
Revista de Matemática: Teoŕıa y Aplicaciones 2005 12(1 & 2) : 45–50

cimpa – ucr – ccss issn: 1409-2433

¿como trabajan las calculadoras?

Bruce H. Edwards∗

Received/Recibido: 24 Feb 2004

Abstract

What happens when you press the sine key on your calculator? How does a calcu-
lator quickly produce the values of trigonometric functions? For instance, how does
the TI-89 calculate sin 1.0? You might be surprised to know that the calculator does
not use series or polynomial approximation, but rather a simple algorithm called the
CORDIC method. In fact, the CORDIC method is used for almost all function eval-
uations (trigonometric, logarithmic, exponential, hyperbolic, inverse functions, etc.),
and even multiplication and division. In this paper we will present the main ideas of
the CORDIC method along with some elementary examples.

Keywords: Graphic calculator, CORDIC.

Resumen

¿Qué ocurre cuando un estudiante presiona la tecla de la función tangente en su
calculadora? ¿Cómo hace una calculadora para producir rápidamente los valores de las
funciones trigonométricas? Por ejemplo: ¿Cómo hace la TI-89 para calcular tan(1.0)?
Es sorprendente saber que la calculadora no utiliza series de Taylor, ni aproxima-
ciones polinómicas, sino que usa un simple algoritmo llamado CORDIC. El método
de CORDIC es el que la calculadora usa para evaluar la mayoŕıa de las funciones
(trigonométricas, logaŕıtmicas, exponenciales, hiperbólicas, funciones inversas, etc.),
y aún más, se usa el mismo método para efectuar multiplicaciones y divisiones. En
nuestra charla se presentarán las principales ideas del método de CORDIC, junto con
algunos ejemplos elementales.

Palabras clave: Calculadora gráfica, CORDIC.

Mathematics Subject Classification: 65Y99.

∗Department of Mathematics, 358 Little Hall, University of Florida, Gainesville, FL 32611-8105, U.S.A.
E-Mail: be@math.ufl.edu

45

46 B.H. Edwards Rev.Mate.Teor.Aplic. (2005) 12(1 & 2)

1 Introduction

The CORDIC method for approximating function values is used on all popular graphing
calculators, including the TI-81, TI-82, TI-85 and HP-48G. This algorithm is not based on
calculus nor polynomial approximation, but instead involves a more elementary system of
iterative equations. The CORDIC (COordinate Rotation DIigital Computer) algorithm
is relatively new, introduced in 1959 by Volder [4] to calculate trigonometric function
values. It was later extended to hyperbolic, logarithmic, and other functions by Walther
in 1971 [5].

The hardware restrictions of calculators require that the elementary functions be com-
puted using only additions, subtractions, digit shifts, comparisons, and the recall of a
small number of stored constants. As we will see, the CORDIC method only uses these
five basic operations. It is interesting to note that even multiplication and division can be
computed by the CORDIC method.

Because it is time-consuming to convert from base 10 to base 2, the CORDIC algorithm
is programmed in base 10. However, it is easier to understand the essential ideas using
binary arithmetic. Hence, multiplication by 2k, where k is an integer, is nothing more
than a digit shift. See the UMAP module [1] for an elementary treatment of the CORDIC
method using base 10 arithmetic.

We will not address in full detail the important theoretical issue of the convergence
properties of the CORDIC method, and the interested reader is referred to the literature
[2]. In general, the algorithm consists of performing n iterations of the three equations
given below, and the convergence theorems guarantee that the resulting answer is within
a certain error bound that depends on n.

2 The CORDIC Algorithm

The general CORDIC algorithm consists of the following three iterative equations.

xk+1 = xk − mδkyk2−k

yk+1 = yk + δkxk2−k

zk+1 = zk − δkσk

The constants m, δk, and σk depend on the specific computation being performed, as
explained below.

1. m is either 0, 1, or −1. m = 1 is used for trigonometric and inverse trigonometric
functions. m = −1 is used for hyperbolic, inverse hyperbolic, exponential, and logarithmic
functions, as well as square roots. Finally, m = 0 is used for multiplication and division.

