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Abstract

This paper introduces two variants of a multiple criteria scatter search to deal with
nonlinear continuous and combinatorial problems, applying a tabu search approach as
a diversification generator method. Frequency memory and another escape mechanism
are used to diversify the search. A Pareto relation is applied in order to designate
a subset of the best generated solutions to be reference solutions. A choice function
called Kramer Choice is used to divide the reference solution in two subsets. Euclidean
and Hamming distances are used as measures of dissimilarity in order to find diverse
solutions to complement the subsets of high quality current Pareto solutions to be
combined. Linear combination and path relinking are used as a combination methods.
The performance of these approaches are evaluated on several test problems taken from
the literature.

Keywords: Multiple objectives, metaheuristics, tabu search, scatter search, nonlinear
optimization.

Resumen

Este art́ıculo introduce dos variantes de búsqueda dispersa multiobjetivo para pro-
blemas continuos y combinatorios, aplicando un enfoque de búsqueda tabú como un
método generador de diversificación. Una memoria de frecuencia y otros mecanismos
de escape para diversificar la búsqueda son utilizados. La relación Pareto es aplicada
para designar un subconjunto de las mejores soluciones como conjunto de soluciones
de referencia. Una función de selección llamada selección de Kramer es usada para
dividir las soluciones de referencia en dos subconjuntos. Las distancias Euclidianas y
Hamming son utilizadas como medida de desemejanza para hallar soluciones diversas
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como complemento de las soluciones actualmente Pareto a ser combinadas. Com-
binaciones lineales y reencadenamiento de trayectorias son usadas como métodos de
combinaciones. El desempeño de estos enfoques es evaluado sobre varios problemas
de prueba tomados de la literatura.

Palabras clave: Objetivos múltiples, metaheuŕısticas, búsqueda tabú, búsqueda dis-
persa, optimización no lineal.

Mathematics Subject Classification: 90C29, 90B50.

1 Introduction

The solving of multiobjective problems has been a continuing effort by researchers of diffe-
rent disciplines. Many powerful techniques for solving difficult single objective problems
have been developed. Their fundamental algorithmic structures can also be applied to
solving many multiobjective problems. Among these algorithms raise the multiobjective
metaheuristics.Different techniques appears in the literature, for example Vector Evalua-
ted Genetic Algorithm (VEGA) (Schaffer,1985), Multiple Objective Genetic Local Search
(MOGLS) (Jaszkiewicz,1998),Micro Genetic Algorithm (Coello, 2001), NSGA-II (Deb et
al., 2000), SPEA2 (Zitzler, 2001). This paper presents two variants of a multiobjective
scatter search, as extensions of (Beausoleil, 2001, 2002, 2003) applied to a multiobjective
job shop problem and nonlinear continuous problems. An adaptation of tabu search
for nonlinear optimization to a multiobjective environment is used to generate an initial
set of diverse non-inferior solutions. Also this adaptation is extended to incorporate a
scatter search approach in order to improve these solutions toward the Pareto frontier.The
proposed algorithms incorporates strategies for diversification in order to obtain a widely
spread of solutions in the objective space and choice function to split the reference set in
two subset of Pareto solutions.

The organization of the paper is as follows. Notation and general methods are treated
in the section 2. Section 3 presents a nonlinear multiobjective tabu search approach. Sec-
tion 4 is devoted to scatter search applied to nonlinear optimization. In section 5 a scatter
search for a multiobjective combinatorial problem is presented. Section 6 gives compu-
tational experiments. Section 6 contains a combinatorial problem. Section 6 contains
conclusions.

2 Notation and general methods

Formally, we can state a quantitative decision making problem as follows. Decisions have
a quantitative character, a decision(or solution) x ∈ Ex, where Ex denotes a decision
space, and X ⊆ Ex is a set of admissible decisions. We have functions f1, f2, . . . , fr,
defined over a set of situations X × <, where < is a finite set of uncertain factors values.
Then for each situation (x, σ), where x ∈ X and σ ∈ <, we have a vector function
F (x, σ) = (f1(x, σ), f2(x, σ), . . . , fr(x, σ)). For deterministic problems the vector function
F (x) determines the quality of the decision x.



scatter search applied to multiobjective combinatorial optimization 153

2.1 Non–dominance

We will refer to an objective function vector as a point. The point F (x) dominates the
point F (x′) if and only if F (x) ≥ F (x′) and F (x) 6= F (x′) (i.e. if fk(x) ≥ fk(x′),∀k and
fk(x) > fk(x′) for at least one objective k). The point F (x) is dominated by the point
F (x′), if the point F (x′) dominates the point F (x). If a point is not dominated by another
point, it is called a non-dominated point.

Solution x is superior to solution x′ if the point F (x) dominates the point F (x′).
Solution x is inferior to solution x′ if the point F (x′) dominates the point F (x). If the

point F (x) is non-dominated, then x is non-inferior.
The set of all non-inferior solutions is sometimes refereed to as the Pareto Optimal

Set. The set of all non-dominated points in the objective space is refereed to as the Pareto
Frontier.

