
© REVISTA DE MATEMÁTICA: TEORÍA Y APLICACIONES 2022 29(2) : 289–312

CIMPA – UCR ISSN: 1409-2433 (PRINT), 2215-3373 (ONLINE)

DOI: https://doi.org/10.15517/rmta.v29i2.48885

DEEP GAUSSIAN PROCESSES AND INFINITE

NEURAL NETWORKS FOR THE ANALYSIS OF

EEG SIGNALS IN ALZHEIMER’S DISEASES

PROCESOS GAUSIANOS PROFUNDOS Y REDES

NEURONALES INFINITAS PARA EL ANÁLISIS DE

SEÑALES EEG EN LA ENFERMEDAD DE

ALZHEIMER

KRISHNA ROMÁN* ANDY CUMBICUS† SABA INFANTE‡

RIGOBERTO FONSECA-DELGADO§

Received: 1/Nov/2021; Revised: 23/Jun/2022;
Accepted: 28/Jun/2022

*Yachay Tech University, School of Mathematical and Computational Sciences, Urcuquí,
Ecuador. E-mail: krishna.roman@yachaytech.edu.ec

†Misma dirección que/Same address as:K.Román.E-mail: andy.cumbicus@yachaytech.edu.ec
‡Misma dirección que/Same address as: K. Román. E-mail: sinfante@yachaytech.edu.ec
§Misma dirección que/Same address as: K. Román. E-mail: rfonseca@yachaytech.edu.ec

289

https://doi.org/10.15517/rmta.v29i2.48885
mailto: krishna.roman@yachaytech.edu.ec
mailto: andy.cumbicus@yachaytech.edu.ec
mailto: sinfante@yachaytech.edu.ec
mailto: rfonseca@yachaytech.edu.ec

290 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

Abstract

Deep neural network models (DGPs) can be represented hierarchically
by a sequential composition of layers. When the prior distribution over
the weights and biases are independently identically distributed, there is
an equivalence with Gaussian processes (GP) in the limit of an infinite net-
work width. DGPs are non-parametric statistical models used to character-
ize patterns of complex non-linear systems due to their flexibility, greater
generalization capacity, and a natural way of making inferences about the
parameters and states of the system. This article proposes a hierarchi-
cal Bayesian structure to model the weights and biases of a deep neural
network. We deduce a general formula to calculate the integrals of
Gaussian processes with non-linear transfer densities and obtain a kernel
to estimate the covariance functions. In the methodology, we conduct an
empirical study analyzing an electroencephalogram (EEG) database for
diagnosing Alzheimer’s disease. Additionally, the DGPs models are esti-
mated and compared with the NN models for 5, 10, 50, 100, 500, and 1000
neurons in the hidden layer, considering two transfer functions: Recti-
fied Linear Unit (ReLU) and hyperbolic Tangent (Tanh). The results show
good performance in the classification of the signals. Finally, we use the
mean square error as a goodness of fit measure to validate the proposed
models, obtaining low estimation errors.

Keywords: deep Gaussian process; Alzheimer disease; electroencephalogram.

Resumen

Los modelos de redes neuronales profundos (DGPs) se pueden repre-
sentar jerárquicamente mediante una composición secuencial de capas.
Cuando la distribución prior sobre los pesos y sesgos son independien-
tes idénticamente distribuidos, existe una equivalencia con los procesos
Gaussiano (GP), en el límite de una anchura de red infinita. Los DGPs
son modelos estadísticos no paramétricos y se utilizan para caracterizar
los patrones de sistema no lineales complejos, por su flexibilidad, mayor
capacidad de generalización, y porque proporcionan una forma natural
para hacer inferencia sobre los parámetros y estados del sistema. En este
artículo se propone una estructura Bayesiana jerárquica para modelar los
pesos y sesgos de la red neuronal profunda, se deduce una formula general
para calcular las integrales de procesos Gaussianos con funciones de trans-
ferencias no lineles, y se obtiene un núcleo para estimar las funciones de
covarianzas. Para ilustrar la metodología se realiza un estudio empírico
analizando una base de datos de electroencefalogramas (EEG) para el
diagnóstico de la enfermedad de Alzheimer. Adicionalmente, se estiman
los modelos DGPs, y se comparan con los modelos de NN para 5, 10, 50,
100, 500 y 1000 neuronas en la capa oculta, considerando dos funciones de
transferencia: Unidad Lineal Rectificada (ReLU) y tangenge hiperbólica

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 291

(Tanh). Los resultados demuestran buen desempeño en la clasificación
de las señales. Finalmente, utilizó como medida de bondad de ajuste el
error cuadrático medio para validar los modelos propuestos, obteniéndose
errores de estimación bajos.

Palabras clave: procesos gausianos profundos; enfermedad de Alzheimer;
electroencefalogramas.

Mathematics Subject Classification: 60G15, 60H35.

1 Introduction

Deep machine learning systems are computational algorithms that provide pow-
erful modern tools that allow the use of mathematical models with complex
structures by including multiple intermediate layers at different levels combined
with transfer functions with non-linear systems.

Neural networks are machine learning models that have received a lot of
attention in recent years due to their success in many real-world applications:
they have been used very frequently in filtering content on social networks, in
natural language processing, pattern recognition in Big data, tracking objects
in a sequence of images or videos, face and voice recognition, human mobil-
ity, mass information dissemination in networks, electronic commerce and clas-
sification of relevant information, among many other applications, LeCun et
al. (2015) [13], Goodfellow et al. (2016) [8], Mosavi et al. (2020) [20], and
Luca et al. (2020) [15].

