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Abstract

In this paper, we study the uniqueness of two difference polynomials
of entire functions sharing one value, polynomial and small function. Our
results of this paper are improvement of the previous theorems given by
Chen and Chen [2], Liu, Liu and Cao [22] and Li et al. [19].

Keywords: uniqueness; entire function; difference polynomial.

Resumen

En este artículo, se estudia la unicidad de dos polinomios de diferen-
cias de funciones enteras que comparten una función pequeña y polino-
mial. Nuestros resultados mejoran teoremas previos dados por Chen y
Chen [2], Liu, Liu y Cao [22], y Li et al. [19].

Palabras clave: unicidad; función entera; polinomio de diferencias.

Mathematics Subject Classification: 39A70, 30D35.

1 Introduction and main results

In this paper, we mainly study the uniqueness of complex difference polynomials
of entire functions sharing one value, polynomial and small function with finite
weight. The fundamental results and the standard basics of the Nevanlinna value
distribution theory of meromorphic functions are used(see [10, 30, 31]). A mero-
morphic function f means meromorphic in the complex plane. If no poles occur,
then f is called an entire function. For meromorphic function f , we will use
S(r, f) to denote any quantity satisfying S(r, f) = o(T (r, f)) for all r outside
a possible exceptional set E of finite logarithmic measure limr→∞

∫
[1,r)∩E

dt
t <

∞. A meromorphic function a(z) is called small function with respect to f if
T (r, a(z)) = S(r, f) and the order, hyper order of meromorphic function f are
defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
, ρ2(f) = lim sup

r→∞

log log T (r, f)

log r
.

In addition, for some a ∈ C ∪ {∞}, if the zeros of f(z) − a and g(z) − a
(if a = ∞, zeros of f(z) − a and g(z) − a are the poles of f(z) and g(z)
respectively) coincide in locations and multiplicities we say that f(z) and g(z)
share the value a CM (counting multiplicities) and if coincide in locations only
we say that f(z) and g(z) share a IM (ignoring multiplicities).
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UNIQUENESS OF DIFFERENCE POLYNOMIALS OF ENTIRE FUNCTIONS 225

Definition 1.1 (see [14, 15]). Let l be a nonnegative integer or infinity. For
a ∈ C ∪ {∞}, we denote by El(a; f) the set of all a-points of f where an a-
point of multiplicity k is counted k times if k ≤ l and l + 1 times if k > l. If
El(a; f) = El(a; g), we say that f, g share the value a with weight l.

Recently, the topic of difference equation and difference product in the com-
plex plane C has attracted many mathematicians, many papers have focused on
value distribution of differences and differences operator analogues of Nevan-
linna theory (including [3, 6, 8, 7, 17, 23]), and many people dealt with the
uniqueness of differences and difference polynomials of meromorphic function
and obtained some interesting results ([11, 12, 20, 21, 22, 27, 28]).

In 2010 and 2011, Zhang [33], Qi [25] studied the problem on the difference
polynomials of entire functions sharing small function by using two different
methods and obtained the following results.

Theorem 1.1 [33, Theorem 6] or [25, Theorem 2]. Let f and g be transcenden-
tal entire functions of finite order, and α(z) be a small function with respect to
both f(z) and g(z), let c be a non-zero complex constant, and let n ≥ 7 be an
integer. If f(z)n(f(z) − 1)f(z + c) and g(z)n(g(z) − 1)g(z + c) share α(z)
CM , then f(z) ≡ g(z).

Theorem 1.2 ([26, Theorem 1.2]). Let f and g be transcendental entire func-
tions of finite order, and c be a nonzero complex constant, and let n ≥ 6. If
fnf(z + c) and gng(z + c) share 1 CM , then fg = t1 or f = t2g for some
constants t1 and t2 that satisfies tn+1

1 = tn+1
2 = 1.

In the same year, Li et al. [19] obtained the following theorems which are
improvement of Theorem 1.1 and Theorem 1.2.

Theorem 1.3 [19, Theorem 1.1]. Let f, g be transcendental entire functions of
finite order, c be a nonzero complex number, n be an integer such that 2 degP0 <
n+ 1 and f(z)nf(z + c) and g(z)ng(z + c) share P0(z) CM .

(I) If n ≥ 4 and that f(z)nf(z + c)/(P0(z)) is a Möbius transformation of
g(z)ng(z + c)/(P0(z)), then either

(i) f ≡ tg, where t ̸= 1 is a constant satisfying tn+1 = 1, or

(ii) f = eQ, g = te−Q, where P0 reduces to a nonzero constant c, say,
and t is a constant such that tn+λ = c2, Q is a nonconstant polyno-
mial.

(II) If n ≥ 6, then (I)(i) or (I)(ii) holds.
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226 H. WANG – H.Y. XU

Theorem 1.4 [19, Theorem 1.2]. Let f and g be transcendental entire functions
of finite order, and α(z) be a meromorphic function such that ρ(α) < ρ(f), let
c be a non-zero complex constant, and let n ≥ 7 be an integer. If f(z)n(f(z)−
1)f(z + c) − α(z) and g(z)n(g(z) − 1)g(z + c) − α(z) share 0 CM , then
f(z) ≡ g(z).

