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40 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

Abstract

Let (G, +) be a finite abelian group and 3 < k < |G| a positive integer.
The k-barycentric Olson constant denoted by BO(k, G) is defined as the
smallest integer ¢ such that each set A of G with | A| = ¢ contains a subset
with k elements {a1,...,ax} satisfying a; + --- + a = ka; for some
1 < j < k. We establish some general conditions on G assuring the
existence of BO(k,G) for each 3 < k < |G|. In particular, from our
results we can derive the existence conditions for cyclic groups and for
elementary p-groups p > 3. We give a special treatment over the existence
condition for the elementary 2-groups.

Keywords: finite abelian group; zero-sum problem; baricentric-sum problem;
Davenport constant; k-barycentric Olson constant.

Resumen

Sean (G,+) un grupo abeliano finito y 3 < k < |G| un entero
positivo. La constante de Olson k-baricéntrica, denotada por BO(k, G),
se define como el menor entero positivo £ tal que todo conjunto A de G con
|A| = ¢ contiene un subconjunto con k elementos {ai,...,ar} que
satisface a1 +- - -+ay = ka; paraalgin 1 < j < k. Establecemos algunas
condiciones generales sobre G asegurando la existencia de BO(k, G) para
cada 3 < k < |G|. En particular, a partir de nuestros resultados podemos
determinar las condiciones de existencia para los grupos ciclicos y para
los p-grupos elementales con p > 3. Damos un tratamiento especial a la
condicién de existencia para los 2-grupos elementales.

Palabras clave: grupos abelianos finitos; problemas de suma-cero; problemas
de suma baricéntricas; constante de Davenport; constante k-baricéntrica
de Olson.

Mathematics Subject Classification: 11B30, 11B75, 94B05, 94B65, 51E22.

1 Introduction

We recall some standard terminology and notation. We denote by N the positive
integers and we set Ny = N U {0}. For abelian groups, we use additive notation
and we denote the neutral element by 0. For n € N, let C,, denotes a cyclic
group of order n. For each finite abelian group there exists 1 < ny | --- | n,
such that G = C)p,, @ --- @ C,,,.. The integer n, is called the exponent of G,
denoted exp(G). The integer r is called the rank of G, denoted r(G). For a
prime p, the p-rank of G, denoted r,,(G), is the smallest number 4 such that n; is
divisible by p. For a prime number p we denote by I, the field with p elements.
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EXISTENCE CONDITIONS FOR k-BARYCENTRIC OLSON CONSTANT 41

We say that GG is a p-group if its exponent is a prime power and we say that G is
an elementary p-group if the exponent is a prime (except for the trivial group).
Let GG be an abelian finite group. The sumset of two subsets A and B of G will
be denoted by A+ B = {a+b:a € A AN b € B}. We denote the sum
of the elements of a subset S of G by ¢(.5). Furthermore, for an integer k, let
Y p(A) ={c(B): BC A A |B| = k}. Finally, for ¢ an integer, we denote
by t - A the set of multiples ¢ - A = {ta : a € A}.

For a finite abelian group (G, +) and 3 < k < |G| a positive integer, the
k-barycentric Olson constant denoted by BO(k, G) is the smallest ¢ such that
each set A with |[A] = ¢ over G has a subset with &k elements {a1,...,ax}
satisfying a1 + --- + ap = ka; for some 1 < j < k. This set with k ele-
ments is called a k-barycentric set and a; is called its barycenter. Notice that a
k-barycentric set can be written as a weighted zero-sum set that is:

ar+---+(1—-Fk)aj+---+a,=0.

So that the k-barycentric Olson constant can be seen as a classical example of a
weighted zero-sum constant over a finite abelian group. This constant together
with related invariants have been studied in the literature [5, 6]. The aim of the
present work is to establish conditions on G for the existence of BO(k,G) < |G|
for each 3 < k < |G|. That is to say, foreach 3 < k < |G| there exists a
k-barycentric set.

