua and Costa Rica, where WT4 is significantly wetter.

Weather typeWT6 features positive precipitation anomalies over the Caribbean
slopes of CA and across the whole isthmus south of 10◦N. Negative anomalies are
found along the Pacific slopes. The differences in mean precipitation with respect
to WT5 show that this is a weather type characteristic of the transition from wet-
to-dry season over the Pacific but not over the Caribbean where WT6 intensifies
the wet conditions.

4 Discussion

The first phase of this work consisted of the selection of a dataset, and its partition
into clusters, that provided the best statistical qualities and some climatological
characteristics. The Monte Carlo tests rejected the hypothesis of the unimodality
of the selected Xd probability distribution (Figure 2, panels b, e and h) for all
cluster numbers larger than 6. However, the principle of parsimony, that urges to
explain natural phenomena using the smallest possible number of elements, was
evoked to select the definitive number of clusters. Furthermore, none of the 9 PCs
that contained 75% of the variability has a skewness with absolute value larger than
0.33. Hence the skewness of the distributions is discarded as the cause underlying
the existence of clusters. The dataset composed of wind fields at 925, 800 and 200
hPa and CAPE was suitable to be partitioned into 6 clusters with better quality,
more self-similarity and more representativeness than the corresponding to the
remaining datasets.

The climatological constraints that were imposed are: that some weather types
should represent the transition to and from the rainy season over the Pacific slopes
of CA and that different weather types should represent the rainy season maxima
over this region. Weather Types from the above-mentioned dataset feature these
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climatological characteristics. WT3 represents the transition from dry to wet sea-
son (Figure 3), the first precipitation maximum that tends to occur during June is
produced by the alternation of WT3, WT4 and WT5. While WT5 dominates the
circulation during the second precipitation maximum on the Pacific slope in con-
cordance with the MAD on the Caribbean slope in September-October. Previous
work [71] did not feature such weather types. Assuming that ERA-interim and
ERA5 reanalysis datasets are consistent, differences in data resolution and spatial
standardization may explain this contrast. Compared to previous works present-
ing weather types over CA and its surroundings, the partition presented in this
work and that of [71] used the fewest weather types (6) to describe the regional
atmospheric circulation variability. Seven circulation types were presented by [13],
[55] found a solution with 8 weather types, [70] presented 11 circulation types and
[61] presented 20 circulation patterns but for a synoptic scale domain much larger
than the previously presented. See Table A.1 for details about these works. The
weather types presented in this work feature varying degrees of consistency with
the previously reported classifications over the CA region.

WT1 features the lower-level circulation with easterly anomalies that resembles
the winter maximum of the CLLJ. This weather type is similar in its spatial and
temporal characteristics to CT3 and CT4 from [13], weather regime #2 from [55],
Winter North Eastern Winds (WNEW) regime from [70], WT20 from [61] and
WT1 from [71]. The conditional lower-tropospheric circulation of WT2 features
anomalies with signs similar to those of WT1 but smaller in magnitude. CAPE
anomalies are larger in WT2, consistently with wetter conditions. This weather
type is similar in its spatial and temporal characteristics to CT1 and CT2 from
[13], weather regime #1 from [55], Spring NASH West (SPNW) regime from [70],
WT13 from [61] and no weather type from [71].

The transition weather type WT3 is characterized by anomalies that imply a
de-intensification of the trade winds regime, which reduces ventilation and allows
for convection to occur. This weather type is similar in its spatial and temporal
characteristics to weather regime #6 from [55], East North Atlantic High (ENAH)
regime from [70] and WT5 from [61].

WT4 is characterized by enhanced 925 hPa easterlies over the Caribbean
with a seasonal cycle of occurrence that peaks in July. Hence, it represents the
summer enhancement of the CLLJ and the MSD, recalling that the first maxi-
mum of precipitation over the Pacific slope is represented by the alternation of
WT3 and WT5; WT4 is drier than WT5 (Figure 8.e). This pattern is consist-
ent across the whole range of classifications: CT7 from [13], weather regime #4
from [55], Summer Low Level Jet (SLLJ) regime from [70], WT5 from [61] and
WT5 from [71].