2. δk is one of the following two signum functions:

δk = sgn(zk) =
{

1 zk ≥ 0
−1 zk < 0

or δk = −sgn(yk) =
{

1 , yk < 0
−1 , yk ≥ 0

¿cómo trabajan las calculadoras? 47

The first is often called the rotation mode, in which the z values are driven to zero,
whereas the second is the vectoring mode, in which the y values are driven to zero. Note
that δk requires nothing more than a comparison.

3. The numbers σk are stored constants which depend on the value of m. For m = 1,
σk = tan−1 2−k, for m = 0, σk = 2−k, and for m = −1, σk = tanh−1 2−k (with some minor
modifications to be discussed later).

To use these equations, appropriate starting values x0, y0, and z0 must be given. One
of these inputs, say z0, might be the number whose sine we wish to approximate, sin z0. Or
two of these inputs, say y0 and x0, might be the quotient we wish to approximate, y0/x0.
In all cases, the starting values must be restricted to a certain interval about the origin in
order to ensure convergence [5]. As we shall see in the following two examples, one of the
variables tends to zero while another variable approaches the desired approximation.

Example: Division

Let m = 0, δk = −sgn(yk), and σk = 2−k. Then the following equations will approximate
the quotient y0/x0 for |y0/x0| ≤ 2. Notice that these equations consist of only additions,
subtractions, comparisons and binary shifts.

xk+1 = x0

yk+1 = yk + δkx02−k

zk+1 = zk − δk2−k (σk = 2−k)

The starting values are the given numbers x0, y0 and z0 = 0. Here are the first five
and last five iterations for the specific example x0 = 5 and y0 = 7 (n = 50 iterations):

x y z
0 5.00000000000000 7.00000000000000 0
1 5.00000000000000 2.00000000000000 1.00000000000000
2 5.00000000000000 −0.50000000000000 1.50000000000000
3 5.00000000000000 0.75000000000000 1.25000000000000
4 5.00000000000000 0.12500000000000 1.37500000000000
5 5.00000000000000 −0.18750000000000 1.43750000000000
...

46 5.00000000000000 −0.00000000000003 1.40000000000001
47 5.00000000000000 0.00000000000004 1.39999999999999
48 5.00000000000000 0.00000000000001 1.40000000000000
49 5.00000000000000 −0.00000000000001 1.40000000000000
50 5.00000000000000 −0.00000000000000 1.40000000000000

Notice how the y values have been driven towards zero while the z values approximate the
quotient y0/x0 = 1.4.

48 B.H. Edwards Rev.Mate.Teor.Aplic. (2005) 12(1 & 2)

It is not difficult to see why the sequence zk will approach y0/x0. Note that the second
and third equations imply that

yn+1 = y0 +
n∑

k=0

δkx02−k and zn+1 = −
n∑

k=0

δk2−k,

respectively. Hence,

y0

x0
=

yn+1 −
∑n

k=0 δkx02−k

x0
=

yn+1

x0
−

n∑

k=0

δk2−k =
yn+1

x0
+ zn+1,

which gives ∣∣∣∣zn+1 −
y0

x0

∣∣∣∣ =
∣∣∣∣
yn+1

x0

∣∣∣∣.

Since yn+1 is close to zero, zn+1 ≈ y0/x0.

Example: Sine and Cosine

To approximate the sine and cosine of a number z0 = θ, −π/2 ≤ θ ≤ π/2, we use m = 1,
δk = sgn(zk), and σk = tan−1 2−k.

xk+1 = xk − δkyk2−k

yk+1 = yk + δkxk2−k

zk+1 = zk − δk tan−1 2−k (σk = tan−1 2−k)

The starting values are x0 = K =
∏n

j=0 cos(σj), y0 = 0, and z0 = θ, the given angle.
Because of the way the z’s are constructed, zk is forced towards zero. As we see in the
following example, the x’s will tend to cos θ and the y’s to sin θ. A precise proof of
convergence depends on elementary trigonometric identities and can be found in [2].