Existence conditions of the k-barycentric Olson constant with
3 < k < |G| were initially considered in [14] with the study on cyclic groups
using the Orbits Theory. In [13] Ordaz, Plagne and Schmid researched on the
existence conditions of BO(k,G) with |G| — 2 < k < |G| over finite abelian
groups ( in general; their results were Lemma 1 and Proposition 1. In case there
are no k-barycentric sets in G we write BO(k,G) = |G| + 1.

Lemma 1 ([13], Lemma 3.1) Let GG be a finite abelian group. Then

(@) = b* ifro(G) = 1 and b* denote the only element with order 2,
T = 0 inother case.

Hence we have that:

Gl +1 ifro(G) =1,
|G|  in other case.

Bo(jc,¢) - {
The following result gives the values of BO(|G|—1, G) and BO(|G|—2,G).
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42 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

Proposition 1 ([13], Proposition 3.2) Let G be a finite abelian group. Then for
|G| > 2, we have:

Gl =1 ifra(G) =1,

BO(|G| - 1,G) = { |G|+ 1 in other case.

and for |G| > 3, we have:

|G| —2 if|G|is odd,
BO(|G| —2,G) =< |G|+ 1 ifexp(G)=20r|G| =4,
|G| — 1 in other case.

In the Lemma 1 is determine the conditions of existence of BO(|G|, G) and
in the Proposition 1 is determine the conditions of existence of BO(k, G) with
G| —2<k<|G|—1.

In the same order of ideas of the above results, the main goal of our paper is
to show that the finite abelian groups G with r5(G) = 0 and the finite abelian
groups G with r2(G) = 1 contain a k-barycentric set for each 3 < k£ < |G| — 3.
Notice that the cyclic groups C,, are members of these groups since r2(C,,) = 0
if and only if n is odd and r3(C,,) = 1 if and only if n is even. Similarly, elemen-
tary p-groups with p # 2, are members of the above groups since rg(C’;”) =0.
In consequence our results solve completely the existence conditions of the
k-barycetric Olson constant, for cyclic groups and for elementary p-groups. It is
clear that the elementary 2-groups are outside the above groups and then we have
a special consideration for its existence conditions for BO(k, C§"). As a second
goal in our investigation, for some G and k, we give an exact value for BO(k, G)
when it exists. For example, we show that BO(|G| — 3,G) = |G| — 2 for the
abelian groups G with 7o(G) = 1, |G| > 8 and non multiple of 3. Moreover, we
show that BO(3"™ — 3,C%") = 3™ — 2, in this case 72(C5") = 0.

The organization of the paper besides this introduction and the conclusion,
is as follows: a first section on preliminaries, a second section on existence
conditions for general finite abelian groups and finally, a third section on some
existence conditions for elementary 2-groups.
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EXISTENCE CONDITIONS FOR k-BARYCENTRIC OLSON CONSTANT 43

2 Preliminaries

In this section we give some previous and useful results.

Remark 1 Let G be a finite abelian group. Then
i. r2(G) = 0ifand only if |G| is odd.

ii. ro(G) = 1 implies that |G| is even. Let b* € G be the only element
of order 2. It is clear that for cyclic groups we have the equivalence
72(Cn) = 1 if and only if n is even. Also we have that m2(C}') = 0
for p # 2. Moreover; if t = ro(G) > 1, then |G| is even and G has 2° — 1
elements of order 2.

Proposition 2 Let G be a finite abelian group with |G| > 8 such that r3(G) = 1
and 3 1 |G|. Then.

i. —-3-G=G.
ii. Leta € Gand Sq = {x € G : 2x = a}. Then |S,| < 2.

