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Abstract
Described within is the problem of finding near-minimum dominating subsets of a

given graph by rook domains. Specifically, we study the graphs of the kind Zn
p and

Zn
3 ×Zm

2 and introduce a simulated annealing algorithm to compute upper bounds of
the size of minimum dominating subsets.

We demonstrate the effectiveness of the algorithm by comparing the results with a
previously studied class of graphs, including the so-called “football pool” graphs and
others. We give some new upper bounds for graphs of the kind Zn

p , with p ≥ 4. The
codes of some dominating subsets are given in an appendix.

Keywords: Graph domination, simulated annealing, football pool problem, combina-
torics.

Resumen
En este art́ıculo se describe el problema de la dominación de los grafos del tipo Zn

p

y mezclas del tipo Zn
3 ×Zm

2 a través de subconjuntos dominantes de vértices de tamaño
mı́nimo. Se introduce un algoritmo del tipo de recocido simulado para calcular cotas
superiores de la cardinalidad de estos subconjuntos dominantes minimales.

Se demuestra la eficiencia del algoritmo al comparar los resultados obtenidos con
los ya conocidos correspondientes a algunas clases de grafos, entre ellos los llamados
grafos del “football pool problem”. Se establecen cotas superiores en algunos de los
grafos del tipo Zn

p , con p ≥ 4. Los códigos de algunos subconjuntos dominantes se
incluyen en un apéndice.
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fútbol, combinatoria.
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1 Introduction

The theme of graph domination by rook domains has been deeply studied during the
last few years [3, 5, 7, 9, 11, 12, 13, 16], and a large variety of approximate solutions
(occasionally exact) has been found to the given problems. The most useful methods used
to find near-minimum dominating subsets seem to be the heuristic methods based on the
combinatorial optimization techniques, like tabu search, simulated annealing and genetic
algorithms. This paper precisely describes a simulated annealing algorithm [1, 10, 15] to
resolve these kinds of problems.

Throughout this article p will represent a natural number ≥ 2 and n and m will
represent natural numbers, with n + m ≥ 1. We will be working with the graphs F n

p and
F n,m

3,2 , which are defined as follows:

• The sets of vertices of F n
p and F n,m

3,2 are V = Zn
p and V = Zn

3 × Zm
2 , respectively.

• In both graphs F n
p and F n,m

3,2 we stipulated that two given vertices are adjacent if
they have Hamming distance equal to 1, that is, if they differ only in one of their
corresponding coordinates.

The vertices are represented as vectors: of n coordinates for the graph F n
p and n + m

coordinates for the graph F n,m
3,2 . Both graphs have been extensively studied in relation to

the theme of domination, particularly the F n
3 graph, in which the problem of finding a

minimum dominating subset is named as the football pool problem.
The terminology “domination by rook domains” refers to the kind of metric used for

these graphs F n
p and F n,m

3,2 (Hamming distance) and comes from the chess context. In fact,
the concept of domination by rook domains in the graph F 2

8 precisely coincides with the
movements of a rook on a chess board, as illustrated in Figure 1.

On the other hand, the terminology football pool problem comes from a system of
lottery existent in some countries (for example, “Lotto” in France and Italy, “Progol”
in Costa Rica), in which the gamblers have to bet on the results of n soccer games, each
one having three possible results: victory of the home team, defeat of the home team, or
equal score. In this context, a dominating subset of F n

3 will correspond to a set of lottery
bills with the bets of the n games, in such a way that it is granted—under any eventuality
of the games’ results—that at least one of the bills contains at least n−1 correct bets; that
is to say that there will be one bill that contains at most one incorrect bet. In this case,
maybe the gambler is not going to become a millionaire by guessing all the n games, but
nevertheless he will win for sure the second prize (and sometimes the first prize), which is
also a sizable winning.

If the lottery under consideration additionally included m games of another sport in
which any of them has 2 possible results (winning or losing of the home team, for example),
then we are confronting an F n,m

3,2 graph. A dominating subset of this graph will grant us—
under any eventuality of the games’ results—that there will be one bill with at most one
incorrect bet (maybe with all the bets correct), allowing certainty in winning the second
prize and occasionally the first one.

The problem of finding a minimum dominating subset of vertices for these graphs F n
p

and F n,m
3,2 is a combinatorial optimization problem identified as difficult, not only due to
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Figure 1: Two of the most popular objects of F n
p : the movements of the rooks on the

chess board in the graph F 2
8 = (Z2

8,H), and the Rubik cube F 3
3 = (Z3

3,H), where H is the
Hamming distance. In the case of a chess board, the figure shows one of the exact solutions
to the problem of domination by rook domains: 8 rooks are necessary and sufficient to
dominate all the squares of an 8×8 chess board. In the case of a Rubik cube it is necessary
and sufficient to have 5 specially chosen “vertices” (small cubes) to dominate the graph;
for example these: 012, 021, 100, 211, 222.

the monstrous size of the configuration space that it involves, but also because of the
intrinsic algorithmic complexity associated to it. A considerable effort has been dedicated
by various authors to the research of dominating subsets for these graphs, especially for the
graphs F n,m

3,2 and F n
3 . Some of this effort involves combinatorial constructions, or heuristics

searches, or a combination of both methods. Practically only a few exact solutions for
some small values of n, m and p are known. In the majority of the studied cases only
an upper bound for the size of the minimum dominating subset is known. A list of the
known solutions (exact and approximate upper bounds) can be looked up in the articles
of Hämäläinen & Rankinen [7] and Österg̊ard & Hämäläinen [12].

