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Abstract
In this paper are presented some experiences about the modeling of financial data

by three classes of models as alternative to Gaussian Linear models. Dynamic Volatil-
ity, Stable Lévy and Diffusion with Jumps models are considered. The techniques are
illustrated with some examples of financial series on currency, futures and indexes.
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Resumen
En el trabajo se presentan algunas experiencias en la modelación de datos fi-

nancieros usando tres clases de modelos alternativos a los modelos Gaussianos li-
neales. Se consoderan modelos con volatilidad dinámica, estables de Lévy y difusiones
con Saltos. Las técnicas son ilustradas con ejemplos de series financieras de tasas de
cambio, futuros e ı́ndices.

Palabras clave: Volatilidad Dinámica, Procesos Estables, Difusiones con Saltos, Verosi-
militud.
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1 Introduction

Linear Gaussian models have been considered in the past years to model financial data. In
the discrete time context Autoregressive Moving Average processes(ARMA) are considered
(see Box-Jenkins (70), [3]). They are defined by:

Xt − a1Xt−1 − · · · − apXt−p = et + b1et−1 + . . . + bqet−q (1)
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where (et)t∈N are independent distributed Gaussian r.v. with zero mean and constant
variance σ2. Here X1,X2, · · · ,Xn are the spot prices of some financial asset during some
periods of time.
In the continuous time framework the following diffusion model is proposed:

dXt = b(Xt, θ)dt + σ(Xt)dBt (2)

where θ is an unknown parameter, b(Xt, θ) is the drift, σ(Xt) is the variance or the
volatility process and (Bt)t∈N is a standard Brownian Motion. In particular we get the
very known Black-Scholes model:

dXt = µXtdt + σXtdBt. (3)

By Itô formula its solution is given by:

Xt = X0e
µt− 1

2
σ2t+σBt (4)

which implies that marginal distribution laws of spot prices are lognormals.
In the last years empirical evidences against Gaussian Linear models have been accumu-
lated. Despite the diversity of financial series some common stylized facts (see Cont(1999),
[5]) not explained by the models above are present, among them we have:

• cluster volatilities

• heavy tails

• returns non autocorrelated

• asymmetry in profits and lost

• “long memory” property

• self-similarity

We will concentrated in the first two aspects. Cluster volatility refers to the fact that
periods with high activity in the market altern with others where prices don’t present
large fluctuations. Moreover, these phenomena seems to take place at random intervals.
Heavy tails is linked to the decay to zero of the marginal density of returns at a lesser rate
than in the normal distribution, hence, extreme events are observed more frequently.

In order to illustrate these empirical facts in figure 1 prices of sugar futures and the
mexican peso vs. dollar exchange rates are shown.

We remark that, according to the graphs, that extreme values are more frequent than
expected in presence of normality (see also table 1). In adition the volatility might be
changing along time.
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Figure 1: Daily prices of sugar futures(above) and exchange rate of mexican peso vs. US
dollar(bellow).
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Figure 2: Returns of sugar futures prices(above) and exchange rate of the mexican peso
vs. US dollar (bellow).
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Returns are more relevant from the financial point of view, also the returns series is
stationary in the mean. They are defined as:

Yt =
Xt − Xt−1

Xt−1
(5)

or

Yt = ln

(
Xt

Xt−1

)
(6)

In figure 2 the returns series of the sugar prices and the mexican peso exchange rate
are presented. Also in figures 3 and 4 the logarithms EURO returns and the YEN are
shown.
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Figure 3: Returns of daily exchange rate EURO/Dollar.
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Figure 4: Returns of daily exchange rate YEN/Dollar.

A statistic summary of different return series is shown in table 1.
Note that kurtosis, actually the diffrence with Gaussian kurtosis which equals to 3, is

also larger than in the Gaussian case, specially for the sugar future price and the mexican
peso.
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Asset Mean Minimum Maximum Std.Dev. Skewness Kurtosis
Sugar 0.0000 −0.0672 0.0361 0.0048 −2.5409 46.7911

Mexican Peso 0.0002 −0.0944 0.1042 0.0076 1.4721 49.4355
EURO −00220 −.022615 .023646 .000033 .211994 5.087970
YEN .000093 −.035293 .088448 .008802 1.413142 15.07147

Table 1: Statistic summary of sugar future daily prices, mexican peso, EURO and YEN
daily exchange rates versus US dollar.