Proof. i. Let ¢ : G — —3 - G be given by ¢(a) = —3a where
—3-G = {3(—a) : a € G}. Lety = 3(—a) € G, then exits a € G such
that ¢(a) = —3a = 3(—a) = vy, therefore ¢ is surjective. Assuming that
¢(a1) = ¢(az), then —3a; = —3aq, so that, 3(a; — az) = 0. Since 3 1 |G, then
a; = ag, i.e., ¢ is injective. Then |G| = | — 3 - G|. Since —3 - G C G and G is
finite, then -3 - G = G.
ii. Assuming we have three different elements ai,as,a3 € S,
then 2a; = 2ay and 2a; = 2as, in consequence 2(a; — az) = 0 and
2(@1 — a3) =0.

Since a1, as, ag are different, then a1 —as = b* and a1 —ag = b*, where b* is
the only element of order 2 in G. Hence as = a3, contradiction.
Sothat [Sy| < 2. m

We have the following result:
Proposition 3 If m > 2, then 3™ — 2 < BO(3™ — 3,C%").

Proof. Let A = C"\ {—a, —b,0} be a (3™ — 3)-subset over C%" with a+b # 0.
Since 0(C4") = 0 and 0(C5") = 0(A) + 0(A®) where A° = {—a, —b,0}, then
0(A) = —0(A°) = 0(A) = —(—a—b+0) = o(A) = a+ b # 0. Moreover
we have that (3™ —3)a = (3™ —3)(3a) = (3™ 1-1)0 =0foralla € A C C*
since 3z = 0 for all x € C%". Therefore, there exists a (3" — 3)-subset A over
C3" such that 0(A) # (3™ —3)aforalla € A,ie.,3™ -2 < BO(3™—-3,C%").
[
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44 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

We need the following result:

Proposition 4 Let A be a k-subset of C3* such that 3 < k < 2™,
i. Ifk is even, then A is a k-barycentric set if and only if c(A) = 0.
ii. Ifk isodd, then Ais a k-barycentric set if and only if 0(A) € A.
iii. Let A® = C3"\ A the complement of A, then |A| = 2™ — |A°|.
. 0(A) =o(A°).
v. 0¢ > ,C
Proof. It follows directly. m

The following lemma guarantees the existence of k-sets of zero-sum with
4<k< % — 1 in a finite abelian group.

Lemma 2 ([3], Lemma 7.1) Let G be a finite abelian group de orden |G| > 2.

1. There exists a squarefree zero sequence S € F(G) with |S| = |G| — 1.

2. Let0# gy e Gand1 <k < @ — 1 with k # 2, if G is an elementary 2-
group. Then there exist a squarefree zero sequence S € F(G) with go t S
and |S| = k.

The following corollary is a consequence of the above lemma.

Corollary 1 Ler G is an elementary 2-group de orden |G| > 3 such that
0#x € Gand4 < k < % — 1. Then there exist a k-set A of zero-sum
in G such that x ¢ A.

3 Ecxistence conditions of BO(k, G) for general abelian
groups

Let G be a finite. In the following two theorems, the values r2(G) = 0 or
r2(G) = 1 are considered to give an existence condition in the order G to have
a k-barycentric set, for each 3 < k < |G| — 3. Notice that from Remark 1 the
parity of |G| is used and depends on r2(G) = 0 or 72(G) = 1. Observe that
the fact r9(G) = 0 means that for each ¢ € G we have —g # g. The results
provided in this section allow us to establish the existence of BO(k,G) with
3 < k < |G| — 3 for cyclic groups and elementary p-groups. A relationship

Rev.Mate.TeorAplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(1): 39-53, Jan—Jun 2021



EXISTENCE CONDITIONS FOR k-BARYCENTRIC OLSON CONSTANT 45

between the Harborth ¢g(G) and the k-barycentric Olson BO(k,G) constants
is presented. From these relations, we give exact values of BO(k, G) for some
groups where g(G) exists. Finally we identify some conditions on certain groups
G in order to provide the exact values of BO(|G| — 3, G).

Theorem 1 Let G be a finite abelian group such that ro(G) = 0 and
3 <k <|G|-3. Then BO(k,G) < |G]|.