Let’s write σn
3 for the size of a minimum dominating subset of the “football pool

problem” with n games. The smallest of the problems for which the exact value of σn
3 is

still unknown is the 729-vertex graph F 6
3 . In 1989 van Laarhoven, Aarts, van Lint and

Wille [11] found a dominating subset of F 6
3 with 73 vertices, using a simulated annealing

algorithm. Therefore, σ6
3 ≤ 73. Until now, that’s the official record, and even if suspected

that σ6
3 = 72 (see Österg̊ard [14]) nobody has demonstrated yet this supposition and maybe

no one ever will. To better understand the magnitude of this problem, in the graph F 6
3

of 729 vertices there are (729
72 ) ≈ 0.57 × 10101 different subsets of 72 vertices, a monster

quantity that makes it impossible to try an exhaustive search for an exact solution. In
Figure 2 we present a dominating subset for F 6

3 with 73 vertices (that is, equal to the
record) found by the author.

By the use of our simulated annealing algorithm, we have found upper bounds for the
size of the minimum dominating subset of F n

p , for some values of p ≥ 4. In addition, some
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222
221
220
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211
210
202
201
200
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112
111
110
102
101
100
022
021
020
012
011
010
002
001
000

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Figure 2: A dominating subset for Z6
3 graph by 73 vertices, found by the author. In this

graph the position of the vertices (6-tuples of Z6
3) are represented by taking the first 3

coordinates as the abscisse and the last 3 coordinates as the ordinate.

of the upper bounds could be equaled in the analog problem for F n,m
3,2 , Fm

2 and F n
3 graphs,

proving the effectiveness of the method. The codes of some dominating subsets are given
in an appendix.

2 Definitions, notations and basic results

In a graph G = (V,E) we say that a vertex v ∈ V dominates the vertices in the closed
neighborhood N [v] = {v} ∪ {u ∈ V : (u, v) ∈ E}. The vertices that are dominated by a
subset of the set of vertices V ′ ⊆ V , are those contained in the set

domV ′ :=
⋃

v∈V ′

N [v].

A dominating subset of the graph G is V ′ ⊆ V such that domV ′ = V . A minimum
dominating subset of the graph G is the one that has the least number of vertices. In
general, the problem of finding a minimum dominating subset of G and its cardinality has
been well identified as an NP-hard problem [6].

Each vertex of Zn
p can be viewed as a vector of n coordinates, each one taking values

in Zp = {0, 1, . . . , p − 1}. Then, the Hamming distance implies that in the graph F n
p two

vertices will be adjacent if they differ in exactly one of their corresponding coordinates.
Similarly, in the graph F n,m

3,2 each element of V = Zn
3 × Zm

2 can be viewed as a vector of
n+m coordinates, where the first n coordinates are ternary (taking values in Z3) and the
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last m are binary (taking values in Z2). Consequently, in the graph F n,m
3,2 two vertices will

be adjacent if they differ in exactly one of their corresponding coordinates.
The graph F n

p is regular (all the closed neighborhoods N [v] has the same size) and
have valency n(p− 1) (number of vertices adjacent to each given vertex). We shall denote
the size of the minimum dominating subset of F n

p by σn
p . As a vertex v ∈ Zn

p dominates
n(p − 1) + 1 vertices, then the following inequalities are verified:

pn

n(p − 1) + 1
≤ σn

p ≤ pn−1. (1)

The inequality on the right in (1) is justified by looking at the problem in terms of n games
with p different results, so pn−1 is a sufficient quantity of vertices to dominate a graph
with n− 1 games. The expression on the left in (1) gives us a lower bound for σn

p , usually
referred to as the sphere-packing bound for F n

p . A subset of vertices that exactly satisfies
the sphere-packing bound is called a perfect code, and such a code dominates every vertex
precisely once.

Similarly, the graph F n,m
3,2 is also regular and has valency 2n + m. We shall denote by

κ(n,m) the size of the minimum dominating subset of κ(n,m).1 As a vertex v ∈ Zn
3 ×Zm

2

dominates 2n + m + 1 vertices, then we have the following inequalities:

3n 2m

2n + m + 1
≤ κ(n,m) ≤ 3n−12m. (2)

The inequality on the right in (2) is justified by considering all the possible results
of n − 1 games in Z3 and m games in Z2, such that in total we guarantee a bill with
n + m − 1 right results. The expression of the left in (2) gives a lower bound for κ(n,m),
usually referred to as the sphere-packing bound for F n,m

3,2 . A subset of vertices of F n,m
3,2

that exactly satisfies the sphere-packing bound is called a perfect code and such a code
dominates every vertex exactly once.

The graphs Fm
2 and F n

3 are usually called hypercube graph and football pool graph
respectively. It is known that they contain perfect codes when n and m take certain
values (see [4]). In particular, if m = 2r − 1 then the hypercube graph Fm

2 contains a
perfect code of size 22r−r−1. Thus, σ3

2 = 2 and σ7
2 = 16. Similarly, when n = (3r − 1)/2

the football pool graph F n
3 contains a perfect code of size 3(3r−2r−1)/2. Therefore, we have

σ4
3 = 9 and σ13

3 = 50049.
Another known property is that, for big values of n the quantity σn

p tends toward the
sphere-packing bound (see [2, 4]), that is, for all p ≥ 2 we have

lim
n→∞

σn
p

n(p − 1) + 1
= 1. (3)

In addition, from the formulation of the graph F n,m
3,2 in terms of ternary and binary

games, it is evident the inequality 2κ(n + 1,m) ≤ 3κ(n,m + 1), that when rewriting it we

1This terminology is widely used. Notice that by definition we have κ(n, 0) = σn
3 , while κ(0, m) = σm

2 .
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obtain the next inequality, very useful to find rough upper bounds for κ(n,m) for certain
values of n and m:

κ(n,m) ≤ 3
2

κ(n − 1,m + 1). (4)

Given any additive group G together with a generating subset H that satisfies H =
H−1, we define the Cayley graph of G with respect to H to be the graph X(G,H)
whose vertices are the elements of G, where by definition g is adjacent to gh, for all
g ∈ G and h ∈ H. In particular, if we regard Zn

p as the additive group G1 and select
H1 = {±e1,±e2, . . . ,±en}, where ei is the ith standard basis vector, then F n

p is actually
the Cayley graph of G1 with respect to H1. Similarly, if we take Zn

3 × Zm
2 as the additive

group G2 and select H2 = {±e1, . . . ,±en,±en+1, . . . ,±en+m}, where ei is the ith standard
basis vector, then F n,m

3,2 is actually the Cayley graph of G2 with respect to H2. For more
on Cayley graphs, see Biggs [2].