2.2 Choice function

In order to obtain a reference set of solutions that encourages the search toward the Pareto
frontier, an optimality principle is used: “Selection by a number of dominant criteria” [13].

For all x, y ∈ X, let q(F (x), F (y)) be the number of criteria for which the decision
variable y improves the decision variable x, then QX = maxy∈X q(F (x), F (y)), x ∈ X can
be seen as a discordance index if x is assumed to be preferred to y. Then the Kramer
Choice function is defined as follows: CK(X) = {x′ ∈ X|QX(x′) = minx∈X QX(x)}.

2.3 Referenced sets

We define the following sets:

S a set of trial solutions, from which all others sets derive.

P a Pareto set, constituted of non-inferior solutions of S.

R1 a set of high-quality non-inferior solutions subset of P .

R2 a difference set between P and R1.

R a set of current reference solutions, constituted by the union of R1 and R2.

T an ordered set of tabu solutions, composing a subset of R excluded from consideration
to be combined during t generation.

T1 an ordered set of tabu solutions, composing a subset of R excluded from consideration
to be combined during t1 generation .

Y a diverse subset of the set R.

Ω(Y ) a set of combined solutions, created from a given set Y .
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Also, CK is the Kramer choice function and CK(P ) is the set of selected elements of P .
The reference set is constructed with the union of R1 and R2, where R1 = CK(P ) and
R2 = P \ CK(P ). Let b be the larger size of the trial solutions set, b1 the larger size of
the reference set, and b2 the larger size of Pareto-know set.

2.4 Search by goals

Our implementations use as move attributes the variables that change their values as
result of the move. We represent change represented by a difference of values fk(x′) − z∗k,
∀k = 1..r, x′ ∈ X where x′ was generated from x by a recent move, x is a current solution
and Z∗ is a reference point, Z∗ = (z∗1 , . . . , z∗r ).

A thresholding aspiration is used to obtain an initial set of trial solutions S as follows:
without loss of generality, assume that every criteria is maximized. Notationally, let
∆f(x′) = (∆f1(x′), . . . ,∆fr(x′)) where ∆fk(x′) = fk(x′) − z∗k, k ∈ {1, . . . , r}.

Let

∆fk(x′) =





preference if ∆fk(x′) > 0,
indifference if ∆fk(x′) = 0,
nonpreference if ∆fk(x′) < 0,

A goal is satisfied, permitting x′ to be accepted and introduced in S if (∃∆fk(x′) =
preference) or (∀k ∈ {1, . . . , r}[∆fk(x′) = indifference]), otherwise it is rejected.

The point Z∗ is updated, in each iteration of tabu search, by z∗k = max fk(x′),
∀k ∈ {1, . . . , r}, x′ ∈ S.

2.5 Weighted sum approach

In order to measure the quality of the solution we propose to use in our tabu search
approach an additive function value afv with weights λk (λk ≥ 0), representing the
relative importance of the objectives. We want to set the weights (λk, k = 1..r) so that the
solution selected is the closest to the new aspiration threshold. Therefore each component
in the weights vector is set according to the objective function values. We would give
more importance to those objectives that have greater differences between the quality of
the trial solution and the quality of the reference solution . The influence is given by an
exponential function exp(−sk), where sk is obtained as follows

si = |fk(x′)−z∗k |
|z∗k|

λk = 2 − exp(−sk)

afv(x′) =
∑

k=1,r

λk∆fk(x′)

if z∗k = 0 then we take only the absolute value.
Note, that the weight grows while the distance between fk(x′) and z∗k grows, then if

the difference ∆fk(x′) ≥ 0; λk∆fk(x′) yields an incentive, otherwise λk∆fk(x′) creates a
penalty, producing a bias to those solutions that have more incentive and less penalized.



scatter search applied to multiobjective combinatorial optimization 155

3 Multiobjective non-linear scatter search approach

3.1 Nonlinear multiobjective tabu search

Tabu search (TS) is a strategy based on the use of prohibition-based techniques and
“intelligent” schemes as a complement of basic heuristic algorithms like local search, with
the purpose of guiding the basic heuristic beyond local optimality.

By the standard TS approach, a move is classified tabu and excluded from consideration
if it reverses a recent previous move. We apply an adaptation of tabu search strategies for
preventing move reversals in nonlinear context (see [10]). A sequential fan strategy is used
to create our neighborhood. Also, a TS strategy to guide the search toward the Pareto
frontier is introduced. A weighted sum approach is used as a decision rule to transit from
one solution to another. Our approach also uses recency and frequency based memory for
diversification [11].

To apply our strategy, we consider two approaches: (1) directional search, where a
transition from one point to another occurs by reference to feasible directions; (2) scatter
search, where successive collections of points are generated from weighted combinations
of reference points [10].