Proof. Assuming |G| > 9. Let A be a zero-sum set of G such that |A| = 3
with 0 ¢ A and we consider B = {—a : a € A}. Notice that the sets A U {0},
A\{a} UB\ {—a}} U {0} for some a € A and AU B U {0} over G are
k-barycentric, then BO(k,G) < |G| fork =4,5y 7.

Let C = G\ (AU B U {0}). Notice that since |G| > 9 and also odd then
|C| > 2 is even. Moreover for all ¢ € C we can see that —c € C, assuming the
contrary, we have a contradiction. Hence there exists £ C C'with2 < |E| < |C|
conformed by elements @ and its opposite. Since |E| is even then £ U A U {0}
or EUAUBU{0} constitute the k-barycentric sets even or odd with barycenter
0, over G. Notice that 6 < k < |G| — 3 with k # 7.

Moreover, since for all 0 # g € G the set {g, —g,0} over G is a zero-sum
then BO(3,G) < |G].

Now, we consider the finite abelian groups G of order 3, 5 and 7.
Observe that these groups are cyclic. In what follows we consider the exist-
ence of BO(k,G). By Lemma 1 we have that BO(3,C3) = 3, BO(5,C5) =5
and BO(7,C7) = 7. Moreover by Proposition 1 we have that BO(4,C5) and
BO(6, C7) does not exist and BO(3,C5) = 3 and BO(5,C7) = 5. Moreover,
the 4-subset A = {0,1,2,4} over C7 a zero-sum and 0 € A, in consequence
BO(4,C%) < 7and for all 0 # a € C7 the 3-subset A = {0, a, —a} a zero-sum
and 0 € A, hence BO(3,C7) <7. m

The following two corollaries are a direct consequence of the above theorem.

Corollary 2 Let C, be a cyclic group such that ro(Cy,) = 0 and
3<k<n-—3.Then BO(k,C,) <n.

Corollary 3 Let C} be a elementary p-group such that ro(C)') = 0 and
3 <k < p™ — 3. Then BO(k,C") < p™.

Theorem 2 Let G be a finite abelian group such that ro(G) = 1 and
3 < k < |G| — 3 a positive integer. Then BO(k,G) < |G].
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46 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

Proof. Assuming |G| > 8. Let b* € G the only element of order 2. Let A be a 3-
subset with zero-sum over G such that b* € A, 0 ¢ A and
B = {—-a:a € A} \ {b*}. Itis clear that the sets A U {0} and A \ {0*} U
B U {0} over G are barycentric with barycenter 0. Hence BO(k,G) < |G|
for kK =4 and 5.

Consider now, the set C = G \ (AU B U {0}). By Remark 1 G is even
and then since |[A U B U {0}| = 6 we have that |C| > 2 is even. Moreover for
each ¢ € C' we have —c € C, assuming the contrary we have a contradiction.
Therefore there exists £ C C' with zero-sum and 2 < |E| < |C| conformed by
elements in C' and its opposite. Hence the sets U AU {0} and EU A\ {b*} U
B U {0} give the k-barycentric sets over G, k even and odd with barycenter 0
such that 6 < k < |G| — 3.

Moreover, since for all b* # g € G the set {g, —g,0} of G has zero-sum
then BO(3,G) < |G].

Now, we consider the finite abelian groups G of order 4 and 6. Observe that
these groups are cyclic. In what follows we consider the existence of BO(k, G).
By Lemma 1| we have that BO(4, C4) and BO(6, Cg) does not exist. Moreover
by Proposition 1 we have that BO(3,Cy) = 3 and BO(5,Cg) = 5. Moreover,
for all 3 # a € Cg the 3-subset A = {0,a,—a} a zero-sum and 0 € A, hence
BO(3, 06) <6. m

The following corollary is a consequence of the above theorem.

Corollary 4 Let C), be a cyclic group such that ro(Cy,) = land3 < k < n—3.
Then BO(k,C,) < n.

Theorem 3 Let G be a finite abelian group with |G| > 8, ro(G) = L and 3 1 |G/.
Then BO (|G| — 3,G) = |G| — 2.