3 Description of the algorithm

Our goal is to find exact values or minimal upper bounds for σn
p and κ(n,m), as well as

the associated codes of the dominating subsets for the graphs F n
p and F n,m

3,2 , respectively.
To simplify, we will focus on the explanation of the applied methodology used in the case
of the graph F n

p , because for the others graphs the ideas are completely similar.
Let V ′ be an arbitrary subset of the set of vertices V = Zn

p of the graph F n
p . It could

be that V ′ doesn’t dominate the graph F n
p , but the subset V ′ ∪ (V − domV ′) induced by

V ′ always dominates F n
p . So, we are looking for a subset V ? of the set of vertices V that

could be a solution for the following combinatorial optimization problem:

Minimize c(V ′) := |V ′| + |V − domV ′|
subject to V ′ ⊆ V .

(5)

Therefore, σn
p = c(V ?), that is, the number of vertices of the solution V ? of (5). Our

simulated annealing algorithm uses adequate codification for each vertex in V , as well
as complete codification inside the computer memory of the closed neighborhoods N [v]
for each vertex. It is necessary to intensively use of codification-decodification algorithms
from decimal base to base p and base 3n × 2m, details that are explained later.

The algorithm starts selecting at random a subset V ′ of vertices, in such a way that
the inequality (1) is satisfied with c(V ′) := |V ′| + |V − domV ′|. Next, the following step
sequence is repeated, using a parameter tk for a system “temperature”, which occasionally
decreases in order to make tk → 0 slowly, when k → ∞:

1. Any vertex v ∈ V is chosen, which will give rise to a new subset of vertices V ′′ in
the following way: V ′′ = V ′ ∪ {v}, if v /∈ V ′, while V ′′ = V ′ − {v}, if v ∈ V ′.

2. Next, c(V ′′) is calculated, using the already-made calculation for c(V ′), updating it
according to the vertices dominated by the chosen vertex v. We keep the list of all
the neighbors of each vertex inside the computer memory, so this calculation is made
fast.
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3. Next, we take the decision to accept or reject V ′′ according to probability equal to
min{1, e−∆c/tk}, where ∆c = c(V ′′)−c(V ′). This acceptance rule is called Metropolis
rule [1].

Here ∆c represents the change in the cost function produced by the inclusion or ex-
clusion of selected vertex v. The Metropolis rule for accepting or rejecting v states that,
if vertex v gives rise to a new subset V ′′ having less cost than V ′, then it is accepted with
probability 1. Otherwise, the new generated subset V ′′ has greater cost than V ′ and then
it is accepted only with probability e−∆c/tk , quantity which decreases to 0 when tk → 0.
The specific details of the cooling schedule are as follows:

(a) Decrease of temperature: every certain number of steps the system is cooled
down a little, decreasing the value of the temperature tk using the geometric cooling
scheme: tk+1 = λ · tk, where λ is a previously chosen constant between [0.92, 0.98]
(λ ≈ 0.95 was a good selection in almost all our experiments). This makes the
Metropolis rule become more strict each time, in the acceptance of vertices that
make the cost increase.

(b) Length of the temperature chains: the temperature parameter is updated each
nLimit steps, or when it has already accepted nOver new subsets V ′′ for which
c(V ′′) ≥ c(V ′). We successfully use values of nOver ∈ [105, 106] and nOver ∈
[5000, 50000], depending on the size of the problem.

(c) Initial temperature: the initial temperature t0 is selected at the beginning the
Metropolis rule in order to let it be more tolerant, accepting nearly χ× 100% of the
subsets V ′′ of which c(V ′′) ≥ c(V ′). Here χ is a previously chosen constant. With
this criteria, t0 = (n+1)/2 ln(1/χ). We’ve used generally χ = 0.7 with good results.

(d) Criteria to stop the algorithm: a maximum of 150 cycles of temperature are
completed, because in practice the quantity t150 = (t0)150 is almost null, although
independently of the initial value t0. Nevertheless, if for the last nCad temperature
steps a new good dominating subset V ′′ doesn’t appear, then the process is stopped.
We’re used nCad = 3 in our test with good results.

We use an additive algorithm for the generation of random numbers, proposed by
Knuth [8]. In spite that in theory, the method of simulated annealing converges to a
global minimum of the objective function c(V ) that is being minimized [1], in practice it
is necessary to run the algorithm several times to achieve good upper bounds of σn

p and
κ(n,m). For example, σ6

3 ≤ 73 was obtained after 5 runs, and to find σ7
3 ≤ 186 about

200 runs were necessary. Besides, a good part of the success of these methods depends on
good calibration of the system’s parameters.

In Figure 3 the main results achieved are presented for the graph F n
p , and in Figure 4

we present the corresponding results for the graph F n,m
3,2 . As shown in the tables of these

figures, only the cases corresponding to small values of p, n and m are studied.

3.1 Representation in base p and base 3n × 2m

A substantial part of the success of our algorithm is based on the fact we kept a complete
list of the neighbors of each vertex inside the computer main memory, coded in decimal
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n Zn
2 Zn

3 Zn
4 Zn

5 Zn
6 Zn

7 Zn
8 Zn

9 Zn
10

1 a1 a1 a1 a1 a1 a1 a1 a1 a1
2 a2 a3 a4 a5 a6 a7 a8 a9 a10

3 s,e2 e5 e8 e13 e18 e25 e32 e41 e50
4 e4 s,e9 e24 e52 b72 b123 b224 b390
5 e7 e27 e64 b200 b540
6 e12 b,c73 b334
7 s,e16 c186
8 e32 c486
9 c62 c1341
10 c120 c3645
11 c192 c9477
12 c380 c27702
13 c736 s59049
14 c177147

Figure 3: Best solutions for the problem of covering the graph Zn
p by rook domains. The

size of minimum dominating subset of Zn
p already known is reported in the table. The

superscripts to the left of each entry have the following meaning: “a” denotes a trivial
and exact solution; “e” denotes an exact solution found by the algorithm in 100% of the
runs; “b” denotes the best upper bound already known and also found by the author;
“c” denotes the best known upper bound, found by other authors; “s” denotes an exact
sphere-packing solution.

base. Thus, it is necessary to have efficient algorithms to run this process. Probably the
reader is familiar with the representation of natural numbers in base p, but not with the
representation of numbers in extended base 3n × 2m. Let’s make a brief summary of this
topic.