2 Dynamic volatility models

2.1 ARCH/GARCH models

Autoregressive Conditional Heteroscedastic (ARCH) and Generalized Autoregressive Con-
ditional Heterocesdastic models(GARCH) are introduced in the 80’s (see Engle(1995), [4]
and Bollerslev(1992), [2]). A GARCH model is defined by:

Yt = c0 +
r∑

i=1

ciYt−i + σtεt (7)

σ2
t = k +

p∑

i=1

aiY
2
t−i +

q∑

i=1

biσ
2
t−i (8)

where (εt) are independent random variables with standard normal distribution.

Remark 2.1. 1. For simplicity we consider ci = 0 for i = 0, 1, 2, cdots, r

2. Xt are, conditionally to σt, Gaussian distributed. Its common marginal density is a
mixing of Gaussian laws, which has heavy tails.

3. The model also captures the persistence of the volatility. Indeed, according to equation
(7), large values of the return process at present time correspond with large values of
the next observation of the series, which in turn implies large values of the volatility
and so on.

The statistical analysis is usually divided in three parts:

• A preliminary analysis for identification purpose is carry on trough the autocorrela-
tion function(ACF) and the partial autocorrelation function(PACF). Also a Ljung-
Box-Pierce Q-test for a departure from randomness based on the ACF of the data
is implemented.

• A parameter estimation is performed based on the likelihood criteria, using numer-
ical techniques to obtain the maximum values. We follow a sequential quadratic
optimization method as numerical procedure.

• A diagnosis test of the model via analysis of residuals is performed.
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The techniques are illustrated with the analysis of the EURO series mentioned above. In
figure 5 autocorrelations of the series are shown. Note that in the case of the EURO all
values are significative equal to zero, except lags 4 and lags 18 which are slightly outside
the confidence interval but very close to the confidence band. We consider they are not
significative also.
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Figure 5: Autocorrelacion function and partial autocorrelation function for daily EURO
returns series.

In the case of the sugar future prices and the mexican peso other non zero correlations
appear. A further ARMA ajustment is needed.
On the other hand figure 6 shows the values of the ACF for the squares of the EURO
return series. They reveal the existence of autocorrelations, hence data exhibits non-linear
dependence indicating a possible non Gaussian distribution.
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Figure 6: Autocorrelacion function and partial autocorrelation function for squares daily
EURO returns series.

Also a test for randomness is performed. Results of the Ljung-Box-Pierce Q-test for
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Currency p-value L-B-P Statistic Critical value at 5%
EURO 0.03674156557929 32.66132331404926 31.41043284423092

Table 2: Ljung-Box-Pierce Q-test for the EURO returns.

Parameter Statistic Value Standard Error T

c0 −2.1877 × 10−5 2.2427e − 005 −0.9755
k 2.3674 × 10−7 2.424 × 10−8 9.7663
b1 0.54041 0.036768 14.6978
a1 0.29113 0.032936 8.8394

Table 3: Fit of a GARCH(1,1): estimation results for the Euro return series.

the EURO returns are shown in table 2. Th null hypotheses of randomness is rejected at
5% significance level.

The conditional likelihood of the data is:

l(y, k, ai, bi/σt) =
n∑

t=1

log f(yt, k, ai, bi/σt) (9)

=
n∑

t=1

log
1
σt

+
n∑

t=1

log fεt(yt) (10)

where fεt(xt) is the marginal density of the normal noise εt. We illustrate the techniques by
fitting a GARCH(1,1). The maximization procedure is done using MATLAB optimization
subroutine GARCHFIT.

Note that both intercepts stay in the confidence interval of zero. Also the sum a1 +
b1 < 1 indicating a stationary behavior (Shiriaev(1999), [12]). Once the estimation of
parameters is done a residual analysis is implemented. In figure 7 the adjusted variance
is shown as well as the adjusted residuals according to equation (7). Again, a Ljung-
Box-Pierce Q-test for a departure from randomness of the standardized residuals Ŷt

σ̂t
is

implemented, results are shown in table 4 indicating the non rejection of the random
white noise in this occasion.

p-value L-B-P Statistic Critical value
0.69804810136988 7.28755024134759 18.30703805327515
0.84651541062226 9.55917544804852 24.99579013972862
0.70549399299311 16.17844373146159 31.41043284423092

Table 4: Ljung-Box-Pierce Q-test for a departure from randomness of the standardized
residuals.
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Figure 7: Innovations, estimated variance and returns for daily EURO returns series.