Proof. Let b* € G be the only element with order 2. Let A C G be such that
|Al = |G| — 2. Assuming that A = G \ {ai,a2} and consider
B = A\ [{b* + 2a; — a2,b* + 2a2 — a1} U Syy+ay—p+]. Since |G| > 8 then
|B| = |A] =2 —|Sa,+ag—b*| > (|G| —2) —2—2 = |G| —6 > 0. Hence B # ).

Let b € B C A be and consider the (|G| — 3)-subset A \ {b} of A and
we will see that A \ {b} is a (|G| — 3)-barycentric set of A. We have that
o(A\{b}) = 0(A)—0o(b) = 0(G)—a1—az—b = b*—a; —az—b. Moreover, by
Proposition 2 we have —3-G = G, then 0 (A\{b}) = b* —a; —as—b = —3cfor
some ¢ € G. Ifc = aj, thenb = b*+2a1—as ¢ B, contradiction. If ¢ = ag, then
b=b*+2as—a; ¢ B, contradiction. if ¢ = b, then 2b = a; + as — b*, in conse-
quence b € Sy, +a,—+ € B, contradiction. Hence, ¢ € G\ {a1, az, b} = A\ {b}
and therefore o(A \ {b}) = b* —a1 — a2 — b = =3c = (|G| —3)¢, for
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some ¢ € A\ {b}. Hence A\ {b} is a (|G| — 3)-barycentric set of A, i..,
BO (|G| - 3,G) < |G| — 2.

Now we see, |G|—2 < BO (|G| — 3,G). Consider the set B = G\ [{0, b* }U
Sp+]. Since |G| > 8 then, |B| = |G| —2 — |Sp+| > |G| =2 —-2=|G| —4 > 0.
So that B # ().

Let b € B be, then 2b # b and 2b # b* since if 20 = b*,b € Sp+. Consider
A = G\ {b*,b,2b}, then |A| = |G| —3 and 0(A) = o(G \ {b*,b,2b}) =
o(G)=b*—b—2b=0b*—b"—b—2b= —3b.If 6(A) = —3c for some ¢ € A,
then —3b = —3c, in consequence b = c, this is a contradiction with the fact
that b ¢ A, that is to say, A it is not a (|G| — 3)-barycentric set of G. So that
|G| —2 < BO (|G| — 3,G). Therefore, BO (|G| —3,G) = |G| —2. m

The following corollary is a consequence of the above theorem.

Corollary 5 Let C,, be a cyclic group with n > 8, ro(C,) = 1 and 3 t n.
Then BO (n—3,G) =n — 2.

Theorem 4 Let m > 2 be then we have that BO(3™ — 3,C%") = 3™ — 2.

Proof. By Proposition 3 we have that 3™ — 2 < BO(3™ — 3,C%"). Let Abe a
(k—2)-subset over C5". If 0(A) € A, then the (3™ —3)-subset B = A\ {c(A)}
of A is a zero-sum. So that 0(B) = 0 = (3™ — 3)b for each b € B. Hence
B =A\{o(A)}isa (3™ — 3)-barycentric set.

Assuming that o(A) ¢ A, then o(A) € A° where A° is a 2-subset over
C%". In consequence A° = {o(A),a} with 0(A) # a. Since o(C5*) = 0 and
o(CF") = o(A) + 0(A°), then 0(A°) = —0(A) = 0(A) +a = —0(A) =
a+20(A) =0=3a = a=0(A), acontradiction with the fact that 0 (A) # a.
Therefore, BO(3™ —3,C5") =3 —2. m

In what follows we consider the Harborth constant and we give its relation-
ship with the k-barycentric Olson constant.

Definition 1 Let G be a finite abelian group. The Harborth constant, denoted
9(G), is defined as the smallest positive integer { such that each set A C G with
|A| = ¢ contains a subset B with |B| = exp(G) with zero-sum.