Weather Type WT5 represents the most intense conditions of the rainy season
with cyclonic anomalies over CA and a seasonal cycle that follows the bimodal
distribution characteristic of the rainfall over the Pacific slope of CA and is asso-
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ciated also with the MAD in the Caribbean slope [2]. This weather type is also
consistent across the whole range of classifications: CT6 from [13], weather regime
#5 from [55], Summer Monsoonal Winds Regime (SMWR) regime from [70] and
WT4 from [71]. In the synoptic classification of [61] it is divided into 4 weather
types: WT3, WT4, WT6, and WT7, showing that westerly anomalies over CA
can arise under various synoptic regimes.

Weather Type 6 is characterized by northeasterly 925 hPa anomalies over
the northern areas of CA and neutral anomalies elsewhere. This pattern could
be related to periods of lessening of CLLJ after the MSD and intensification
after the second peak of WT5, hence signaling the transition out of the rainy
season. This weather type has no analog in either of the referred studies.

From the above comparison, it is clear that dry season weather types, as well
as transition ones, have a degree of similarity between the different classifications.
However, only wet season patterns, here WT4 representing the summer CLLJ and
WT5 representing cyclonic anomalies over CA, show a consistent signal across
classifications. Hence, this technique may be useful to assess the capacity of climate
models to represent the circulation patterns representative of the rainy season
over CA.

5 Conclusions

In this study, we applied k-means++ to three datasets that were candidates for
representing Xd, the daily atmospheric state vector time series; hence, each dataset
is coarse-grained into an integer-valued time series that represents the belonging
to a certain cluster generated from Xd. This is interpreted as the daily occurrence
of a specific weather type. A Monte Carlo test was applied to ensure that devia-
tions from normality existed in each Xd representation and, for each, the smallest
number of clusters that assure non-normality was selected. The dataset composed
of wind fields at 925, 800, and 200 hPa and CAPE was suitable to be partitioned
into 6 clusters with better quality, more self-similarity, and more representativeness
than the remaining datasets.

From this procedure, a dataset composed of wind fields at 925, 800, and 200
hPa and CAPE from the ERA-interim reanalysis, partitioned into 6 clusters was
selected as the coarse-grained representation of Xd. This dataset provided weather
types for the dry and wet seasons as well as the seasonal transitions. The wet
season weather types are consistent with some of the other classifications reported
for the region [13] [55] [70] [61] [71]. Furthermore, the weather types characteristic
of the seasonal transitions (WT3 and WT6) have no clear analog in the literature
and provide the opportunity to study the typical atmospheric circulation patterns
for these transitions.
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A Previous applications of cluster analysis to extract
weather/circulation types over Central America

Reference Variables Latitude Lon-
gitude

Spatial
do-
main

Period Sources Number
of clus-
ters

[13] Wind fields
at 850 hPa

2.5◦ x 2.5◦ 30◦N
0◦N
110◦W
40◦W

1979-
2010

NCEP/DOE
reanalysis
[39]

7

[55] Wind fields
at 925
hPa and
Outgoing
long-wave
radiation

2.5◦ x 2.5◦ 31.25◦N
8.75◦N
98.75◦W
56.25◦W

1979-
2013

NCEP/DOE
reanaly-
sis [39],
NOAA-
interpolated
[43]

8

[70] Wind fields
at 925 and
850 hPa

0.7◦ x 0.7◦ 25◦N
8◦N
100◦W
65◦W

1979-
2012

ERA-
Interim
reanalysis
[18]

11

[61] Mean sea-
level pres-
sure

0.7◦ x 0.7◦ 50◦N
0◦N
150◦W
10◦W

1982-
2016

ERA-
Interim
reanalysis
[18]

20

[71] Wind fields
at 925, 850
and 200
hPa and
CAPE

0.25◦ x 0.25◦ 25◦N
8◦N
100◦W
65◦W

1979-
2019

ERA5
reanaly-
sis[33]

6

Table 2: Weather/circulation types over Central America and its surroundings using
dynamical variables (wind, pressure, geopotential).
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