3.1.1 Representation in base p

Let s be a natural number. We shall write [s]np to denote the representation of s in base
p, using n digits p-adic d1, d2, . . . , dn. That is,

[s]np := (dn, . . . , d2, d1)p︸ ︷︷ ︸
base p

=
n∑

i=1

di pi,

where each di ∈ {0, 1, . . . , p − 1}. The maximum natural number that can be represented
with this scheme is pn − 1. To find the p-adic digits di the efficient and classic algorithm
is the well known Euclidean division algorithm. The obtained p-adic representation is
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compatible with the lexicographic order � of Zn
p , that is,

0 ≤ s ≤ s′ < pn =⇒ [s]np � [s′]np .

3.1.2 Representation in base 3n × 2m

Let s < 3n and s′ < 2m be two natural numbers. We shall write ([s]n3 , [s′]m2 ) to denote the
representation of an integer a with n + m digits, from which the first n digits are ternary
(base 3) while the last m digits are binary (base 2). That is,

a = ([s]n3 , [s′]m2 ) := (dn, . . . , d2, d1︸ ︷︷ ︸
base 3

, rm, . . . , r2, r1︸ ︷︷ ︸
base 2

) :=
m∑

i=1

ri 2i−1 +
n∑

i=1

di 3i−1 2m,

where each di ∈ Z3 and ri ∈ Z2. This definition is justified by the following result.

Proposition 1 (Base 3n × 2m) representation Every natural number a < 3n2m can be
represented as a vector of n + m coordinates as

a = ([qa]n3 , [ra]m2 ), (6)

where the first n coordinates correspond to the representation of a natural number qa < 3n

in base 3, while the last m coordinates correspond to the representation of a natural number
ra < 2m in base 2. The numbers qa and ra of this representation are unique.

Proof: Let’s consider the quotient qa and the remainder ra of the Euclidean division of
integer a by 2m. Therefore, we have that qa and ra are the only integers that satisfy
a = 2m qa + ra, with 0 ≤ ra < 2m. Then, clearly ra admits a unique representation in base
2 using m digits, denoted by [ra]m2 . On the other hand,

0 ≤ 2m qa ≤ a < 3n 2m,

from which we deduce that 0 ≤ qa < 3n. Therefore, qa admits a unique representation in
base 3 using n digits, denoted by [qa]n3 .

The last representation in base 3n × 2m is also compatible with the ordinary lexicographic
order “�” of Zn

3 × Zm
2 , in the next sense:

0 ≤ a ≤ a′ < 3n2m =⇒ ([qa]n3 , [ra]m2 ) � ([qa′ ]n3 , [ra′ ]m2 ).

4 Combinatorial construction

The smallest known dominating subset of F 8
3 has size 486 and was found by Laarhoven et

al. [11] using simulated annealing algorithm in conjunction with a combinatorial construc-
tion, which reduces the problem to another one with less dimension. This combinatorial
construction was originally formulated by Blokhuis & Lam [3] and in theory can be applied
to any graph F n

p or F n,m
3,2 , but only obtains good results in certain cases.

In this section we shall work with column vectors, instead of row vectors, because of
notation convenience.
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Definition 2 Let A = [a1|a2| · · · |an] be a q × n matrix of rank q with entries from Zp.
The set S ⊆ Zq

p is said to cover Zq
p using A if

Zq
p = {s + αai : s ∈ S, α ∈ Zp, 1 ≤ i ≤ n}.

Note that according to this definition, when q = n and A is the identity matrix, then
S covers Zq

p using A if and only if S is a dominating subset of F n
p . In general, we have the

next result.

Proposition 3 If S covers Zq
p using A, then W = {w ∈ Zn

p : Aw ∈ S} is a dominating
subset of F n

p of size |W | = |S| pn−q.

Proof: Let w ∈ Zn
p . Then we shall have that Aw ∈ Zq

p. By virtue of S covering Zq
p using

A, there exist s ∈ S, α ∈ Zp and 1 ≤ i ≤ n such that Aw = s + α ai. Let ei be the ith

vector of the canonical base of Zn
p . Then, ai = Aei, from where

Aw = s + αAei,

and therefore A(w−α ei) ∈ S. But by definition this means that w−α ei ∈ W , and so w is
dominated by W in F n

p . Finally, by hypothesis A has rank q and therefore |W | = |S| pn−q,
because for each w ∈ S the inverse image A−1({w}) is a vector subspace of dimension
n − q and then has exactly pn−q different elements.

For example, in the graph F 8
3 of the football pool problem, the set S ⊆ Z4

3 of 6 vertices

S = {(2, 2, 2, 2)t , (2, 1, 2, 1)t , (2, 0, 1, 1)t , (0, 2, 1, 1)t , (2, 0, 1, 2)t , (1, 1, 2, 2)t}

covers Z4
3 using the following matrix A of size 4 × 8:

A =




2 0 2 0 1 0 2 1
0 0 0 2 1 0 2 2
2 0 2 0 1 2 2 1
0 2 2 2 1 0 1 1


 .

Here q = 4. In this way Laarhoven et al. [11] found the upper bound σ8
3 ≤ |S| · 34 = 486.