The following remark and theorem establishes a relationship between the
Harborth constant and the zero-sum problem.

Remark 2 Kemnitz showed g(C3) = 2p—1 forp € {3,5,7} in [9]. In particu-
lar, g(C%) = 5. More recently Gao and Thangadurai [4] showedg(Cg) =2p—1
for prime p > 67 and g(C2) = 9. In [2] we can find other values for ele-
mentary 3-group; for example g(C3) = 10, g(C3) = 21, g(C3) = 46 and
112 < g(C8§) < 114[1,7, 8, 12].
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48 L. MARCHAN — O. ORDAZ — J. SALAZAR — F. VILLARROEL

Theorem S ( [11], Theorem 1.1)

2n+ 2 ifnis even,

9(Co ® Cyy) = { 2n+ 3 ifnis odd.

The following result determines the exact values of BO(exp(G), G) in finite
abelian groups G where g(G) there exists.

Theorem 6 Letr G  be a finite abelian group where  g(G)  exists.
Then BO(exp(G), G) = g(G).

Proof. Let A C G be such that |A| = ¢g(G), then there exits B C A with
| B| = exp(G) such that o(B) = 0. Therefore 0(B) = 0 = exp(G)b for all b €
B. Hence B is a (exp(G))-barycentric subset of A, so that BO(exp(G),G) <
g(G). Assuming that A C G with |[A| = BO(exp(G),G), then A contains a
(exp(G))-subset such that o(B) = (exp(G))b = 0 for all b € B. So that B is
a (exp(G))-subset with zero-sum of A, that is to say g(G) < BO(exp(G), G).
Therefore, BO(exp(G),G) = g(G). =

The following result gives the exact values of BO(exp(G) + 1, G) for finite
abelian groups where g(G) exists and g(G) > exp(G) + 1.

Theorem 7 Let G be a finite abelian group such that g(G) exists and
9(G) > exp(G) + 1. Then BO(exp(G) + 1,G) = g(G).

Proof. Let A C G be such that |A| = ¢g(G) > exp(G) + 1, then there exists
B C A with |B| = exp(G) such that 0(B) = 0. Now, since |A| > | B|+1, then
there exist some a € A\ B. Let C = B U {a} be then |C| = exp(G) + 1 and
we have that 0(C) = o(B)+oc({a}) =0+a=a=0+a=exp(Gla+a =
(exp(G) + 1)a. Therefore C'is a (exp(G) + 1)-barycentric subset of A, hence,
BO(exp(G) +1,G) < ¢g(G).

Assuming that A C G such that |A| = BO(exp(G) + 1, G), hence there
exists B C A such that| B| = exp(G) + 1, hence o(B) = (exp(G) + 1)b with
b € B. Let C = B\ bbe a (exp(G))-subset of A such that

0(C) =0o(B)—o{b} = (exp(G) +1)b — b = exp(G)b+ b — b = 0. Therefore
C C A is a (exp(G))-subset with a zero-sum, in consequence
9(G) < BO(exp(G) + 1,G). Therefore, BO(exp(G) + 1,G) = ¢g(G). m

The following corollary is a consequence of Theorem 6 and Remark 2.

Corollary 6
BO(3,02) = 5, BO(3,C3) = 10, BO(3,C%) = 21,BO(3,C3) = 46 and
112 < BO(3,C%) < 114.

Rev.Mate.TeorAplic. (ISSN print: 1409-2433; online: 2215-3373) Vol. 28(1): 39-53, Jan—Jun 2021



EXISTENCE CONDITIONS FOR k-BARYCENTRIC OLSON CONSTANT 49

The following corollary is a consequence of Theorem 7 and Remark 2.

Corollary 7

BO(4,C3%) = 5, BO(4,C3) = 10, BO(4,C%) = 21, BO(4,C3) = 46
and 112 < BO(4,C%) < 114.

The following corollary is a consequence of Theorem 7 and Remark 2.