3 Stable noises and stable Lévy processes

In order to explain heavy tails of the marginal distribution of the returns several distri-
bution laws have been proposed. The stable distribution is one of them, it is introduced
in (Fama(1971),[6]) and (Mandelbrot(1963),[8]). The following conditions are equivalent
definitions of a stable random variable X:

a) X has a domain of attraction, i.e., there are a sequence of i.i.d. random variables
{Yi}i∈N, a real positive sequence {ai}i∈N and a real sequence {bi}i∈N such that

1
an

n∑

i=1

Yi − bn → X in distribution

b) The characteristic function (CF) of X admits the following form:

φX t =





exp(−σα|t|α(1 − iβsgn(t) tan πα2) + iµt) for α 6= 1

exp(−σ|t|(1 + iβ π
2 sgn(t) log |t|) + iµt) for α = 1

(11)
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Currency Tail Index Symmetry Index Scaling Index Location Index
Can Dollar 1.7660 0.0100 0.0021 −0.0001

British Pound 1.6490 0.1600 0.0029 −0.0000
Yen 1.6490 0.2200 0.0047 0.0003

EURO 1.5710 −0.5600 0.0205 −0.0023

Table 5: McCulloch estimates for daily currency data.

where the parameters satisfy the constraints α ∈ (0, 2],σ ∈ R+
0 , β ∈ [−1, 1] and µ ∈

R.

A random variable X with stable distribution of parameters α, β, σ, µ is denoted
by X ∼ S(α, β, σ, µ). It is well known (see for example (Taqqu and Samorodnitsky
(1994),[10]) that for α ∈ (0, 2) and X ∼ S(α, β, σ, 0) we have

lim
x→∞

xαP (X > x) = Cα(1 + β)σα (12)

Hence α is an index about the thickness of the tail. Also β is a coefficient for symmetry
(note that for β = 0 the CF is real then the density law is symmetric), σ is a scale param-
eter and µ is a location parameter.
A close expression for the density is in general unknown with the exception of α =
2textandβ = 0 where the Gaussian law is obtained and α = 1 and β = 0 where the
Cauchy law is obtained.
Another important property is that E|X|p exists for 0 < p < α and E|X|p = ∞ for p ≥ α.
For example variance is only finite in the Gaussian case.
Several estimation procedures have been implemented for stable laws, for a review, dis-
cussions and comparisons see Seco et al.(2003), [11] or Weron(2000), [14]. Four kind of
estimators can be distinguished:

• tail estimators (only for α),

• likelihood estimators,

• quantiles and moments estimators,

• sample characteristic estimators.

A simulation study, (Seco et al.(2003), [11]) reveals that the McCulloch quantile based
estimator seems to be a better compromise between accuracy and speed, see also (McCul-
loch(1979), [9]). Table 5 shows estimates obtained for exchange rates of four currencies
using McCulloch method. Note that all of them exhibit a tail behavior heavier than
normal, with the EURO return series showing a negative asymmetry.

A similar result is found for NASDAQ and Dow Jones indexes. Additionally we per-
formed a Kolmogorov-Smirnov test showing that the stable hypothesis is not rejected.
Results can be seen in table 6.
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Currency K-S Statistics Critical Value Critical Value Conclusion
at 1% at 5%

Can Dollar 0.6637 1.63 1.36 No Rejected
British Pound 0.6034 1.63 1.36 No Rejected

Yen 0.8925 1.63 1.36 No Rejected
EURO 1.0942 1.63 1.36 No Rejected

Table 6: Kolmogorov-Smirnov test for stable distribution.

Also self-similarity property of stable distribution is tested with the change of scale from
weekly to daily data for NASDAQ and Dow Jones indexes. Indeed, if we consider an stable
Levy process, i.e., a process (Xt)t≥0 with independent increments and Xt ∼ S(α, β, σ, µ).
From here it is easy to see that Xct and c

1
α Xt + µ(c− c

1
α ) have the same distribution law.

Here c > 0 is the new time scale considered. Therefore a two side Kolmogorov-Smirnov
test is implemented to test

H0 : Xct = c
1
α Xt + µ(c − c

1
α ) in distribution

The null hypotheses of self-similarity is not rejected for this particular scale, the results
can be seen in table 7.

Index Two Side K-S statistic p-value decision
Dow Jones .6655 .7759 non-rejected
NASDAQ 1.3291 .0566 non-rejected

Table 7: Self-similarity test for Dow Jones and NASDAQ.