In practice it is very difficult to find q < n and a set S ⊆ Zq
p together with a matrix A of

size q×n, in such a way that S covers Zq
p using A. This problem can also be formulated as

a combinatorial optimization problem, in the following way: for any given positive integer
k and a selection of r ∈ {1, . . . , n− 1}, find a subset S ⊆ Zn

p with k r-tuples and a matrix
r × n such that the size of the set

Zr
p − {s + α ai : s ∈ S, α ∈ Zp, 1 ≤ i ≤ n} (7)

be minimal.
Again we use a simulated annealing algorithm to solve this optimization problem: a

“move” now is either the replacement of one of the r-tuples from S (selected at random)
by other r-tuple not belonging to S, or the replacement of a column of A (selected at
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random) by another column not belonging to A. If the algorithm finds a subset S and a
matrix A for which S covers Zr

p using A, then the value of k is decreased by 1 and the
algorithm is executed again. The process stops when k is such that the algorithm is not
able to find a subset S and a matrix A for which the set in (7) be empty.

If we define G = Zn
p and H = {±a1, . . . ,±an} then we see that S is simply a dominating

subset in the Cayley graph X = X(G,H). This graph X has the same number of vertices
than F n

p , but is denser. By standard results on automorphisms of Cayley graphs, we may
assume without loss of generality that ai = ei for 1 ≤ i ≤ n, so A consists of full rank
leading identity submatrices together with some additional columns. Then X is actually
equal to F n

p with some extra edges determined by these additional columns.
The benefits of this combinatorial construction reside in the fact that they can help

us to find dominating subsets in smaller denser graphs, where the simulated annealing
algorithm works better. Every dominating subset found in X induces another dominating
subset of F n

p . However, this procedure could not find all the dominating subset of F n
p ,

because not all of them have this particular shape. So, even with this technique we could
fail to obtain the minimum dominating subset of F n

p or good upper bounds for their
cardinality σn

p .
The algorithm just described simplifies itself a little bit if we already have the matrix A.

On the matter, Davies & Royle [5] have reported the following result, although without an
adequate theoretical justification: in order to find the matrix A the orbits of the projective
group PGL(q, p) are studied, extracting a set from it of n projective vectors a1, . . . , an of
q components. These vectors form the columns of matrix A. For these calculations they
use a computer package oriented to group theory, named Cayley.

For the graph F n,m
3,2 we have a completely analog combinatorial construction, that is

described as follows.

Definition 4 Let A = [ a1|a2| . . . |an ] be a matrix of size q×n of rank q with entries from
Z3. Similarly, let B = [ b1|b2| . . . |bm ] be a matrix of size r×m of rank r with entries from
Z2. Then, S ⊆ Zq

3 × Zr
2 is said to cover Zq

3 × Zr
2 using A and B if

Zq
3 × Zr

2 =
{(

s1 + α ai

s2

)
:
(

s1

s2

)
∈ S, α ∈ Z3, 1 ≤ i ≤ n

}

∪
{(

s1

s2 + α bj

)
:
(

s1

s2

)
∈ S, α ∈ Z2, 1 ≤ j ≤ m

}

Proposition 5 If S covers Zq
3 × Zr

2 using A and B, then

W :=
{(

w1

w2

)
∈ Zn

3 × Zm
2 :

(
Aw1

Bw2

)
∈ S

}

is a dominating subset of F n,m
3,2 of size |W | = |S| 3n−q 2m−r.

Proof: For any (x1

x2
) ∈ Zn

3 × Zm
2 we have (Ax1

Bx2
) ∈ Zq

3 × Zr
2. So, we can find ( s1

s2
) ∈ S to

give either (
Ax1

Bx2

)
=

(
s1 + αai

s2

)
, α ∈ Z3, 1 ≤ i ≤ n,
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or (
Ax1

Bx2

)
=

(
s1

s2 + α bj

)
, α ∈ Z2, 1 ≤ j ≤ m.

In the first case, taking ei the ith basis vector in Zn
3 , we have

(
A(x1 − α ei)

Bx2

)
∈ S,

and so (x1

x2
)−α ( ei

0 ) ∈ W , that means that (x1

x2
) is dominated by W in F n,m

3,2 . In the second
case, taking ej the jth basis vector in Zm

2 , we have
(

Ax1

B(x2 − α ej)

)
∈ S,

and therefore (x1

x2
) − α ( 0

ej
) ∈ W , so (x1

x2
) is dominated by W in F n,m

3,2 . Thus, putting the
two cases together, we see that W is a dominating subset of F n,m

3,2 . Elementary linear
algebra yields that its size is |W | = |S| 3n−q 2m−r.

5 Some conclusions

In Figure 3 we present the list of upper bounds of σn
p corresponding to the graph F n

p , for
small values of p and n. Some of them are new and were obtained with our simulated
annealing algorithm. Other listed upper bounds for σn

p are already known.
In Figure 4 the known results concerning upper bounds of κ(n,m) are listed. Some of

these upper bounds were also found by us in an independent way, through our simulated
annealing algorithm.

There’s still a lot of work to do, particularly on the graph F n
p with p ≥ 4, for which

all the upper bounds studied by us have been found directly by the simulated annealing
algorithm, without the use of combinatorial constructions described in the last section.
Actually, we are working on a more efficient program of the simulated annealing algorithm
that includes these combinatorial constructions, with the hope to find upper bounds of
σp

n for other values of p and n greater than the ones already studied, and maybe improve
some of the actually known upper bounds.

Appendix: codes of some dominating subsets

Some of the codes of dominating subsets found by the author are presented here. With the
purpose of maintaining consistency with the terminology employed by other authors, we
use the compressed notation of Österg̊ard & Hämäläinen [12]. Let’s consider all the vectors
of Zn

p and Zn
3 ×Zm

2 , listed according to their lexicographic orders. Then, to specify a code
of dominating subsets we can simply enumerate the quantity of consecutive positions that
they have to skip in the listing.