2n 4+ 2 ifnis even,

Corollary 8 BO(2n,Cy @ Coy,) = { Mm+3 ifnisodd

The following corollary is a consequence of Theorem 7 and Theorem 5.

2n+ 2 ifniseven,

Corollary 9 BO(2n+1,Cy & Cyy,) = { M43 ifnisodd

Theorem 8 ([13], Theorem 4.2) Let p > 7 be an prime number and
et < | < p—3. Then BO(k,Cp) = k + 1.

Theorem 9 ([/13], Theorem 4.3) Let p > 7T be an integer prime number and
k= %. Then

k+ 1 ifthe multiplicity order of 2 module p is odd

BO(k, Cy) —{ k+2 ifitiseven.

4 Existence conditions of BO(k, G) for elementary
2-groups

Let C'J* be an elementary 2-group of order 2. From the results cited in [13] we

have that: BO(2™,Cy') = 2™, BO(2™ — 1,C3") = 2™ + 1 and

BO(2™—2,C4") = 2™+1. In this section we study the existence of BO(k, C5")

for 3 < k < 2™ — 3. In some cases when BO(k,C3") exists,

we give its exact value.
The following result is a consequence of Proposition 4 and Corollary 1.

Corollary 10 Let k be an even integer such that 4 < k < 2™~' — 1. Then
BO(k,C3") < 2™,

The following result provides the existence of BO(2™~1 Ci).

Theorem 10 BO(2™~ 1 CI*) < 2™,
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Proof. Assuming that BO(2™~1, CI") = 2™ + 1, i.e., each (2™ ~!)-subset A of
C verifies o(A) # 0 and 0(A€) # 0. If 0 € A, then the (2™~! — 1)-subset
B = A\ {0} verifies that o(B) # 0, that is to say, there is no (2™~ ! — 1)-
subset B with zero-sum over C*. Else 0 € A€, then the (2! — 1)-subset
C = A°\ {0} verifies that o(C) # 0; hence, there is no (27! — 1)-subset
C with zero-sum over C3"; then a contradiction with Lemma 2. Therefore,
BO(2m~L Ci)y < 2™ m

The following result gives the existence of BO(k,C%") for even k and
242 <k <2m—4

Theorem 11 Let k be an even number such that 21 +2 < k < 2™ — 4. Then
BO(k,C3") < 2™,

Proof. Assuming that BO(k,C3") = 2™ + 1, i.e., each k-subset A over C3" is
not barycentric, in consequence o(A) # 0 and o(A€) # 0. Notice that |A¢| =
2™ — k is an even integer and we have that 4 < 2" — f < 2m=1_ 1 So that oy
does not contain a (2™ — k)-subset A¢ with zero-sum, therefore a contradiction
with Corollary 10. So that, BO(k,C5") <2™. m

The following results follow from the last three results .

Corollary 11 Let k be an even integer such that 4 < k < 2™ — 4. Then
BO(k,Cy") < 2™,

In order to complete the existence of BO(k,C3"), we need to show that
BO(k,C%") < 2™ for all even integers 3 < k < 2™ — 3.
The following result shows the inexistence of BO(3, C3").

Theorem 12 BO(3,C3") = 2™ + 1.

Proof. Assuming that BO(3,C%") < 2™, that is to say, there exists a
3-subset A in C§* such that 0(A) € A. Let B = A\ {0(A)} be a 2-subset
in C3" such that o(B) = 0 € >, C3"; therefore a contradiction with proposi-
tion 4.v. Hence, BO(3,C5") =2"+1. m

The following result gives the exact values of BO(2™ — 3, C3").
Theorem 13 BO(2™ — 3,C%") = 2™ — 3.
Proof. Assuming that BO(2™ — 3,C%") = 2™ + 1, i.e., each (2™ — 3)-subset

A over C%" is not barycentric, in consequence o(A) ¢ A; hence o(A) € A°.
Since 0(A) = o(A°), then o(A¢) € A°. So that, there exists a barycentric
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3-subset A€ in C4", that is to say, BO(3,C4") < 2™; hence a contradiction with
the fact that BO(3, C%") = 2™ + 1. Therefore, BO(2™ —3,C%") =2" —3. m

To finalize the discussion on the existence conditions of BO(k, C3") for the
odd integers kin 5 < k < C3" — 5 we will use the following results:

Proposition 5 Let k be an even number and BO(k,CY") = q. Then q > k.