In this work, a combined technique of Gaussian processes (GP) with neural
network models is used, following the approach outlined by: MacKay (1992)
[16], MacKay (1995) [?], Neal (1996) [21], and Williams (1996) [27]. GPs are
used to model functional data because they are flexible, robust to outliers, and
estimate calibrated uncertainty. Deep Gaussian Processes (DGP) are a general-
ization of a multilayer neural network viewed as a GP in the limit width. Salim-
beni and Deisenroth (2017) [?] used an inference algorithm variational doubly
stochastic algorithm that does not force independence between layers. Also, they
demonstrated that a DGP model could be used effectively for many data points.
They provide strong empirical evidence of the inference scheme for DGPs and
show that they work well in practice in both classification and regression. Zhao
et al. (2021) [30] used a state-space model for the deep Gaussian process (DGP)
regression. They constructed a DGP by placing a GP prior transformed into
the length and magnitude scales at each hierarchy level. They used a posterior
maximum estimation procedure based on filtering algorithms and demonstrated
the performance using non-stationary synthetic and gravitational wave signals.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

292 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

Wilson and Izmailov (2020) [28] showed that deep ensembles effectively
estimate the marginal distributions. They also investigated priors on the consid-
ered functions by defining vague priors on the neural network weights.
In addition, they demonstrate properties, generalize the models from a proba-
bilistic perspective, and obtain results equivalent to those reproduced using a
GP. Lee et al. (2018) [14] demonstrated an equivalence between infinitely wide
deep networks and GPs, developed computationally efficient methods to com-
pute the covariance function of GPs and connected GPs with the theory of signal
propagation in random neural networks. Investigations in the same direction
highlight the work of Schoenholz et al. (2017) [26], Matthews et al. (2018)
[18], Novak et al. (2019) [22], Garriga-Alonso, et al. (2019) [?], Agrawal et al.
(2020) [2], Damianou and Lawrence (2013) [6], Khan et al. (2019) [11], Hazan
and Jaakkola, (2015) [9]. We can mention related works to these topics: Infante
et al. (2008) [10], Cedeño et al. (2021.a) [3] and Cedeño et al. (2021.b) [4].

The contribution in this work is based on the proposal of a hierarchical
Bayesian structure to model the weights and biases of a neural network with
infinite width. We established a general formula to calculate the integrals of
Gaussian processes for sigmoid functions with non-linear structures, and we ob-
tained a kernel to update the covariance functions. Finally, we made an appli-
cation on a set of electroencephalogram signals from patients with Alzheimer’s
disease.

The rest of the article is as follows: the Deep Neural Networks are defined
in Section 2, the Gaussian processes are described in Section 3, the connection
between the Deep Neural Networks and Gaussian Processes is made in Section
4, and the results are shown in the Section 5, and finally some discussions and
conclusions are established in the Section 6.

2 Deep neural networks

Mathematically a neural network can be defined as a directed graph with vertices
representing neurons and edges expressing connections. Each neuron’s input is
a weighted sum of the output of all previous layer’s neurons connected to the
input. There are many variants of neural networks that differ by their architec-
ture. The simplest of these forms is the forward neural network, also known as
the feedforward neural network.

Deep neural networks compose computations performed by many layers.
Denoting the output of hidden layers by h

(l)
i , where l ∈ {1, . . . , L},

i ∈ {1, . . . , Nl} denote the indices of the neuron within the layer that receives the
information from the neurons of the previous layer h(l−1)j , j ∈ {1, . . . , Nl−1}.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 293

The output j represented by the j−th neuron in the output layer, is connected
to the input vector x via a biased weighted sum and an non-linear activation
function φ. The j−th component of the network output, h(l)j , is computed as:

h
(l)
j (x) = φ

(
z
(l−1)
i (x)

)
(1)

where:

z
(l)
i (x) = b

(l)
i +

Nl−1∑
j=1

W
(l)
ij h

(l−1)
j (x). (2)

For convenience, the parameters of the neural network are combined into a vector
of parameters θ =

(
b(1),W (1), . . . , b(L),W (L)

)
and input data h(0) = x =

(1, x1, . . . , xNl). Deep neural networks compose computations performed by
many layers. The calculation for a network with L hidden layers is:

ŷ = f
[
h(L)

(
z(L)

(
h(L−1)

(
. . . z(2)

(
h(2)

(
z(1)

(
h(1)

(
z(0)
)))))))]

. (3)

When L is large, it is called a deep neural network, and each pre-activation func-
tion z(L)(x) is typically a linear operation with the matrix W (L) and bias b(L),
which can be combined with the parameters θ. An architecture of a feedforward
neural network with L hidden layers is shown in Figure 1.

Figure 1: An architecture of a feedforward neural network with l hidden layers, (Witten
et al., 2016) [29].

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

294 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

3 Gaussian processes

Assume we have access to a training dataset of n input-output observations

D = {(xi, yi) : i = 1, . . . , n} (4)

yi is assumed to be a noisy realisation of an underlying latent function f = f(x),
that is,

yi = f(xi) + εi, εi ∼ N(0, σ2ε) (5)

where xi ∈ Rq and yi ∈ R.
The interest here is in estimating the function f , which generally is non-

linear. The GP provides a natural way to make inferences about these functions
(Rasmussen and Williams, (2006), [23]). The GP prior over functions can be
seen as an extension of the multivariate Gaussian distribution. By definition, a
stochastic process is a set of random variables {f(x) : x ∈ X}, indexed by
a set, X . A GP is a stochastic process such that for any finite set of function
evaluations, f(x) = (f(x1), . . . , f (xn))T , where f is multivariate Gaussian
distributed. We say that for any finite set of elements drawn from X , f is a GP
described by a mean, m(.), and covariance function, K(., .), which we write as:

f(x) ∼ GP
(
m(x),K

(
x, x′

))
(6)

where

m(x) = E [f(x)] , K (xi, xj) = E {[f(xi)−m(xi)] [f(xj)−m(xj)]} (7)

m : X → R, and K(., .) : X × X → R. (8)

Let Xnew be a matrix with on each row a new input point xnewi , i = 1, . . . , n.
To sample a function, we first compute the covariances between all inputs in
Xnew = (xnew1 , . . . , xnewn) and collect these in an n× n matrix:

K (Xnew, Xnew) =


k (xnew1 , xnew1) . . . k (xnew1 , xnewn)
k (xnew2 , xnew1) . . . k (xnew2 , (xnewn)

...
...

...
k (xnewn , xnew1) . . . k (xnewn , xnewn)

 .

Let

fnew = (f (xnew1) , . . . , f (xnewn))T .