3.1.1 Neighborhood (move description)

In our implementation we propose to select moves that consist of changing at most five
variables. We use a controlled randomization and frequency memory to select the move-
variables if the problem has more than five variables. In a phase of intensification we move
only two selected variables. The range of variables are split into subranges, frequency
memory is used to control the random selection of the subranges. In our approach a
standard move is defined as follows:

First we divide the range of each variable Ui − Li into b̂ sub-range aij − bij of equal
size (see [12]), then the components of the trial solution x′ = m(x) are as follows:

x′
i =

{
ri if i ∈ V ,
xi otherwise

ri ∈ [aij , bij ], i ∈ V, j ∈ B

where V is the index set of the variables randomly selected to move and B is the index set
of the randomly selected sub-ranges where the variables take their values, ri is a random
number.

3.1.2 Tabu status

We focus our attention on tabu conditions based on move reversals. For our purpose, we
will select variables as a basis for defining move attributes, identifying the change of values
in going from one solution to another [10]. Tabu restrictions are imposed to prevent moves
that bring the values of variables “too close” to values they held previously. Specifically a
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move is tabu if it creates a solution x which lies closer than a specified tabu distance dist
to any solution visited during the preceding t iterations.

The implementation of this rule is as follows: the variable x′ is excluded from falling
inside the line interval bounded by x−w(x′−x) and x+w(x′−x), where 1 ≥ w > 0, when
a move from x to x′ is executed. In our approach when the forbidden moves grow to the
point that all movements become tabu and none satisfies the aspiration level, a reduction
mechanism is activated and the tabu distance in each list is reduced.

We use a tenure of 10 for the tabu memory structure and one tabu list for each variable.

3.1.3 Candidate list strategy

We use a simplified version of a sequential fan strategy as a candidate list strategy. The
sequential fan generates p best alternative moves at a given step, and then creates a fan
of solution streams, one for each alternative. The best available moves for each stream
are again examined, and only the p best moves overall provide the p new streams at the
next step. In our case, taking p = 1, we have in each step one stream and several points
to consider.

3.1.4 Frequency-based memory and diversification strategy

Our diversification method employs frequency memories to encourage the search move
into unvisited regions or less visited regions. We accomplish this by dividing the range
of variables bij − aij into sub-ranges of equal size as in [12]. The threshold Ti determines
the number of times that one sub-range can be visited without penalizing. A diversifying
move is executed when freq(ij) is greater than Ti, where freq(ij)is the number of time that
the variable x′

i takes value in the sub-range j. We modify the value of afv(x′) as follows:

afv(x′) = afv(x′) − freq
freqtotal

× afv(x′)

where freq is an addition of the entries of type freq(ij) associated to the variables and
subranges that hold the condition (a): freq(ij) > Ti, and freqtotal =

∑
i

∑
j freq(ij) for

each variable that hold the condition (a) and for all sub-range j. We have for each variable
a threshold Ti, where

Ti = max{Round(
subranges∑

j=1

freq(ij)/subranges), 1}

and Round is the closest integer. The frequency memory is maintained over all iterations
and in the two phases of this algorithm. Also, this frequency memory is used to control
the probability of selecting the sub-ranges, this probability is inversely proportional to its
frequency count.

Similar frequency memory is used to control the probability of selection of the move-
variables.
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3.1.5 Pseudo–code of our TS approach

Our procedure may be described as follows: 1) select an initial reference point, 2) apply a
diversification and intensification strategies inside a “for loop” that controls the maximum
number of iterations to generate new solutions and to chose the best of them.

What means the best solution in our approach?. We denote E a set of efficient moves,
where a efficient move is a move that satisfies the aspiration level, otherwise the move is
deficient. Then, we would define the best move as [m ∈ E(x) : afv(x∗) = max{afv(x′), x′ =
m(x)}] if E(x) 6= ∅, in the case where E(x) = ∅ we take randomly one solution of S. The
best solution consists of the solution obtained by application of the best move to x.

Skeleton of our Tabu

Procedure Taboo
{ (Initialization step)

Set a and b equal to the lower and upper bounds
respectively of each variables
Generate a feasible solution x (the midpoint of each interval)
z∗ = F (x) (Setting the reference point)
S = x
newelement=True
(newelement indicates the introduction of a new solution in S)
for 1 to numiter (the maximum number of iterations)

if newelement then intensification
else diversification
for 1 to fan(the number of candidate solutions)

x′=Candidate(x)(the fan strategy)
Make tabudist(x, x′)
x = x′

Update the reference point z∗

endfor
endfor }

4 Scatter search for non-linear problems

Scatter search operates on a set of solutions, the reference set, by combining these solutions
to create new ones. In our approach the mechanism for combining solutions is such that
a new solution is created from a linear combination of two other solutions.

4.1 Diversification generation method

An initial set of solutions is generated by means of a diversification generator. The genera-
tor that we implemented is based on tabu search approach explain above. The goal of the
approach is obtain an initial good-diverse Pareto-know set of solutions.
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4.2 Choosing subset of reference points

Our approach is organized to generate three different collections of diverse subsets of R,
which we refer to as subset1 and subset2, subset3 (see [9]). The type of subsets we consider
are as follows:

subset1: 3-elements subsets D1, where the first element pertains to R1 − T , the second
element pertains to R1−T1 the most dissimile to the first, and third element belongs
to R1 − T1 selected to be the most dissimile to the selected elements

subset2: 3-elements subsets D2, where the first element pertains to R2 − T , the second
element belongs to R2 − T1 the most dissimile to the first, and the third element
pertains to R2 − T1 selected to be the most dissimile to the selected elements .

subset3: 3-elements subsets D3, where the first element belongs to R2 − T , the second
element pertains to R1 − T1 the most dissimile to the first , and a third element
selected to be the most dissimile to the selected elements belongs to R1 − T1.