Proof. Assuming that BO(k,C3") = k, i.e., for each k-subset A over C§" we
have that 0(A) = 0. Let A be a k-barycentric set over C%" such that 0 € A and
consider the (k — 1)-subset B = A\ {0} over C3", hence 0(B) = o(A) = 0.
Let 0 # ¢ € B¢ be and consider the k-subset D = B U {c} over C%", hence
o(D) =o0(B)+o({c}) =0+ c = ¢ # 0. Therefore there exists a non barycen-
tric k-subset D over C3'. Hence a contradiction with the fact that
BO(k,C%") = k. In consequence, ¢ > k. m

Theorem 14 Let k be an even integer such that 4 < k < 2™ — 4. If
BO(k,C3") = q, then BO(k +1,C%") = q.

Proof. Let A be a g-set over C2, and B a k-subset over A such that
o(B) = 0. Since |A| = ¢ > k = |B|, then there exists a € A\ B. Let us
consider the set C = B U {a}, notice that it is a (k + 1)-subset over A such
that 0(C) = 0(B) + 0({a}) = 0+ a = a with a € C, that is to say, C'is a
barycentric (k + 1)-subset in A. Hence BO(k + 1,C%") < gq.

Assuming that A is a subset over C2, such that |[A] = BO(k + 1,0%),
then A contains a (k + 1)-subset B such that o(B) = (k+ 1)b = kb+b =
0+ b = bforsomeb € B. Let C = B\ {b} be the k-subset of A such that
o(C) =0(B)—o({b}) = b— b= 0. Hence C is a barycentric k-subset in A,
ie.,q < BO(k+1,C3"). Hence, BO(k+1,CJ") =¢. m

The following result is a direct consequence of the above theorem.

Corollary 12 Let k be an odd integer such that 5 < k < 2™ — b,
Then BO(k,C3") < 2™,

The following result proves the increase of the values of BO(k,C4") when
kisoddand 4 < k < 2™ — 3.

Proposition 6 Let k be an odd integer in 4 < k < 2™ — 5. If BO(k,C3") = 1
and BO(k +1,C3") = qo, then q1 < qo.
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Proof. Assuming that ¢o < ¢;. Let A be a g2-set over C'y* and B a barycentric
(k + 1)-subset of A, that is to say, o(B) = 0. Let b € B be and consider the
k-subset C = B\ {b} so that o(C) = o(B) —o({b}) = 0—-b = —b = b,
i.e., C is a barycentric k-subset of A. Hence BO(k,C5") < g2 < qi, then a
contradiction with the fact that BO(k, C3") = q;. Therefore, ¢; < g2. m

The following result is a direct consequence of the above
result and Theorem 14.

Corollary 13 Letr k be an integer such that 4 < k < 2™ — 4,
Then BO(k + 1,C%") > BO(k,C3").

5 Conclusions

The goal of the present paper was to continue with the work in [13] for
3 < k < |G| — 3. Our present main results are Theorem 1 and Theorem 2.
The consequence of these two theorems were the complete existence conditions
of cyclic groups and elementary p-groups. Moreover, in Section 4 the existence
conditions for elementary 2-groups of our constant BO(k,G) was completely
determined. The problem of the existence of BO(k, G) for all abelian groups G
remains open, and also the problem of assigning exact values of the k-barycentric
Olson constant when BO(k, ) exists; some examples are the interesting results
given in Theorem 3 and Theorem 4. The relation between the Harborth and the
k-barycentric Olson constants established in this paper could be a good option
to provide their exact values.
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