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 295

The joint distributionp(f, fnew) is given by:(
f

fnew

)
∼ N

[(
m(X)

m(Xnew)

)
,

(
K (X,X) K (X,Xnew)

K (Xnew, X) K (Xnew, Xnew)

)]
where K(X,X), represents the kernel evaluated at X , K(Xnew, Xnew) is the
covariance matrix between the new points, K (X,Xnew) is the covariance ma-
trix between the observed points and the new values, and K(Xnew, X) is the
covariance matrix between the new and the observed points.
The covariance function must be positive definite, that is∑

j

∑
i

viK(xi, xj)vj ≥ 0, for all vi, xi. (9)

To complete the prior specification, we need to specify the mean and covariance
functions. Any positive definite covariance function can be chosen; for K(., .)
are the following, see Table 1.

Table 1: Covariance functions.

Kernel K (x, x′)

Exponential σ2 exp
(
− |x−x

′|
l

)
Squared Exponential σ2 exp

(
−1

2
|x−x′|2
l2

)
Matérn σ2

21−ν

Γ(ν)

(
|x−x′|
l

)ν
κν

(
|x−x′|
l

)
Brownian Motion min (x, x′)

The distribution predicted by the GP can be determined by the conditional
rules of multivariate Gaussian distribution:

fnew|f,X, y ∼ N (E (fnew) ,Cov (fnew)) (10)

where

E (fnew) = m (Xnew) +K (Xnew, X)K−1 (X,X) [f −m (X)] (11)

and

Cov (fnew) = K (Xnew, Xnew)−K (Xnew, X)K−1 (X,X)K (X,Xnew) .

For a Gaussian likelihood:

yi = f(xi) + εi , εi ∼ N
(
0, σ2ε

)
, y|f ∼ N

(
f(xi), σ

2
ε I
)

(12)

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

296 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

where I is the identity matrix. The noise can be included in the covariance
function, as follows:

K (f(xi), f(xj)) = K (xi, xj) + δijσ
2
ε (13)

where δij is the Kronecker delta, and σ2ε is the noise variance between layers.
The uncertainty is now present in the observations, and the joint distribu-

tion over the unknown data and the known data is augmented in the covariance
equation by(

f
fnew

)
∼N

((
m (X)
m(Xnew)

)
;

(
K (X,X) + σ2ε I K (X,Xnew)
K (Xnew, X) K (Xnew, Xnew)

))
.

The marginal distribution is given by

fnew|Xnew, X, f ∼ N (E (ynew) ,Cov (ynew)) (14)

where

E (ynew) = m (Xnew) +K (Xnew, X)
(
K (X,X) + σ2ε I

)−1
[y −m (X)]

and

Cov (ynew) = K (Xnew, Xnew)−K (Xnew, X)
(
K (X,X) + σ2

ε I
)−1

K (X,Xnew) .

In this case the integrals required to infer a posterior, p (fnew|Xnew, X, f),
are tractable.

4 Deep neural networks and Gaussian processes

In this article, we consider fully-connected ANNs with layers numbered from
l = 0 (input) to l = L − 1 (output), each containing, N0, . . . , NL−1 neurons,
and with a Lipschitz, twice differentiable nonlinearity activation function φ :
R → R, with bounded second derivative. For each x ∈ Rdin denote the input
to the network (x = (x1, . . . , xdin)), and z(l) ∈ Rdout denote its output. We use
z
(l)
i (x), h

(l)
i (x) to represent the pre- and post-activation functions at layer l with

input x, also, let h(0)i = x. The parameters consist of the connection matrices
W

(l)
ij ∈ RNl×Nl+1 and bias vectors b(l)i ∈ RNl+1 for l = 0, . . . , L− 1; which are

independent and randomly selected, with zero mean and variances σ2
w
Nl

, and σ2b ,
respectively.

Now we are going to establish the relationship between a single-hidden layer
neural networks, and Gaussian processes. Suppose that z(l)j (x) is a Gaussian

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 297

process with mean and covariance functions µ(l)(x), K(l)(x, x′), respectively,
that is,

z
(l)
j (x) =

(
z
(l)
j (x)

z
(l)
j (x′)

)
∼ GP

(
µ(l)(x),K(l)

(
x, x′

))
where

µ(l)(x) = E
{

z(l)j (x)
}

=

(
µ(x)
µ(x′)

)
and

K=K(l)
(
x, x′

)
= Cov

{
z
(l)
j (x), z

(l)
j (x′)

}
=

(
K(l−1)(x, x) K(l−1)(x, x′)

K(l−1)(x′, x) K(l−1)(x′, x′)

)
.

The i−th component of the network output, z(1)i , is computed as:

z
(1)
i (x) = b

(1)
i +

N1∑
j=1

W
(1)
ij h

(1)
j (x), h

(1)
j (x) = φ

(
b
(0)
j +

din∑
k=1

W
(0)
ij xk

)
. (15)

Note that there is a dependency on the input data vector x, and also since the
weight and bias are considered i.i.d., the post-activations h(1)j and h(1)k are in-

dependent for j 6= k. Also, z(1)i (x) is a sum of i.i.d terms, it follows from the
Central Limit Theorem that in the limit of infinite width N1 → ∞, z(1)i (x) will
be Gaussian distributed, Lee, et. al (2018) [14].

Suppose that z(l)j (x) is a Gaussian processes, i.i.d for every j, and that

h
(l)
j (x), also are independent and identically distributed. Then after l − 1 steps,

the recurrence relation for a feedforward network is defined as

z
(l)
i (x) = b

(l)
i +

Nl∑
j=1

W
(l)
ij h

(l)
j (x), h

(l)
j (x) = φ

(
z
(l−1)
j (x)

)
. (16)

Prior on weights:

b
(l)
j |σ

2
b ∼ N

(
0, σ2b

)
, W

(l)
ij |ΣW ∼ N (0,ΣW) . (17)

Prior on hyperparameters:

σ2b |α, β ∼ IG (α, β) ΣW |ν,R ∼ IG (ν,R) . (18)

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

298 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

Note, z(l)i (x) is a sum of i.i.d. random terms so that, as Nl → ∞, any finite
collection {z(l)i (x), l = 1, . . . , L} will have joint multivariate Gaussian distri-
bution, i.e,

z(l)i (x) ∼ GP (µ(l)(x),K(l)
(
x, x′

)
), z(l)i (x) =

(
z
(l)
i (x1), . . . , z

(l)
i (xn)

)
.