If R1 − Z or R2 − Z, for Z = T and Z = T1, are empty then, we take a random solution
of R1 or R2 respectively.

The most dissimile solution is measured with the max-min criterion, that is, maximize
the minimum value of a dissimilarity measure. We take as dissimilarity measure the
Euclidean measure.

In order to avoid duplicate the diverse subsets to be combined and to obtain more
diversity in the search we use two different tabu sets. Once selected the first solution to
be consider in the diverse subset, this solution is included in the tabu set T . The second
and the third elements to be consider in the diverse subset are included in the tabu set
T1. A simple dynamic rules to create a tabu tenure t as tenure of the set T is used, chosen
t to vary randomly between tmin = 1 and tmax = 7, and a static rules for t1 as tenure of
the set T1 was selected, where t1 = 10.

4.3 Combining strategies

As a basis for creating combined solutions we generate subsets Y ⊆ R and for each subset
use a solution combination method, generating solutions on line and using weights to
sample points from the line.

Let Ω(Y ) = x + $(y − x), for $ = 1/2, 1/3, 2/3,−1/3,−2/3, 4/3, 5/3, and
x, y ∈ Y, ∀Y ∈ {D1,D2,D3}.

The strategy to create the Ω(Y ) set is as follows: for each diverse subsets,

1. Generate new trial points on lines between x and y.

2. Generate new trial points on lines between x and z.

3. Generate new trial points on lines between y and z.

4. Generate one solution by applying y + x−y
2 .
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5. Generate one solution by applying z + x−z
2 .

6. Generate one solution by applying z + y−z
2 .

In the cases 4, 5, and 6 generate new trial points on lines that join each reference point
with one of the trial points generated using convex combination methods. In this case the
search releases searches star from middle trial points.

In the special case where Ck(P ) = 1 the approach begins by selecting the first element
pertaining to R1, denoting it by x, the second element is selected from R2 − T2, denoting
it by y, if the cardinal of R2 is greater than 1 then, the third element is selected from
R2 − T2 to maximize its distance from the first and second elements, denoting it by z,
in other case the third element is created by a linear combination of the two elements
selected above. Then, apply the above scheme of combination explained.

If all subsets have been examined then, the algorithm subtract the Pareto set ΩP ⊆
S\C, where S = ∪Ω(Y ) and C is the critical set. New elements are incorporated into R
if |P ∩ R| < |P | where, P ⊆ ΩP ∪ R.

If |P | > b1, then use the maxmin criteria to obtain a diversified collection of solutions
R, that is, x ∈ P maximizes the minimum distance d(F (x), F (y(i))) for i ≤ |R|, y(i)
pertaining to non-empty set R.

4.4 Critical event design

Avoiding the duplicated points already generated can be a significant factor in producing
an effective overall procedure. The control is limited to these solutions that satisfy the
condition of being Pareto. Our algorithm is based on a “critical event design” that moni-
tors the current solutions in R and in the combined set Ω(Y ). The elements considered in
the critical events design are the values of the objectives, and the decision variables of the
current Pareto solutions generated. We consider that a critical event has taken place if
one trial solution is too close to another solution pertaining to the generated solution set
or to the reference set taking account the distance between these solutions in the objective
space and the decision space. Then, a critical event has occurred if a trial solution satisfies
a “full critical condition”. A “full critical condition” is satisfied if the “critical condition”
is satisfied and the trial solution is inside the ball of radius δ defined on Ω(Y ) ∪ R. The
“critical condition” is satisfied if the image of the trial solution falls within the ball of
radius ρ defined on F [Ω(Y )∪R]. The balls are defined for each solution generated so far.
The distances that define each ball are adaptive parameters and their values depend of
the number of solutions that historically have fallen within the balls.

The parameters ρ and δ range in the interval [minr,maxr] initially ρ = maxr and δ =
minr, then if the current number of points that have fallen inside the ball is greater than
the average of the solutions that historically have fallen within the ball, then the current
radius is halved, otherwise the value of the radius is twice. In our current implementation
maxr = 1 and minr = 0.0625.

The new solutions are put in the set Ω(Y ) if they do not belong to the set of critical
events.
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4.5 Rebuild the reference set

In order to rebuild the reference set, we keep the solutions obtained so far and use tabu
search method to obtain new trials solutions taking as starting solution a randomly solution
of R. The trial solutions are introduced in R using the Pareto relation.