The following MATLAB program does n = 47 iterations of the CORDIC algorithm to
approximate the sine and cosine of the angle θ, −π/2 ≤ θ ≤ π/2. We show the output
for the first five and last five iterations for the calculation of the sine and cosine of θ = 1.
Notice how the z values are being driven to zero, while the x values approach cos 1 and
the y values approach sin 1.

function cordtrig(t)
n=47;x=zeros(n,1);y=x;z=x;
K=cos(atan(1));
for j=1:n-1,
K=K*cos(atan(2∧(-j)));
end
x(1)=K; y(1)=0; z(1)=t;
for j=1:n+1,
del=sign(z(j)); if del == 0 del =1; end;

¿cómo trabajan las calculadoras? 49

x(j+1) = x(j) - del*y(j)*2∧(-j+1);
y(j+1) = y(j) + del*x(j)*2∧(-j+1);
z(j+1) = z(j) - del*atan(2∧(-j+1));
end
answer = [x y z]

x y z
0 0.60725293500888 0 1.00000000000000
1 0.60725293500888 0.60725293500888 0.21460183660255
2 0.30362646750444 0.91087940251332 −0.24904577239825
3 0.53134631813277 0.83497278563721 −0.00406710927139
4 0.63571791633742 0.76855449587062 0.12028788527537
5 0.58768326034551 0.80828686564170 0.05786907527941
...

42 0.54030230586817 0.84147098480788 0.00000000000004
43 0.54030230586798 0.84147098480800 −0.00000000000019
44 0.54030230586808 0.84147098480794 −0.00000000000008
45 0.54030230586812 0.84147098480791 −0.00000000000002
46 0.54030230586815 0.84147098480789 0.00000000000001
47 0.54030230586814 0.84147098480790 −0.00000000000000

3 Concluding Remarks

The above examples show some of the versatility of the CORDIC method. In the following
table we give a more complete summary of the CORDIC options.

δk = sgn(zk) (zk → 0)
δk = −sgn(yk) (yk → 0)

m = 0 x0, z0 given y0 = 0 x0, y0 given z0 = 0
σk = 2−k gives yn ≈ x0z0 gives zn ≈ y0/x0

m = 1 x0 = K, z0 = θ, y0 = 0 x0, y0 given z0 = 0
σk = tan−1 2−k gives xn ≈ cos θ, yn ≈ sin θ zn ≈ tan−1(y0/x0)

m = −1 x0 = K ′, z0 = θ, y0 = 0 x0, y0 given z0 = 0
σk = tanh−1 2−k gives xn ≈ cosh θ, yn ≈ sinh θ zn ≈ tanh−1(y0/x0)

(some σk repeated) eθ ≈ xn + yn xn ≈
√

x2
0 − y2

0/K
′

In this table, K =
∏n

j=0 cos(σj) and K ′ is a similar product using the hyperbolic
cosine function. It should be noted that the key convergence theorem [2] for the CORDIC
algorithm requires that the constants σk satisfy the inequality

σk ≤
n∑

j=k+1

σj + σn, for 0 ≤ k ≤ n.

50 B.H. Edwards Rev.Mate.Teor.Aplic. (2005) 12(1 & 2)

It is an easy exercise to show that the constants σk = 2−k and σk = tan−1 2−k

satisfy this property. However, for the hyperbolic functions, m = −1, the constants
σk = tanh−1 2−k do not satisfy this property for all k. Hence, it is necessary to repeat
certain σk values, the details of which can be found in [5].

To calculate lnw, you can use the identity tanh−1 t = 1
2 ln 1+t

1−t and the CORDIC
hyperbolic case, starting with x0 = w + 1, y0 = w − 1, to obtain

zn ≈ tanh−1(y0/x0) =
1
2

ln
(

1 + y0/x0

1 − y0/x0

)
=

1
2

ln
(

x0 + y0

x0 − y0

)
=

1
2

lnw.

Thus, lnw ≈ 2zn. Finally, it can be shown that using x0 = w + 0.25 and y0 = w − 0.25
you obtain

√
w ≈ K ′xn.

References

[1] Pulskamp, R.J.; Delaney, J.A. (1991) “Computer and Calculator Computation of El-
ementary Functions”, UMAP Module 708.

[2] Schelin, C.W. (1983) “Calculator function approximation”, American Mathematical
Monthly 90(5): 317–325.

[3] “Transcendental Function Algorithms”, Post from Texas Instruments to Graph-TI
mailing list, March 8, 1993.

[4] Volder, J.E. (1959) “The CORDIC trigonometric computing technique”, IRE Trans-
actions on Electronic Computers, volume EC-8, No. 3, September: 330–334.

[5] Walther, J.S. (1971) “A unified algorithm for elementary functions”, Joint Computer
Conference Proceedings, Spring: 379–385.