(19)

A general equation is now established to approximate the covariance for a
bivariate Gaussian process:

K(l)
(
x, x′

)
= E

{[
z
(l)
i (x)− E

(
z
(l)
i (x)

)] [
z
(l)
i (x′)− E

(
z
(l)
i (x′)

)]}
= E


b(l)i +

Nl∑
j=1

W
(l)
ij h

(l)
j (x)

b(l)i +

Nl∑
j=1

W
(l)
ij h

(l)
j (x′)


= σ2b + ΣW

Nl∑
j=1

E
[
h
(l)
j (x)h

(l)
j (x′)

]

= σ2b + ΣW

Nl∑
j=1

E
[
φ
(
z
(l−1)
j (x)

)
φ
(
z
(l−1)
j (x′)

)]
(20)

where the calculation of the expectation is a two dimensions Gaussian integral:

E
(
φ
(
z
(l−1)
j (x)

)
φ
(
z
(l−1)
j (x′)

))
=

∫ ∞
−∞

∫ ∞
−∞

φ
(
z
(l−1)
j (x)

)
φ
(
z
(l−1)
j (x′)

)
× p

(
z
(l−1)
j (x), z

(l−1)
j (x′)

)
× dz(l−1)j (x)dz

(l−1)
j (x′). (21)

Since: (
z
(l)
j (x)

z
(l)
j (x′)

)
∼ GP

(
µ(l)(x),K l

(
x, x′

))
(22)

then∫ ∞
−∞

∫ ∞
−∞

φ
(
z
(l−1)
j (x)

)
φ
(
z
(l−1)
j (x′)

) 1

2π|K| 12

× exp

{
−1

2

(
zj(x)(l−1) − µ(x), z

(l−1)
j (x′)− µ(x′)

)
K−1

(
zj(x)(l−1) − µ(x)

z
(l−1)
j (x′)− µ(x′)

)}
× dz(l−1)j (x)dz

(l−1)
j (x′).

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 299

Let

K−1 =
(√

K
T
)−1 (√

K
)−1

. (23)

Consider the following transformation:(
ξi1
ξi2

)
=
(√

K
)−1(zj(x)− µ(x)

zj(x
′)− µ(x′)

)
⇒
(√

K
)(ξi1

ξi2

)
=

(
zj(x)− µ(x)
zj(x

′)− µ(x′)

)
.

To simplify the notation, the following variable change is made:

zj(x) = zj(x)(l−1), zj(x
′) = zj(x

′)(l−1). (24)

√
Kξi1 = zj(x)− µ(x)⇒ zj(x) =

√
Kξi1 + µ(x)

⇐⇒ ξi1 =
zj(x)− µ(x)√

K
∼ N(0, 1)

and
√
Kξi2 = zj(x

′)− µ(x′)⇒ zj(x
′) =
√
Kv + µ(x′)

⇐⇒ ξi2 =
zj(x

′)− µ(x′)√
K

∼ N(0, 1).

The Jacobian of the transformation is:

J =

 ∂zj(x)
∂ξi1

∂zj(x)
∂ξi2

∂zj(x
′)

∂ξi2

∂zj(x
′)

∂ξi2

 =

(√
K 0

0
√
K

)
⇒ |J | = |K|

1
2 (25)

then

1

2π|K|
1
2

∫ ∞
−∞

∫ ∞
−∞

φ
(√

Kξi1 + µ(x)
)
φ
(√

Kξi2 + µ(x′)
)

× 1

2π
exp

(
−1

2

(
ξ2i1 + ξ2i2

))
|J |dξi1dξi2

=
1√
2π

1√
2π

∫ ∞
−∞

∫ ∞
−∞

φ
(√

Kξi1 + µ(x)
)
φ
(√

Kξi2 + µ(x′)
)

× exp

(
−1

2
ξ2i1

)
exp

(
−1

2
ξ2i2

)
dξi1dξi2

=
1√
2π

∫ ∞
−∞

φ
(√

Kξi1 + µ(x)
)

exp

(
−1

2
ξ2i1

)
dξi1

× 1√
2π

∫ ∞
−∞

φ
(√

Kξi2 + µ(x′)
)

exp

(
−1

2
ξ2i2

)
dξi2 .

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

300 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

The approximation of the last integral depends on the choice of the sigmoid
function φ(.).

In the case of deep neural networks, the transfer function φ(z) is a bounded
function where all moments are bounded. Then we can apply Central Limit
Theorem to show that the stochastic process is a Gaussian process, Williams
(1996) [27] and Lee et. al. (2018) [14].

Cho and Saul (2009) [5] developed a new family of covariance functions
which allows computing the correlation between two vectors x, z ∈ RNl . They
define the n−th order arc-cosine kernel function via the integral representation:

K(l)(x, z)=2

∫
1

(2π)
Nl
2

exp

(
−‖w‖

2

2

)
Θ(w .x)Θ (w .z) (w .x)l (w .z)l dw,

(26)

where Θ (t) = 1
2 (1 + sign(t)) denote the Heaviside step function. The inte-

gral representation (26) allows the kernel of covariance functions to be positive
definite, and that the dependence between x y z, can be written as:

K(l) (x, z) =
1

π
‖x‖l‖z‖lJl(θ) (27)

where all the angular dependence is captured by Jl(θ). The angular dependence
is given by:

Jl(θ) = (−1)l (sin θ)2l+1

(
1

sin θ

∂

∂θ

)l (π − θ
sin θ

)
. (28)

In particular, when l = 0, we have the angle between x and z. When l > 0, the
angular dependence is more complicated. Some terms of Jl(θ), are shown:

J0(0) = θ, J1(θ) = sin θ + (π − θ) cos θ,

J2(θ) = 3 sin θ cos θ + (π − θ)
(
1 + 2 cos2 θ

)
.