4.6 Pseudo–code scatter search

Procedure Scatter
{ Initialization

For 1 to maxiter (the maximum number of scatter iteration)
Taboo (Generate an initial reference set of trial points)
if | P |> 1 then

R1 = CK(P )
R2 = P\CK(P )
R = R1 ∪ R2

while(0 < maxgeneration) or (ratio ≥ β)
For all new subset Y from R

Apply line search approach to obtain a set Ω(Y )
of new solutions

EndFor
Obtain P ⊆ ΩP ∪ R
If |P | = 1 then Break
ratio =| P ∩ R | / | P |
R1 = CK(P )
R2 = P \ CK(P )
R = R1 ∪ R2

maxgeneration = maxgeneration − 1
endwhile

endif
endmaxiter }

5 Scatter search for a multiobjective combinatorial problem

In this part we examine an extension of our work ([2],[3]) applied to a job shop scheduling
problem with multiple objectives using a framework scatter search that uses as a diversi-
fication generator a tabu search approach. Several cases are studied to demonstrate the
ability of our algorithm to find good and diverse approximation solutions to Pareto-optimal
front.

5.1 Job shop scheduling problem

Scheduling has been defined as the “allocation of resource over time to perform a collection
of activities”. Scheduling is important in the design and management of a variety of
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systems, including production systems, construction projects, education, health delivery
systems, transportation systems, and so on.

A job shop has a finite set of machines, each of which can do several types of operations
but can process only one activity at a time. In a finite set of jobs, each job is split into
a number of operations to be processed by a fixed order and on a specific machine for a
specified duration.

In the standard model of job shop scheduling several assumptions concerning the way
of processing the activities by machines are made (e.g., once a job initiates processing on
a given machine it must complete processing on that machine uninterrupted), a schedule
has to be found that optimizes several measures of performance. If release times of jobs
are assumed, the problem is called a dynamic job shop, otherwise all release times are set
to zero and it is called static.

Formally, the job shop scheduling problem can be stated as follows. A set M of
m(k = 1, . . . ,m) machines and a set J of n(j = 1, . . . , n) jobs are released at predetermined
points in time rj . Job j consists of qj(i = 1, . . . , qj) operations in series. Each operation
i of a given job j is processed on a machine kji for a given uninterrupted processing time
pji where kji 6= kji+1 for i = 1, . . . , qj, j = 1, . . . , n. The ji represents operation i of job
j, and thus represents a particular activity h ∈ {1, 2, . . . , L}, where L =

∑n
j=1 qj be the

number of the different activities. Each machine Mk, can process at most one activity at
a time. The problem is to find a table of starting times sth of all activities with respect
to setup times of machines, release time of jobs and technological constraints.

From the viewpoints of combinatorics, the question of how to sequence and schedule
activities in such a system looks rather complex and is know to be NP-hard to almost
state.

5.2 Job shop scheduling problem as a disjunctive graphs

A more useful representation of the job shop scheduling is provided by the disjunctive
graph model that can be represented as follows: G = (N ;C,D), where N is the set of
nodes, C the set of conjunctive arcs, and D the set of disjunctive arcs [1].

For each job shop scheduling problem (JSP) one can define a (directed) disjunctive
graph G = (N ;C,D) by associating (α) a node h ∈ N with each activity, including two
dummies node s (start) to be the source of G, and node e (end) to be the sink of G; (β) a
conjunctive arc (h, h+1) ∈ C with each pair of operations pertaining to the same job and
adjacent in the technological sequence; also, an arc (s, h) ∈ C for each h, that is the first
activity (operation to be performed on some job), and an arc (h′, e) ∈ C for each h′, last
activity (operation pertaining to a job); (γ): a disjunctive pair of arcs (h, h′) ∈ D, with
each pair of activities to be performed on different jobs but on the same machine; (δ):
nodes are weighted. Nodes s and e have weight zero, while the weight of nodes h ∈ N ,
is the processing time ph. In a disjunctive graph C corresponds to the job precedence
constraints and D corresponds to the machine capacity constraints.

In the disjunctive graph, the basic scheduling decision corresponds to orienting each
disjunctive arc in one direction or the other. A schedule is obtained by orienting all
disjunctive arcs resulting in a conjunctive graphs. The orientation is feasible if the resulting
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directed graph is circuit-free, and one can compute the starting time of each activity by
computing the longest (weighted) path, from s to e.

A subset of D containing at most one arc of each disjunctive pair is called a selection.
A selection containing exactly one arc of each disjunctive pair is called “complete”. Let,
S = {S1, . . . , Sr} be the set of all complete selections. Each selection Sl ∈ S generates a
conjunctive graph of the form Gl = (N ;C ∪ Sl) = (N,Cl).

5.3 Tabu search for a job shop

5.3.1 Neighborhood structures

The basic neighborhood and some properties have been defined by Van Laarhoven [8]. Let
X be the set of all feasible schedules to a problem instance, then (1) if x ∈ X is a feasible
schedule to a problem instance, then using the proposition 1 and 2 explained above will
obtain a feasible solution. We define the neighborhood as follows: N1 produces a new
feasible solution by complementing one arc (h, h′) ∈ Sl ∩ CPl(x).