4 Diffusion with jumps models

Another attempt to explain large fluctuations in the return prices is to consider, together
with normal noises, an extra term in equation (2) related to the jumps. Usually a pure
jump Markov process is considered, in particular we have:

dXt = b(Xt− , θ)dt + σ(Xt−)dBt + γ(Xt− , θ)dZt (13)

where (Zt)t∈N is a compound Poisson process given by

Zt =
Nt∑

i=1

Xi. (14)

X1,X2, · · · ,Xn are independent identical distributed random variables with density g(θ, .)
of mean µ and (Nt)t∈N is a Poisson Process of intensity λ(θ). Here θ is the unkown
parameter. The loglikelihood, for continuous observations on [0, T ], is obtained from
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generalized Girsanov theorem (see Jacod and Shiriaev (1987), [7]). Disregarding the terms
non depending on θ, it is given by:

lt(θ) =

t∫

0

b(θ,Xs−)′σ−1
s dXc

s − 1
2

t∫

0

b(θ,Xs−)′σ−1
s b(θ,Xs−)ds (15)

+Nt log [λ(θ)] − tλ(θ)

+
∑

s∈St

log [g (θ, ϕ (θ,Xs−,∆s)) |Jϕ (θ,Xs−,∆Xs)|]

Here St = {s ≤ t : ∆Xs 6= 0} is the set of jumps times on [0, T ].
Also :

Xc
t (θ) = Xt − x0 −

∑

s≤t

∆Xs −
t∫

0

b (θ,Xs) ds

is the continuous part of the process, ϕ is the inverse function of γ and |Jϕ| the deteminant
of its Jacobian matrix.
Asymptotic behavior results for the m.l.e. under continuous observations are obtained in
(Sorensen(1990),[13]).

For discrete observations of equal length ∆ the likelihood function only can be cal-
culated in an approximate way via the discretization of (15). For an exponential family
(see a precise concept in Sorensen(1990),[13])and a parametric space a subset of R3,with
parameters (θ, λ, µ) corresponding to the drift, the intensity of the Poisson Process and
the mean of the jumps respectively it is obtained that:

l̃n,T,h′
n (θ, λ, µ) =

n∑

i=1

b∆(i−1)σ
−1
∆(i−1)

(
X̃c(n, h′)∆i − X̃c(n, h′)∆(i−1)

)
−

−∆
2

n∑

i=1

b∆(i−1)σ
−1
∆(i−1)b∆(i−1)(θ) +

+Ñ(n, h′)t log λ − tλ +

+
∑

∆i∈S̃(n,h′)t

log
[
g

(
µ, ϕ

(
µ,∆i,X∆i, ∆̃X

(
n, h′)

∆i

))]
×

×
∣∣∣Jϕ

(
µ,∆i,X∆i∆̃X(n, h′)∆i

)∣∣∣

where

X̃c(n, h′)∆(i+1) =

{
X̃c(n, h′)∆i + X∆(i+1) − X∆i si

∥∥X∆(i+1) − X∆i

∥∥ < h′

X̃c(n, h′)∆i si
∥∥X∆(i+1) − X∆i

∥∥ > h′

for a given fixed number h′ is an approximation of the continuous part,

Ñ(n, h′)t =
∑

∆i<t

1[‖X∆(i+1)−X∆i‖>h′]
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T = 20 T = 40 T = 100
θ -1.422 -1.202 -1.085
α 18.54 14.11 11.71
λ 0.541 0.527 0.498
µ 4.947 4.962 4.981

Table 8: Estimators from simulated mean-reverting process with Poisson jumps with
θ = −1, α = 10, σ = 1, λ = 0.5, µ = 5, h = 0.001, ∆ = 0.001, h′ = 0.5, n = 10.

is an approximation of the number of jumps,

S̃(n, h′)t =
{
∆i :

∥∥X∆(i+1) − X∆i

∥∥ > h′}

is an approximation of St and ∆̃X(n, h′)t = 1[t=∆i ∧ ‖X∆(i+1)−X∆i‖>h′]
(
X∆(i+1) − X∆i

)
as

approximation of ∆Xt.
Solving

.

l̃
n,T,h′

n (θ, λ, µ) = 0

we get the discretized m.l.e θ̂n,h′

T .
In (Alvarez et al.(2003), [1]), the asymptotic behavior of the m.l.e. estimators is studied
and numerical results are illustrated from simulation data. For a mean-reverting with
jumps stochastic equation:

dXt = (α + θXt)dt + σdBt + dZt (16)

where (Zt)t≥0 is again a compond Poisson Process with parameters λ and µ results can
be seen in table 8.

5 Conclusions and recommendations

The first two alternatives capture the heavy tail behavior of financial data for the exam-
ples considered. The diffusion with jumps model needs to be confronted with real data,
nevertheless it perform well in preliminary simulation studies. Also a comparison between
the different models could be useful.

The models presented are not, by far, the sole alternatives to the Gaussian Linear
models in order to explain the stilyzed facts of financial data, for example stochastic
volatility and switching models could also be considered.
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