The arc-cosine kernel for l = 0, is represented by:

K(0) = 1− arccos−1
(

xz

‖x‖‖z‖

)
. (29)

Neural network models are strongly related to the kernel of functions defined
in (26), when considering the inner product between the different outputs of the
neural network as:

φ(x)φ(z) =
m∑
i=1

Θ(wi .x)Θ (wi .z) (wi .x)l (wi .z)
l (30)

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 301

wherewi denote i−th row of the weight matrixW andm is the number of output
units. In the limit, it can be seen that the equation (30) is equivalent to (26), Cho
and Saul (2009), [5]:

lim
m→∞

2

m
φ(x)φ(z) = K(l)(x, z). (31)

Also, Cho and Saul (2009) [5] proved that for a vector of inputs
x = (1, x1, . . . , xNl), their characteristics can be mapped by means of a non-
linear transformation φ(x), using kernel functions:

K(l)(x, z) = φ (φ (. . . φ(x)) .φ (. . . φ(z))) . (32)

The iterated equation (32) mimics a multilayer neural network, for example for a
one-layer neural network, K (x, z) = φ(x)φ(z). Cho and Saul (2009) [5] define
a recursive kernel through a new mapping of features through compositions such
as φ (φ(x)). In the case of a linear kernel K (x, z) = xz, the composition is
φ (φ(x)) = φ(x) = x, and for homogeneous polynomial kernels K (x, z) =
(xz)Nl ; the composition is:

K(x, z) = φ (φ(x)) .φ (φ(z)) = (φ(x)φ(z))Nl =
(

(x.z)Nl
)Nl

= (x.z)N
2
l .

(33)

Then we consider the composition of l layers based on the iterate defined in (32),
applying a mathematical induction the inductive step is given by:

K(l)(x, z) =
1

π

[
K(l−1)(x, x)K(l−1)(z, z)

] l
2
Jl

(
θ(l)
)

(34)

where θ(l) is the angle between x and y in the feature space:

θ(l) = cos−1

 K(l)(x, z)[
K(l)(x, x)K(l)(z, z)

] 1
2

 . (35)

Recently, a linear rectified function ReLU(t) = max(0; t), was successfully
used in neural networks as it carries the neuron signal better. ReLUs have the
desirable property that they do not require input normalization, Krizhevsky et al.
(2012) [12]. To compute the given integral (21), a rectified linear sigmoidal can
be used, Hazan et al. (2015) [9], which results in an analytical kernel given by

KReLU (xi, xj) =
‖xi‖‖xj‖

π
sin
(
cos−1 (ρij)

)
+
(
π − cos−1 (ρij)

)
ρij

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

302 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

where

ρij =
〈xi, xj〉
‖xi‖‖xj‖

, 〈xi, xj〉 =

∫ ∫
φ(xi)φ(xj)p (xi, xj) dxidxj .

To compute the entries of K(., .), let φ(t) = ReLU(t),(
z′1
z′2

)
∼ N (0,K) , 0 =

(
0
0

)
K =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
then

Ez′1,z′2
(
φ
(
z′1
)
φ
(
z′2
))

= h (σ1, σ2, ρ)

=
σ1σ2
π

sin
(
cos−1(ρ)

)
+ ρ

(
π − cos−1(ρ)

)
and K(1)

ReLU is given by h
(√

1+α‖xi‖,
√
1 +α‖xi‖, α

1+α

)
h
(√

1 + α‖xi‖,
√
1+α‖xj‖, α

1+α

〈xi,xj〉
‖xi‖‖xj‖

)
h
(√

1+α‖xi‖,
√
1+α‖xj‖, α

1+α

〈xi,xj〉
‖xi‖‖xj‖

)
h
(√

1+α‖xj‖,
√
1+α‖xj‖, α

1+α

) .
Iterating successively, we obtain:

K
(2)
ReLU (xi, xj) = Ez1,z2 (φ (z1)φ (z2)) ,

(
z1
z2

)
∼ N (0,K)

is a recursive equation of h with the appropriate parameters, see Hazan et al.
(2015) [9].

On the other hand, using GP prior functions allows Bayesian inference to
be made precisely to obtain predictions and estimate the uncertainty in deep
neural network models. The estimation of the parameters is not required through
training based on a gradient-type algorithm.

Under the Bayesian statistical approach, the weights and biases of the net-
work are generated following a probability distribution p(W|θ), where
(W = (W, b), represents the weights and bias, and θ = (α, β, ν,R) ∼ p(θ)
represents the hyperparameters, which can be integrated.

p (W) =

∫
p(W|θ)p(θ)dθ. (36)

Given a training sample D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where
x = (x1, . . . , xn)T and y = (y1, . . . , yn)T denote the input and output of the
network, respectively. Suppose now that we want to make a prediction with a

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 303

test data xnew using priors over funtions rather than weights z(x) = (z1, . . . , zn)
restricted to input values x. Then

p (znew|D, xnew) =

∫
p (znew|z, x, xnew) p (z|D) dz

=
1

p(y)

∫
p (znew, z|xnew, x) p (y|z) dz (37)

where y = (y1, . . . , yn)T are the targets on the training set, p(y) is a marginal
likelihood, and p (y|z) corresponds to observation noise. We will assume a noise
consisting of a Gaussian (y|z ∼ N(0, σ2ε)).

The importance of choosing priors over functions implies that z1, . . . , zn,
znew are generated from a Gaussian processes(

z
znew

)
∼ GP

[(
0
0

)
,

(
K (D,D) K (xnew,D)
K (D, xnew) K (xnew, xnew)

)]
.

Then the integral in (37) can be obtained exactly, since the marginal
distribution is:

znew|D, xnew ∼ N (µpost,Kpost) (38)

where

µpost = K (xnew,D)
(
K (D,D) + σ2ε In

)−1
y

and

Kpost = K (xnew, xnew)−K (xnew,D)
(
K (D,D) + σ2ε In

)−1
KT (xnew,D)

where In is the n × n matrix identity. The predicted distribution of znew|D,
x is clearly determined. Deep neural network training works using a Bayesian
approach. The covariance function is determined by choosing a prior Gaussian
process. In this case, the model depends on the depth, non-linearity of the trans-
fer function, weights and biases.