5.3.2 A starting solution

As in [1] we define a direction for each disjunctive pair of arcs in D by calling the arc
(h, h′) normal if h > h′. D+ and D− will denote the set of all normal arcs and the set
of all reverse arcs respectively. Then the graphs (N,C ∪ D+) and (N,C ∪ D−) have no
circuits.

Starting with the graph (N,C ∪ D+) in which all disjunctive arcs are normal, we
generate a sequence of graphs Gl = (N,C ∪ Sl) ∈ Q′. Each G′

l is obtained from the
current Gl by applying N1.

5.3.3 Tabu list

The fundamental memory structure in tabu search is the so-called tabu list. We associate
with each leading from the current solution x to a solution x′ ∈ N(x) a set of attributes.
We memorize in the tabu list the attributes of the applied moves and, at each iteration
we select the best move among the set of candidates whose attributes do not belong to
the tabu list or satisfies the aspiration condition. With the neighborhood N1 a move
consists in swapping one arc of the critical path then, given a candidate arc (h, h′) and
the associated move, we memorize as forbidden the reversal of the arc (h′, h).

A candidate move is considered forbidden, if the move pertains to the tabu list and
not satisfies the aspiration level.

The data structure is conceptually a square matrix T with dimensions equal to the
number of activities. The element T (h, h′) contains the count of the iteration. In our case
we can represent (h, h′) or (h′, h) by the pair (h, h′) for h < h′ . Thus, is possible use the
data structure T as recency and frequency memory.

In our implementation we use a simple dynamic rule to vary our tabu time (tenure)
randomly between [.5

√
n, 2

√
n].
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5.3.4 Diversification strategy

Frequency-based memory provides information to diversify the search. We present one
forms to diversify the search using frequency counts. The frequency is obtained counting
the number of times that each disjunctive arc appears in the selection Sl(x) corresponding
to solution x pertains to GS.

For our purposes, we use a frequency measure consisting of ratios, whose numerator is
a count explained above and the denominator is the maximum numerator value.

The diversification is obtained modifying the value afv as follows:

afv = afv ∗ (1 − freq(h, h′)
max{freq(h, h′) | (h, h′) ∈ Sl(x)} )

where freq(h, h′) is the number of times that the disjunctive arc (h, h′) has been used as
move attribute in the considered set of solutions.

5.3.5 TS algorithm

Following the approach presented in [1] we start with the graph (N,C ∪D+) in which all
disjunctive arcs are normal. The basis of our algorithm is to select at each step a non
scheduled activity and to schedule this activity as early as possible on its machine. We
generate a trial solution, by applying the move N1. If the solution satisfies the aspiration
level then, introduce it in the set GS. Choice the best solution that satisfies the aspiration
level or is not tabu. If during a number of iteration equal to MaxNonEfficientMove new
elements are not introduced in GS then, we use a restart approach chosen one randomly
solution of GS, resetting the tabu list and the aspiration level. The process is repeated
during a fixed number of iteration and while the set GS is not full.

MaxNonEfficientMove is an adaptive parameter defined as follows:

MaxNonEfficientMove = b10 × num efficient move
last efficient move

c

where num efficient move is the number of efficient moves and last efficient move is the
number of the iteration of the last efficient move.

What means an efficient move in our tabu approach? An efficient move is a move that
satisfies the aspiration level.

5.4 Scatter search for a job shop

5.4.1 Overall view of our procedure

An overall view of our procedure is given in this subsection.
The procedure starts with the generation of 1 <| GS |≤ b disperse solutions. These

solutions are generated by tabu search explained above (I phase). The reference set R is
the union R1 ∪ R2, R1 = CK(P ) and R2 = P\CK(P ) where CK is the Kramer choice
function and P is the current Pareto set extracted from GS. If |P | > b1, then use the max-
min criterion to obtain a diversified collection of solutions P ′, that is, set one first element
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of P into P ′then, let x ∈ P maximizes the minimum distance d(F (x), F (y(i))) for i ≤ |P ′|,
y(i) pertaining to non-empty set P ′ when P ′ = b1 then, set P = P ′. Diverse subsets DS
are generated from the reference set as basis for creating combined solutions, then for
each subset DS, to use a Solution Combined Method. We propose in our algorithm an
structured weighted combination, to produce a set Ω(DS) of combined solutions. The
new solutions are put in the set ΩP if they do not belong to the set of critical events C. If
all subsets have been examined then, the algorithm subtract the Pareto set ΩP ⊆ GS\C,
where GS = ∪Ω(DS). Let P ⊆ ΩP ∪ R.

5.4.2 Dissimilarity measure H

As dissimilarity measure, we use the Hamming distance between two complete selection
associated to the conjunctive graphics representing theirs corresponding job shop schedule
solutions. Let Sl = the complete selection associated to the graphic Gl then, Sl(pq) = 1/0
if the disjunctive arc (p, q) is present or absent in a graph Gl. For obtaining the distance
between schedules x1 and x2 the logical xor() operator is applied to a complete selection
associated to the graphics G1, G2 corresponding to the solutions x1 and x2.