For example, a code like “11, 0, 5, 2, . . . ” means that at the beginning we skip the
first 11 vectors before selecting the first vector, then we select the next vector, then we
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Zm
2 →

Zn
3 ↓ 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 e1 e2 e2 e4 e7 e12 e16 e32 e62 120 192 380 736

1 e1 e2 e,d3 e,d6 e8 e16 e,d24 e,d48 e84 160 284 548 1024

2 e,d3 e,d4 e6 e,d12 e20 e,d36 e64 124 232 408 768 1504

3 e5 e,d9 e16 e24 e48 92 171 312 576 1080 2016

4 e9 e18 e,d36 e,d72 128 238 432 d864 1296 2592

5 e,d27 e,d54 96 168 324 639 1188 d1944 d3888

6 73 132 d252 468 864 1620 d2916 d5832

7 186 333 648 d1296 2304 d4374 8586

8 486 d972 1728 d3456 6480 d12879

9 1341 d2592 4860 9639 17496

10 3645 7047 13122 25192

11 9477 18894 d37788

12 27702 52488

13 e59049

Figure 4: Better known solutions to the problem of domination of the graph Zn
3 × Zm

2 by
rook domains. In the table, the sizes of the known minimal subset that dominates the
graph are listed. The superscript on the left of each entry has the following meaning: “e”
indicates an exact solution found by the algorithm in 100% of the runs; “d” indicates an
upper bound of κ(n,m) derived from the inequality κ(n,m) ≤ 3

2κ(n − 1,m + 1).

skip the next 5 vectors and select the next one, then we skip the next 2 vectors and select
the next one, etc.

There is an Internet site that contains the rest of the codes of dominating subsets
for the graph F n,m

3,2 , that can be consulted using the “ftp” facility inside the directory
pub/graphs/pools of the Web site ftp.cs.uwa.edu.au.

6.1 σ3
10 = 50. Exact solution found by the algorithm in 100% of the runs.

1, 24, 11, 3, 44, 22, 43, 10, 7, 25, 13, 41, 13, 0, 23, 13, 18, 4, 13, 34, 20, 18, 15, 10, 37, 27, 44, 3, 11, 14, 28,
33, 6, 13, 20, 11, 20, 7, 4, 40, 32, 34, 13, 14, 13, 12, 15, 8, 15, 40.

6.2 σ3
9 = 41. Exact solution found by the algorithm in 100% of the runs.

7, 3, 25, 42, 21, 9, 19, 7, 3, 19, 7, 33, 34, 19, 14, 16, 7, 7, 37, 3, 21, 7, 11, 19, 7, 21, 34, 31, 7, 15, 5, 12, 14,
15, 25, 30, 28, 7, 14, 14, 7.

6.3 σ4
9 ≤ 390. Better upper bound known, found by the algorithm.

19, 8, 9, 6, 32, 5, 31, 0, 30, 9, 20, 23, 32, 30, 2, 18, 13, 24, 34, 21, 7, 7, 4, 12, 18, 46, 12, 31, 7, 2, 21, 25,
20, 3, 15, 2, 20, 13, 27, 9, 11, 23, 4, 23, 8, 21, 33, 3, 6, 12, 5, 30, 23, 14, 12, 24, 12, 3, 48, 1, 0, 3, 28, 19, 9,
0, 33, 19, 1, 1, 25, 23, 33, 6, 23, 0, 24, 27, 10, 28, 0, 4, 5, 14, 12, 36, 21, 27, 5, 11, 12, 22, 6, 5, 23, 22, 1, 2,
6, 3, 9, 29, 12, 29, 22, 42, 27, 6, 25, 4, 19, 24, 16, 1, 21, 12, 38, 16, 5, 37, 14, 5, 3, 12, 44, 9, 29, 3, 21, 27,
5, 15, 38, 42, 4, 9, 10, 21, 4, 16, 14, 26, 11, 11, 24, 21, 10, 27, 31, 32, 12, 16, 4, 10, 30, 6, 4, 19, 11, 14, 9,
5, 24, 9, 18, 8, 16, 15, 15, 24, 4, 9, 33, 11, 20, 7, 6, 22, 13, 4, 6, 42, 0, 4, 4, 6, 17, 20, 15, 0, 0, 3, 15, 34, 30,
15, 9, 33, 3, 29, 11, 13, 2, 11, 29, 6, 16, 7, 16, 24, 7, 4, 10, 27, 55, 0, 22, 7, 5, 12, 38, 15, 18, 5, 6, 54, 15, 16,
15, 9, 52, 24, 3, 30, 5, 8, 18, 18, 18, 12, 24, 2, 12, 5, 18, 36, 9, 1, 2, 25, 16, 9, 6, 3, 5, 33, 15, 17, 15, 21, 10,
7, 19, 7, 5, 48, 18, 13, 14, 13, 2, 41, 37, 13, 11, 36, 11, 7, 7, 18, 28, 5, 4, 20, 11, 22, 0, 15, 25, 16, 9, 6, 0,
10, 3, 20, 34, 28, 28, 20, 36, 6, 25, 9, 19, 5, 19, 11, 3, 42, 6, 21, 14, 28, 22, 15, 18, 1, 18, 10, 3, 9, 37, 10, 9,
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31, 10, 9, 9, 43, 4, 14, 9, 8, 13, 23, 5, 33, 12, 20, 36, 2, 20, 9, 28, 3, 33, 10, 9, 1, 29, 1, 26, 31, 0, 4, 23, 28,
7, 28, 13, 6, 5, 31, 14, 4, 9, 26, 10, 13, 15, 32, 0, 19, 40, 22, 9, 41, 7, 4, 13, 24, 8, 12, 5, 21, 14, 6, 15, 40.

6.4 σ3
8 = 32. Exact solution found by the algorithm in 100% of the runs.

3, 5, 30, 22, 18, 11, 5, 16, 30, 8, 4, 19, 31, 3, 10, 14, 11, 14, 27, 13, 13, 3, 29, 14, 28, 6, 9, 11, 14, 6, 38, 11.

6.5 σ4
8 ≤ 226. Better upper bound known, found by the algorithm.