Finally, the results obtained through the estimation method by a neural net-
work approximated by a Gaussian process are compared with those obtained by
a neural network. The weights are optimized using Adam’s variant of stochastic
gradient descent (SGD) algorithm, using a loss function MSE,
Lee et. al. (2018) [14].

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

304 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

5 Experimental analysis

The experimental goal is to validate the performance of the proposed method in
diagnosing Alzheimer’s disease. Different experiments were executed, varying
the size of the input set, to view the accuracy difference when the input size
increased. As a reference point, this section compares the results of the proposed
method with multi-layer neuronal networks.

5.1 Data description

The data set was used by a previous investigation of Alzheimer’s disease (AD)
detection. AD is a progressive and irreversible brain disorder that causes mem-
ory problems, slowly destroying it until losing the ability to develop simple tasks.
A non-invasive method to study AD uses Electroencephalograms (EEGs) that
register the brain’s electrical activity. However, the EEG raw signals are chal-
lenging to classify directly. Martínez et . (2021) proposed to extract five signif-
icant features provided by public EGG experiments from https://osf.io/
jbysn/. In addition, for this study, we only considered the five critical features
mentioned in Table 2.

Table 2: Features extracted from the EEGs to identify the AD effects.

Notation Feature Name
HFD Higuchi Fractal Dimension
LZC Lempel Ziv Complexity
PSD Power Spectral Density
RP Relative Power
SE Sample Entropy

Each data set has 16 dimensions corresponding to each channel in an EGG
test registration. However, for Relative Power feature (plots in section 5.3), the
input size is 64. Also, there is an extra column for the label class in all files.

In this experiment, we cleaned up the data of significant features by
randomly removing data to leave the same number of labels for each class in
the data set. In total, 514 observations were considered, of which 85% were for
training data and the rest 15% for testing.

5.2 Experiment description

The main goal is to use the above data set to classify the positive and nega-
tive cases of Alzheimer’s disease. We use the classification models in Table 3.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

https://osf.io/jbysn/
https://osf.io/jbysn/

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 305

Figure 2: Experiment description diagram.

Each file was used to train the GP and NN models independently. That is, in to-
tal, results are obtained from 7 classification models (GP, NN = 5, NN = 10,
NN = 50, NN = 100, NN = 500, and NN = 1000). Comparing the per-
formance of GPs against neural networks changes parameters such as network
width, data set size and activation function. In each model, the training data size
for the learning process was changed; that is, n = 75, n = 100, n = 250 and
n = 436 observations are taken to train the model for each of the data-set sizes.
Similarly, all models are tested with the ReLu and Tanh activation functions.
Also, in neural networks, the width of the network is changed to compare its
performance against the Gaussian process. In Figure 2 there is a diagram that
explains the experiment for each data set.

Lastly, in the following repository there is a Python code implementation of
this work, and the data sets used, https://github.com/KrishnaRoman/
Deep-Gaussian-Processes

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

https://github.com/KrishnaRoman/Deep-Gaussian-Processes
https://github.com/KrishnaRoman/Deep-Gaussian-Processes

306 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

Table 3: Notation of the classification models used in this work.

Notation Model Name
NN-5 Neural Network with width 5
NN-10 Neural Network with width 10
NN-50 Neural Network with width 50
NN-100 Neural Network with width 100
NN-500 Neural Network with width 500
NN-1000 Neural Network with width 1000

5.3 Performance results

The results for the Relative Power feature are shown in Figure 3. Clearly, the
model that uses the proposed Gaussian Process has the best test accuracy.
This figure shows that the Neural Network models behave better with Tanh
activation function than Relu on this feature. While in the case of the GP there
is no significant difference. Additionally, the performance results on the other
features are shown in Table 4.

Figure 3: Relative power performance results.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 307

5.4 Error results

The predictive performance of Deep Gaussian Process (DGP) and Neural Net-
works (NN) models are evaluated using the following metric, Mean Squared
Error (MSE), defined by:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (39)

where ŷi indicates the predicted value, yi indicates the actual values, and n is the
number of predictions. The metric range is in [0,∞) and lower values indicate
better performance. It can be seen in Figure 4 for Relative Power that in terms
of error, the GP with the Relu activation function is the best, whereas the Neural
Network with 5-width is better in Tanh. Also, the error results on the other
features are shown in Table 4.

Figure 4: Relative power error results.

The metrics for all features and models were recorded in Table 4. In this case
only was considered the results with the highest dataset size that is 436.

6 Discussion and conclusions

Using a nonstochastic gradient-based training, we use EEG Signals for diag-
nosing Alzheimer’s Disease to test our GP’s behavior, which uses a hierarchical
Bayesian structure to model the weights and biases of a neural network, and
compare it with neural networks varying their widths. A general formula was
derived to evaluate the resulting integrals of Gaussian processes with non-linear

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

308 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

Table 4: Performance and error results for all features and models.

Dataset
Model Test Test Model Test Test
(ReLU) accuracy MSE (tanh) accuracy MSE
GP 0.935 0.0564 GP 0.948 0.1092
NN-10 0.935 0.0508 NN-10 0.883 0.0784LZC
NN-1000 0.961 0.0404 NN-1000 0.948 0.059
GP 0.987 0.0215 GP 0.974 0.0221
NN-10 0.935 0.0414 NN-10 0.961 0.0248RP
NN-1000 0.987 0.0243 NN-1000 0.974 0.0299
GP 1.000 0.0125 GP 0.987 0.0153
NN-10 0.961 0.0243 NN-10 1.000 0.0152HFD
NN-1000 1.000 0.0114 NN-1000 1.000 0.0178
GP 0.974 0.0246 GP 0.987 0.0245
NN-10 0.961 0.0244 NN-10 0.961 0.0215PSD
NN-1000 0.987 0.0157 NN-1000 0.974 0.0207
GP 1.000 0.0125 GP 0.987 0.0153
NN-10 0.961 0.0243 NN-10 1.000 0.0152SE
NN-1000 1.000 0.0114 NN-1000 1.000 0.0178

transfer functions, and obtained a kernel to update the covariance functions.
The proposed methodology was applied to the classification of EEG signals for
diagnosing Alzheimer’s disease, considering five data sets and estimating the
models varying size of the samples. This study showed that DGP can be used in
supervised learning and classification tasks. As mentioned in Lee et al. (2018),
we check that the GP behaves as a neural network with an infinite number of
neurons in the hidden layers. In general, all test accuracies were very high be-
cause the data set consisted on a limited number of patients and the work done
by Martínez-Arias (2020) [17] on feature extraction and selection.