H(x1, x2) =
∑

(p,q)∈S1,S2

xor(S1, S2)

where S1 and S2 are the complete selections to a corresponding solutions.

5.4.3 Choosing subsets of reference points

Our approach is organized to generate different collections of divers subsets of R.
Suppose R1 6= ∅ and R2 6= ∅ then, the type of subsets we consider are as follows:

• 3-elements subset D1, where the first element x pertains to R1, the second element
y, belongs to R1 − T the most diverse relative to x, and a third element selected to
be the most dissimile to the selected elements belongs to R1 − T .

• 3-element subsets D2, where the first element x pertains to R1, the second element
y belongs to R2 − T the most diverse relative to x, and the third element pertains
to R2 − T selected to be the most dissimile to the former two.

• 3-element subsets D3, where the first element x pertains to R2, the second element
y belongs to R2 − T the most diverse relative to x, and a third element chosen from
R2 − T to be the most dissimile to the selected elements.

The most dissimile solution from any given solution is chosen using the following
function max{dmin(x, y)}, where dmin(x, y) is the Hamming distance.
If R1 − T or R2 − T , is empty then, we take a random solution of R1 or R2 respectively.



scatter search applied to multiobjective combinatorial optimization 165

5.4.4 Combination method

Let three-element subsets DS ∈ {D1,D2,D3}. Create the pairs (x, y) ∈ A = {(|DS|
2 ) |

x, y ∈ DS}, and for all (x, y) apply the structured weighted combination method using
different weights associated to the combined solutions.

To apply the structured combination to the solutions, we need obtain a sequence of the
activities for each machine then, a voting mechanism for precedence relationships where a
vector assigns vote of 1 for h to precede h′ if this precedence order occurs in the sequence
and 0 if not occurs (for more details of this method see [10]). If the solution generated is
infeasible, this solution is ignored working only with feasible solutions.

Our system of weights gives more preference to solutions pertain to R1.

5.5 Improving method

As improving method we use a simple local search, using the neighborhood N1 defined
bellow. The trial solution is incorporated to GS if it is non-dominated by the its “donors”.

5.6 Illustrative examples

Example 1

The processing times (proctime) are fixed in the following table and the machine routing
(machrout) in the table bellow

Job proctime machrout
1 4 3 2 1 2 3
2 1 4 4 2 1 3
3 3 2 3 3 2 1
4 3 3 1 2 3 1

For this problem the optimal solution for makespan objective is 13 and the optimal
solution for earliness objective is 0. The 1 shows the approximation to Pareto front
achieved by our algorithm, observe that the algorithm achieved the optimum.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

Makespan

E
ar

lin
es

s

Figure 1: Pareto frontier.
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Example 2

We illustrate the case where more than one operation associated to one job use the same
machine. We have 3 jobs, 4 machines and not all jobs have the same number of operations.
Processing time table is represented below and the machine routing table as follows:

Job proctime machrout
1 4 3 2 4 6 1 2 3 4 -
2 1 4 4 5 8 1 2 4 4 -
3 3 2 3 4 7 1 2 3 2 4
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ak
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Figure 2: Pareto front achieved.

6 Computational experiments

6.1 Non-linear problems

Several test problems of were used to assess our approach [7]. Now we show the perfor-
mance of our improved algorithm with new test functions.
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6.2 3-objectives test problems

In this section we will examine the performance of our algorithm on several test problems
taken from the literature [Deb and others, [7]].

Our experiments were run with the following parameters: maxiter = 30, maxgeneration =
25 for iteration, the numbers of iteration in tabu was 500, fan = 25, β = 0.5, b = 500,
b1 = 100 with b2 = b + b1. In this case our approach uses at most 750 000 objective
evaluations.

6.2.1 Problem DTLZ1

The following problem is a 3-objective problem with a linear Pareto-true front. The
Pareto front corresponds to X3 = 0 and the objective function values lie on the linear
hyper-plane:

∑3
m=1 fm = 0.5.

Minimize the following functions:

f1(x) =
1
2
x1x2(1 + g(X3))

f2(x) =
1
2
x1(1 − x2)(1 + g(X3))

f3(x) =
1
2
(1 − x1)(1 + g(X3))

0 ≤ xi ≤ 1, i = 1, 2, . . . , 7

g(X3) = 100[|X3| +
∑

xi∈X3

(xi − 0.5)2 − cos(20π(xi − 0.5))]

6.2.2 Problem DTLZ2

The following test problem has an objective search space where the Pareto front must lie
inside of the unit sphere.

Minimize the following functions:

f1(x) = (1 + g(X3))cos(x1π/2)cos(x2π/2)

f2(x) = (1 + g(X3))cos(x1π/2)sin(x2π/2)

f3(x) = (1 + g(X3))sin(x1π/2)

0 ≤ xi ≤ 1, i = 1, 2, . . . , 12

g(X3) = 100[|X3| +
∑

xi∈X3

(xi − 0.5)2 − cos(20π(xi − 0.5))]
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Figure 3: Pareto-true front vs Pareto front achieved by MOSS on DTLZ1 and DTLZ2
problems.