5, 34, 23, 18, 0, 24, 18, 16, 26, 8, 24, 8, 4, 5, 19, 2, 21, 6, 28, 23, 10, 32, 33, 7, 9, 14, 1, 29, 9, 20, 16, 6, 34,
20, 2, 5, 30, 24, 9, 28, 0, 19, 17, 18, 15, 33, 9, 16, 36, 2, 28, 9, 19, 18, 20, 18, 14, 9, 46, 8, 19, 8, 26, 6, 9, 1,
40, 7, 26, 0, 8, 14, 37, 3, 19, 20, 1, 21, 38, 10, 24, 2, 17, 14, 25, 4, 36, 10, 8, 35, 18, 42, 9, 4, 10, 6, 27, 45,
3, 6, 21, 23, 3, 4, 29, 23, 8, 27, 4, 17, 17, 7, 20, 31, 8, 25, 15, 5, 1, 28, 0, 23, 6, 34, 20, 8, 33, 18, 3, 34, 9,
36, 2, 28, 26, 12, 21, 7, 2, 40, 23, 35, 2, 44, 10, 24, 30, 4, 3, 22, 32, 6, 20, 6, 0, 17, 11, 10, 23, 36, 16, 6, 2,
37, 29, 12, 31, 23, 2, 31, 46, 3, 26, 28, 10, 24, 30, 8, 19, 8, 8, 2, 25, 10, 12, 34, 3, 18, 4, 42, 5, 25, 8, 26, 21,
1, 12, 33, 8, 44, 23, 34, 16, 6, 33, 10, 33, 6, 2, 10, 14, 23, 2, 8, 31, 23, 3, 34, 35, 6, 26, 31, 4, 24.

6.6 σ3
7 = 25. Exact solution found by the algorithm in 100% of the runs.

1, 9, 29, 2, 10, 2, 26, 9, 21, 1, 9, 31, 9, 8, 19, 3, 28, 10, 2, 10, 25, 3, 22, 8, 1.

6.7 σ4
7 ≤ 123. Better upper bound known, found by the algorithm.

1, 39, 13, 29, 31, 24, 0, 4, 39, 18, 9, 10, 32, 0, 29, 8, 17, 2, 26, 29, 13, 39, 23, 0, 29, 7, 29, 19, 17, 2, 39, 24,
0, 14, 9, 10, 30, 31, 16, 31, 10, 13, 11, 32, 23, 8, 0, 36, 21, 13, 1, 24, 31, 0, 20, 15, 3, 27, 14, 8, 19, 30, 25,
10, 7, 37, 22, 5, 38, 24, 32, 12, 10, 7, 27, 15, 3, 18, 38, 18, 14, 8, 30, 32, 4, 30, 33, 22, 23, 23, 24, 23, 19, 13,
1, 33, 31, 7, 31, 0, 18, 13, 11, 16, 0, 36, 17, 14, 8, 27, 10, 7, 21, 30, 23, 15, 3, 33, 32, 0, 38, 29, 22.

6.8 σ3
6 = 18. Exact solution found by the algorithm in 100% of the runs.

6, 9, 6, 15, 22, 4, 14, 6, 0, 28, 0, 9, 14, 25, 4, 5, 22, 7.

6.9 σ4
6 ≤ 72. Better upper bound known, found by the algorithm.

0, 10, 40, 8, 30, 12, 15, 14, 28, 10, 8, 0, 34, 0, 42, 14, 28, 10, 19, 8, 30, 12, 2, 10, 38, 12, 31, 6, 6, 8, 43, 16,
4, 2, 43, 10, 28, 14, 3, 6, 38, 16, 9, 4, 44, 6, 33, 8, 26, 8, 7, 4, 44, 6, 13, 6, 38, 16, 25, 14, 16, 10, 27, 16, 4,
2, 51, 6, 6, 8, 39, 12.

6.10 σ5
6 ≤ 540. Better upper bound known, found by the algorithm.

7, 18, 1, 9, 9, 27, 6, 11, 27, 8, 26, 7, 18, 24, 7, 15, 21, 0, 27, 15, 19, 23, 2, 9, 13, 13, 19, 2, 9, 37, 7, 5, 8, 31,
8, 35, 10, 2, 4, 15, 24, 14, 19, 6, 32, 14, 1, 26, 15, 2, 9, 9, 23, 13, 42, 1, 14, 6, 12, 14, 9, 18, 9, 16, 13, 31,
24, 3, 8, 21, 8, 34, 27, 7, 25, 11, 14, 4, 22, 21, 20, 4, 1, 31, 3, 10, 7, 15, 27, 18, 14, 7, 4, 19, 25, 4, 28, 32, 7,
7, 26, 6, 13, 16, 9, 21, 1, 12, 0, 2, 40, 5, 6, 2, 12, 14, 11, 26, 31, 10, 6, 2, 23, 16, 2, 38, 25, 9, 14, 18, 7, 5, 4,
13, 42, 20, 3, 7, 10, 3, 4, 7, 7, 17, 9, 3, 29, 13, 1, 15, 20, 9, 1, 10, 28, 15, 11, 19, 15, 6, 41, 9, 18, 16, 7, 24,
1, 6, 12, 9, 16, 16, 23, 8, 6, 6, 27, 12, 17, 6, 14, 22, 6, 4, 5, 18, 20, 6, 26, 20, 10, 0, 7, 29, 18, 10, 6, 13, 31,
8, 5, 17, 14, 18, 19, 3, 0, 22, 22, 16, 5, 4, 41, 10, 9, 13, 8, 1, 15, 21, 9, 14, 3, 48, 16, 7, 23, 8, 39, 0, 10, 11,
45, 21, 5, 12, 9, 23, 3, 10, 8, 4, 5, 16, 3, 22, 0, 21, 33, 6, 15, 4, 19, 8, 14, 14, 3, 9, 11, 21, 21, 12, 21, 27, 4,
8, 27, 5, 13, 25, 2, 7, 3, 21, 10, 4, 26, 12, 13, 0, 10, 11, 9, 3, 19, 12, 15, 9, 33, 2, 19, 20, 21, 7, 0, 24, 10, 9,
13, 19, 14, 7, 20, 22, 0, 13, 13, 10, 19, 14, 26, 18, 12, 5, 13, 16, 7, 2, 13, 17, 12, 3, 3, 33, 3, 12, 18, 24, 7,
15, 12, 14, 4, 11, 6, 3, 11, 34, 9, 5, 19, 11, 6, 9, 1, 2, 27, 7, 40, 8, 31, 8, 14, 12, 9, 1, 1, 17, 12, 15, 14, 18,
19, 6, 8, 9, 20, 8, 6, 19, 12, 9, 13, 27, 1, 21, 0, 9, 5, 15, 6, 24, 15, 16, 0, 25, 4, 31, 4, 15, 20, 14, 17, 10, 14,
7, 17, 5, 7, 15, 4, 5, 19, 1, 15, 5, 8, 10, 8, 9, 10, 3, 19, 6, 1, 16, 39, 2, 1, 14, 10, 29, 3, 27, 9, 10, 23, 6, 19, 4,
1, 10, 6, 10, 24, 1, 10, 29, 6, 13, 7, 4, 10, 29, 6, 7, 12, 33, 8, 27, 13, 10, 32, 9, 7, 26, 6, 14, 9, 17, 15, 21, 10,
9, 27, 26, 8, 18, 38, 8, 21, 14, 10, 19, 14, 2, 1, 2, 51, 9, 26, 1, 1, 18, 5, 4, 16, 15, 22, 24, 18, 18, 7, 29, 11, 9,
12, 9, 18, 4, 8, 28, 3, 10, 14, 14, 10, 21, 10, 10, 10, 3, 29, 18, 13, 13, 13, 11, 22, 33, 3, 18, 4, 2, 17, 15, 7, 4,
11, 15, 21, 6, 5, 13, 9, 28, 17, 10, 1, 12.