In our experiments, we realize that inverse gamma distribution hyper-
parameters fixed well for the model learning process. The bias and weight vari-
ances are randomly chosen using these hyper-parameters, and it contributes to
evaluating the model performance. The results show that GP classifies well and
sometimes even better than neural network models. In this sense, we proved that
Deep Gaussian Model working with regression data is a Gaussian Process when
the neural network width tends to be infinite. Also, this model is more effec-
tive when the data size is more extensive. Another big difference between DGP
against traditional neural network models is the use of GP properties like precise
uncertainty estimates.

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 309

For future research, we expect to prove our DGP model to classify other
data types, such as crude data or images. Crude ECG signal data could be an
interesting scenario to use DGP model to organize positive cases of Alzheimer’s
disease. Also, analyze what role distribution hyper-parameters play in the model
with other data types.Finally, the integral Iz computed in section 4 may be used
to estimate the kernel using a different method that we proposed. This could be
another research to see which alternative method works better and to compare
the GP performance results.

Acknowledgements

We want to express our special thanks to the journal’s anonymous reviewers for
their suggestions to improve the manuscript. In the same way, we thank the
authors of the previous works who provided us with the data for our research.

Funding

We also thank the project Functional Data Analysis: Methods and Applications,
with registration REG-INV-19-04054, Yachay Tech.

References

[1] D. Abásolo, J. Escudero, R. Hornero, C. Gómez, P. Espino, Approximate
entropy and auto mutual information analysis of the electroencephalogram
in Alzheimer’s disease patients, Medical & Biological Engineering & Com-
puting 46 (2008), 1019–1028. Doi: 10.1007/s11517-008-0392-1

[2] D. Agrawal, T. Papamarkou, J. Hinkle, Wide neural networks with bottle-
necks are deep Gaussian processes, Journal of Machine Learning Research
21 (2020), no. 175, 1–66. Available from: Link

[3] N. Cedeño, G. Carillo, M.J. Ayala, S. Lalvay, S. Infante, Analy-
sis of chaos and predicting the price of crude oil in Ecuador us-
ing deep learning models, in: T. Guarda, F. Portela & M.F. San-
tos (Eds.) Advanced Research in Technologies, Information, Inno-
vation and Sustainability, part of Communications in Computer and
Information Science series 1485, Springer, Cham, 2021, 318–332.
Doi: 10.1007/978-3-030-90241-4_25

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

https://doi.org/10.1007/s11517-008-0392-1
https://jmlr.csail.mit.edu/papers/volume21/20-017/20-017.pdf
https://doi.org/10.1007/978-3-030-90241-4_25

310 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

[4] N. Cedeño, S. Infante, Estimation of ordinary differential equations
solutions with Gaussian processes and polynomial chaos expansion,
in: J.P. Salgado Guerrero, J. Chicaiza Espinosa, M. Cerrada Lozada,
S. Berrezueta-Guzman (Eds.) Information and Communication Technolo-
gies, part of Communications in Computer and Information Science series
1456, Springer, Cham, 2021, pp. 3–17. Doi: : 10.1007/978-3-030-89941-
7_1

[5] Y. Cho, L. Saul, L. Kernel methods for deep learning, in: Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams & A. Culotta (Eds.) Advances
in Neural Information Processing Systems 22 (2009), 342–350. Available
from: Link

[6] A. Damianou, N. Lawrence, Deep Gaussian processes, Proceedings of
the 16th International Conference on Artificial Intelligence and Statistics,
Scottsdale AZ, U.S.A. (2013), 207–215. Available from: Link

[7] A. Garriga-Alonso, C.E. Rasmussen, L. Aitchison, Deep convolutional
networks as shallow Gaussian procesesses, arXiv, 2019. 1808.05587
[stat.ML]. Doi: 10.48550/arXiv.1808.05587

[8] I. Goodfellow, Y. Bengio, A. Courville (2016). Deep Learning. The MIT
Press, Cambridge MA, U.S.A. http://www.deeplearningbook.org

[9] T. Hazan, T. Jaakkola, Steps toward deep kernel methods from
infinite neural networks, arXiv, 2015. 1508.05133 [cs.LG].
Doi: 10.48550/arXiv.1508.05133

[10] S. Infante, J. Ortega, F. Cedeño, Estimación de datos faltantes en estaciones
meteorológicas de Venezuela vía un modelo de redes neuronales, Revista
de Climatología 8, 51–70. Available from: Link

[11] M.E. Khan, A. Immer, E. Abedi, M. Korzepa, Approximate inference
turns deep networks into Gaussian processes, arXiv, 2019. 1906.01930
[stat.ML]. Doi: 10.48550/arXiv.1906.01930

[12] A. Krizhevsky, I. Sutskever, G. Hinton, Image net classification with deep
convolutional neural networks, in: F. Pereira, C.J. Burges, L. Bottou &
K.Q. Weinberger (Eds.) Advances in Neural Information Processing Sys-
tems 25 (2012), 1097–1105. Available from: Link

[13] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015),
no. 7553, 436–444. Doi: 10.1038/nature14539