6.2.3 Problem DTLZ3

The following test problem prove the ability to converge to the global Pareto front, (310−1)
local Pareto front, and one global Pareto front.

Minimize the following functions:

f1(x) = (1 + g(X3))cos(x1π/2)cos(x2π/2)

f2(x) = (1 + g(X3))cos(x1π/2)sin(x2π/2)

f3(x) = (1 + g(X3))sin(x1π/2)

0 ≤ xi ≤ 1, i = 1, 2, . . . , 12

g(X3) =
∑

xi∈X3

(xi − 0.5)2

6.2.4 Problem DTLZ7

This problem has a disconnected set within the Pareto-true regions.
Minimize the following functions:

f1(x1) = x1,

f2(x2) = x2,

f3(X3) = (1 + g(X3))h(f1, f2, g),

g(X3) = 1 +
9

X3

∑

xi∈X3

xi,
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h(f1, f2, g) = 3 −
2∑

i=1

[
fi

1 + g
(1 + sin(3πfi))],

0 ≤ xi ≤ 1, i = 1, 2, . . . , 22
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Figure 4: Pareto-true front vs Pareto front achieved by MOSS on DTLZ3 and DTLZ4
problems.

This test problem has 4 disconnected Pareto-true regions in the objective space. The
functional g has 20 decision variables and the total number of variables was 22. The
Pareto-true solutions correspond to X3 = 0. This tests an algorithm’s ability to maintain
subsets in different Pareto-true regions.

The results are shown in the above figures, and discloses that the algorithm was able
to find stable and distributed subsets in all Pareto-true regions.

In addition to the graphical presentation, the algorithm was assessed in pairs using
the Coverage Set metric (CS), Generational Distance metric (GD) [20], the Spacing me-
tric (S) [18], the Maximum Extension metric (MEF ) [21], and the Time (T ) to evalu-
ate the distribution of the solutions of each Pareto-achieved front. For an ordered pair
(PFoptimal, PFachieved), the shortcut PF stands for Pareto front.

In this case were generated 100 points of the true Pareto front for each test problems,
the 5 and 6, show the distribution of coverage set and spacing of 21 runs for each test
problems. The results indicate, that the convergence to the true Pareto front in all cases
was good and in general a well distribution of points was obtained. The box plot repre-
senting the coverage set indicates that the approximation to the Pareto-optimal front is
good (close to cero), and also the distribution of the solution is acceptable. The S and
MEF metrics show a right performance of our performance.
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Figure 5: Boxplot representing the distribution of the metrics on DTLZ1 and DTLZ2 test
problems (CS = 1, GD = 2, S = 3,MEF = 4 and T = 5.)

6.2.5 Combinatorial problem

We conducted preliminary experiments on different generated problems, coded in Del-
phi on a Pentium II with a clock of 350 MHz. We solved two 2-objective and one 3-
objective instances with (n = 5,m = 30), with objectives functions (earliness-makespan),
(makespan-averagetime), and (makespan-averagetime-earliness), taking as a benchmark
ABZ test problems with due date incorporated. The problems were generated as follows:

a) Choose a number of machines m and jobs n from the following cases: m = 30;n = 5.

b) All jobs must be processed on all machines.

c) The next machines is chosen uniformly from those remaining.

d) Operation processing times are all drawn uniformly from the interval [5, 99]. There
are static arrivals and static machine availability.

Following Rubin and Ragatz[14], the due date was generated as follows: the mean of
the due dates was set equal to (1 − TF ) ∗ n ∗ (mean of processing time), and its range
was set equal (RD) ∗n ∗ (mean of processing time), where RD is the relative range of due
dates and n is the number of jobs. The objective functions were (earliness-makespan), and
(earliness-average time). This instance was ran with the following parameters ρ = 0 and
ξ(i) = 1 for i ∈ {1, 2, 3}, CutoffLimit = 5, MaxIter = 1, b = 500, b1 = b, and b2 = 100.

7 Conclusions

In this paper we have presented an adaptation of the tabu/scatter Search methods to multi-
objective optimization. Several test problems to demonstrate the ability of our approach
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Figure 6: Boxplot representing the distribution of the metrics on DTLZ3 and DTLZ7
problems (CS = 1, GD = 2, S = 3,MEF = 4 and T = 5.)

were run. Convergence to the Pareto frontier was good, and a widely Pareto frontier
was obtained. We can conclude that the application of a based-memory diversification
strategy, the use of a choice function to separate the reference set points and convex
combination seems to be a good approach in finding a good approximation and widely
distribution of the Pareto frontier. A new approach for job shop scheduling problem is
proposed. Different cases (static, dynamic, dependent-setup times, operations pertaining
to the same job partially ordered) can be solved with our algorithm in a multiobjective
environment.

The use of tabu search as generation method of diverse initial solutions, different strate-
gies of memories to diversify the search, the use of nondominated solutions as reference
set permit a better control to explore the solution space to achieve new potentially Pareto
solutions, the partition of this set using choice functions as the Kramer choice function
and structured combination produce very quickly new potentially Pareto solutions.
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