6.11 σ3
5 = 13. Exact solution found by the algorithm in 100% of the runs.

0, 7, 13, 13, 7, 7, 2, 17, 15, 1, 11, 3, 12.

6.12 σ4
5 = 52. Exact solution found by the algorithm in 100% of the runs.

15, 4, 8, 3, 19, 5, 26, 0, 23, 0, 14, 3, 0, 27, 24, 15, 16, 5, 19, 3, 14, 0, 27, 3, 19, 5, 2, 5, 22, 0, 32, 0, 13, 12,
5, 6, 12, 3, 8, 19, 5, 19, 5, 26, 0, 22, 1, 16, 16, 3, 19, 5.

6.13 σ5
5 ≤ 200. Better upper bound known, found by the algorithm.
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18, 27, 3, 3, 41, 10, 4, 17, 3, 0, 3, 12, 45, 3, 38, 30, 17, 3, 11, 4, 28, 3, 8, 22, 31, 4, 28, 15, 4, 31, 3, 1, 32, 5,
32, 6, 13, 12, 4, 14, 43, 11, 4, 32, 18, 3, 10, 3, 0, 3, 28, 7, 41, 28, 18, 15, 4, 32, 3, 7, 4, 15, 44, 1, 3, 37, 7, 3,
26, 4, 14, 15, 20, 5, 7, 13, 13, 14, 7, 10, 16, 4, 16, 43, 5, 36, 3, 22, 27, 3, 1, 43, 3, 8, 4, 11, 3, 27, 4, 30, 13,
4, 33, 26, 17, 13, 3, 0, 3, 26, 10, 39, 10, 30, 0, 3, 13, 1, 40, 5, 27, 3, 0, 3, 26, 17, 0, 3, 33, 22, 21, 13, 4, 30,
6, 3, 6, 21, 4, 12, 43, 3, 1, 40, 22, 3, 27, 5, 7, 35, 8, 7, 18, 4, 33, 18, 13, 16, 2, 3, 40, 3, 17, 15, 4, 28, 8, 26,
27, 4, 28, 3, 5, 5, 4, 35, 18, 31, 3, 45, 6, 3, 0, 3, 17, 4, 12, 3, 41, 7, 0, 37, 26, 3, 6, 4, 15, 27, 5, 31.

6.14 σ3
4 = 8. Exact solution found by the algorithm in 100% of the runs.

0, 4, 20, 4, 11, 2, 2, 2.

6.15 σ4
4 = 24. Exact solution found by the algorithm in 100% of the runs.

12, 4, 1, 18, 3, 17, 5, 17, 3, 20, 1, 2, 18, 5, 18, 1, 22, 1, 13, 1, 20, 1, 20, 5.

6.16 σ5
4 = 64. Exact solution found by the algorithm in 100% of the runs.

7, 21, 4, 21, 21, 5, 22, 5, 14, 25, 10, 25, 9, 9, 24, 9, 19, 5, 30, 5, 13, 21, 12, 21, 16, 9, 16, 9, 17, 25, 2, 25, 5,
25, 8, 25, 9, 9, 26, 9, 14, 21, 6, 21, 21, 5, 20, 5, 27, 9, 18, 9, 17, 25, 0, 25, 16, 5, 28, 5, 13, 21, 14, 21.

6.17 σ6
3 ≤ 73. Better upper bound known. This is another different solution to the one already presented

in Figure 2.
8, 1, 23, 6, 3, 2, 17, 10, 18, 6, 18, 0, 10, 0, 0, 0, 27, 16, 7, 2, 9, 28, 0, 6, 0, 5, 9, 2, 6, 4, 13, 16, 12, 14, 3, 6,
2, 8, 22, 13, 12, 7, 1, 10, 15, 12, 9, 3, 17, 24, 13, 10, 7, 2, 3, 2, 6, 10, 9, 12, 8, 8, 22, 5, 4, 13, 6, 12, 1, 8, 6,
3, 19.
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[13] Österg̊ard, P.R.J. (1994) “New upper bound for the football pool problem for 11 and
12 matches”, Journal of Combinatorial Theory, Series A, 67: 161–168.
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