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

https://doi.org/:
https://doi.org/10.1007/978-3-030-89941-7_1
https://doi.org/10.1007/978-3-030-89941-7_1
https://proceedings.neurips.cc/paper/2009/file/5751ec3e9a4feab575962e78e006250d-Paper.pdf
https://eprints.whiterose.ac.uk/103731/1/1211.0358v2.pdf
https://doi.org/10.48550/arXiv.1808.05587
http://www.deeplearningbook.org
https://doi.org/10.48550/arXiv.1508.05133
https://dialnet.unirioja.es/servlet/articulo?codigo=7417229
https://doi.org/10.48550/arXiv.1906.01930
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1038/nature14539

DEEP GAUSSIAN PROCESSES AND INFINITE NEURAL NETWORKS... 311

[14] J. Lee, Y. Bahri, R. Novak, S.S. Schoenholz, J. Pennington, J. Sohl-
Dickstein, Deep neural networks as Gaussian processes, arXiv, 2018.
1711.00165v3 [stat.ML]. Doi: 10.48550/arXiv.1711.00165

[15] M. Luca, G. Barlacchi, B. Lepri, L. Pappalardo, Deep learning for human
mobility: a survey on data and models, arXiv, 2020. 2012.02825 [cs.LG].
Doi: 10.48550/arXiv.2012.02825

[16] D.J.C. MacKay, Probable networks and plausible predictions. A re-
view of practical Bayesian methods for supervised neural networks,
Network: Computation in Neural Systems, 6 (1992), no. 3, 469–505.
Doi: 10.1088/0954-898X_6_3_011

[17] P. Martínez-Arias, R. Fonseca-Delgado, R. Salum, I. Amaro-Martín,
Alzheimer’s disease diagnosis system using electroencephalograms and
machine learning models, Iberian Journal of Information Systems and
Technologies. (2020) pp. 275–288. Available from: Link

[18] A.G. Matthews, M. Rowland, J. Hron, R.E. Turner, Z. Ghahramani,
Gaussian process behaviour in wide deep neural networks, arXiv, 2018.
1804.11271v2 [stat.ML]. Doi: 10.48550/arXiv.1804.11271

[19] D. Ming, D. Williamson, S. Guillas, Deep Gaussian process emula-
tion using stochastic imputation, arXiv, 2021. 2107.01590 [stat.ML]
Doi: 10.48550/arXiv.2107.01590

[20] A. Mosavi, S. Ardabili, A.R. Varkonyi-Koczy, (2020) List of deep learn-
ing models, in: A.R. Várkonyi-Kóczy (Ed.) Engineering for Sustain-
able Future, Springer Nature, Cham Switzerland, 2020, pp. 202–214.
Doi: 10.1007/978-3-030-36841-8_20

[21] R. Neal, Bayesian Learning for Neural Networks, Lecture Notes in Statis-
tics, Springer Verlag, New York, 1996. Doi: 10.1007/978-1-4612-0745-0

[22] R. Novak, L. Xiao, J. Lee, Y. Bahri, G. Yang, J. Hron, . . . , J.
Sohl-Dickstein, Bayesian deep convolutional networks with many chan-
nels are Gaussian processes, arXiv, 2019. 1810.05148v4 [stat.ML].
Doi: 10.48550/arXiv.1810.05148

[23] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learn-
ing, the MIT Press, Cambridge MA, U.S.A., 2006. Available from:
http://gaussianprocess.org/gpml/

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

https://doi.org/10.48550/arXiv.1711.00165
https://doi.org/10.48550/arXiv.2012.02825
https://doi.org/10.1088/0954-898X_6_3_011
http://www.risti.xyz/issues/ristie33.pdf
https://doi.org/10.48550/arXiv.1804.11271
https://doi.org/10.48550/arXiv.2107.01590
https://doi.org/10.1007/978-3-030-36841-8_20
https://doi.org/10.1007/978-1-4612-0745-0
https://doi.org/10.48550/arXiv.1810.05148
http://gaussianprocess.org/gpml/

312 K. ROMÁN — A. CUMBICUS — S. INFANTE — R. FONSECA-DELGADO

[24] H. Salimbeni, M. Deisenroth, Doubly stochastic variational inference
for deep Gaussian processes, arXiv, 2017. 1705.08933v2 [stat.ML].
Doi: 10.48550/arXiv.1705.08933

[25] A. Sauer, R.B. Gramacy, D. Higdon, Active learning for deep Gaussian
process surrogates, arXiv, 2021. 2012.08015 [stat.ME]. Accepted in Tech-
nometrics. Doi: 10.48550/arXiv.2012.08015

[26] S. Schoenholz, J. Gilmer, S. Ganguli, J. Sohl-Dickstein, Deep in-
formation propagation, arXiv, 2017. 1611.01232v2 [stat.ML].
Doi: 10.48550/arXiv.1611.01232

[27] C.K.I. Williams, Computing with infinite networks, in: M.C. Mozer and
M. Jordan & T. Petsche (Eds.) Advances in Neural Information Processing
Systems 9 (1997), 295–301. Available from: Link

[28] A.G. Wilson, P. Izmailov, Bayesian deep learning and a probabilis-
tic perspective of generalization, arXiv, 2020. 2002.08791v3 [cs.LG].
Doi: 10.48550/arXiv.2002.08791

[29] I.H. Witten, E. Frank, M.A. Hall, C.J. Pal, Data Mining: Practical Machine
Learning Tools and Techniques, 4th Edition. (2016)

[30] Z. Zhao, M. Emzir, S. Särkkä, Deep state-space Gaussian processes Statis-
tics and Computing. (2021), 31–75. Doi: 10.1007/s11222-021-10050-6

Rev.Mate.Teor.Aplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 29(2): 289–312, Jul–Dec 2022

https://doi.org/10.48550/arXiv.1705.08933
https://doi.org/10.48550/arXiv.2012.08015
https://doi.org/10.48550/arXiv.1611.01232
https://proceedings.neurips.cc/paper/1996/file/ae5e3ce40e0404a45ecacaaf05e5f735-Paper.pdf
https://doi.org/10.48550/arXiv.2002.08791
https://doi.org/10.1007/s11222-021-10050-6

	Introduction
	Deep neural networks
	Gaussian processes
	Deep neural networks and Gaussian processes
	Experimental analysis
	Data description
	Experiment description
	Performance results
	Error results

	Discussion and conclusions