In 2012, Chen and Chen [2] further studied the uniqueness of difference
polynomials fn(fm − 1)

∏d
j=1 f(z + cj)

sj and gn(gm − 1)
∏d

j=1 g(z + cj)
sj

sharing small function, where cj ∈ C\{0}, (j = 1, . . . , d) are distinct constants,
n,m, d, sj(j = 1, . . . , d) ∈ N+ and obtained the following theorem.

Theorem 1.5 [2, Theorem 1.3]. Let f and g be two transcendental entire func-
tions of finite order, cj ∈ C \ {0}, (j = 1, . . . , d) be distinct constants, n,m,
d, sj(j = 1, . . . , d) ∈ N+, and α(z) be a small function with respect to both
f(z) and g(z). If n ≥ m+8λ, and fn(fm− 1)

∏d
j=1 f(z+ cj)

sj and gn(gm−
1)
∏d

j=1 g(z+ cj)
sj share α(z) CM , then f(z) ≡ tg(z), where tm = tn+λ = 1

and λ = s1 + s2 + · · ·+ sd.

Let P (z) = anz
n + an−1z

n−1 + · · · + a0 be a nonzero polynomial, where
a0, . . . , an( ̸= 0) are complex constants, and n an integer, let Γ0 = m1 + m2

and Γ1 = m1 + 2m2, where m1 is the number of the simple zero of P (z),
and m2 is the number of multiple zeros of P (z). In 2011, Luo and Lin [24]
further investigated the uniqueness of complex difference polynomials of entire
functions sharing one value and obtained the following result.

Theorem 1.6 [24, Theorem 2]. Let f and g be transcendental entire functions of
finite order, c be a nonzero complex constant, and let n > 2Γ1 +1 be an integer.
If P (f)f(z+c) and P (g)g(z+c) share 1 CM , then one of the following results
holds:

(i) f ≡ tg for a constant t such that tl = 1, where l = GCD{λ0 + 1, λ1 +
1, · · · , λn + 1} and

λi =

{
i, ai ̸= 0,
n, ai = 0,

i = 0, 1, 2, . . . , n.

(ii) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) =
P (ω1)ω1(z + c)− P (ω2)ω2(z + c);

(iii) f(z) = eα(z), g(z) = eβ(z), where α(z) and β(z) are two polynomials, b
is a constant satisfying α+ β ≡ b and a2ne

(n+1)b = 1.
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Remark 1.1 The following example shows that the second case of Theorem 1.6
may occur. Let P (z) = (z − 1)6(z + 1)6z11, f(z) = sin z, g(z) = cos z and
c = 2π. It is easy to see that n > 2Γ1 + 1 and P (f)f(z + c) ≡ P (g)g(z + c),
so P (f)f(z + c) and P (g)g(z + c) share 1 CM .

Clearly, we get f ≡ tg for a constant t such that tm = 1, where m ∈ Z+,
but f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(ω1, ω2) =
P (ω1)ω1(z + c)− P (ω2)ω2(z + c).

Regarding this remark, it is a natural question to ask: What condition on
f and g can guarantee that the case (ii) of Theorem 1.6 may not occur? The
main purpose of this paper is to investigate the above problem; we obtain some
theorems which are improvements of Theorems 1.1-1.6.

Let

F (z) = P (f)

d∏
j=1

f(z + cj)
sj , G(z) = P (g)

d∏
j=1

g(z + cj)
sj . (1)

Theorem 1.7 Let f, g be transcendental entire functions of finite order such that
f and g share 0 CM , F (z), G(z) be stated as in (1), where cj ∈ C, n, d, sj(j =
1, 2, . . . , d) ∈ N+. If F (z) and G(z) share 1 CM and n > 2Γ1 + λ, then one
of the following cases holds:

(i) f ≡ tg for a constant t such that tκ = 1 where κ = GCD{λ0 + λ, λ1 +
λ, · · · , λn + λ} and λi(i = 0, 1, . . . , n) are stated as in Theorem 1.6;

(ii) f = eγ , g = ζe−γ , where γ is a nonconstant polynomial, ζ is a complex
constant satisfying a2nζ

n+λ ≡ 1.

Remark 1.2 From Theorem 1.6, we see that the condition “f and g share 0
CM” in Theorem 1.7 is necessary.

Theorem 1.8 Under the assumptions of Theorem 1.7, if

Ek(1;F (z)) = Ek(1;G(z))

and k, n, d(> 0), sj(> 0)(j = 1, . . . , d) are integers satisfying one of the fol-
lowing conditions:

(I) k ≥ 3, n > 2Γ1 + λ;

(II) k = 2, n > 2Γ1 + Γ0 + λ+ d;

(III) k = 1, n > 2Γ1 + 2Γ0 + λ+ 2d;

(IV) k = 0, n > 2Γ1 + 3Γ0 + λ+ 3d.
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Then the conclusions of Theorem 1.7 hold.

Let

F1(z) =
P (f)

∏d
j=1 f(z + cj)

sj

P0(z)
, G1(z) =

P (g)
∏d

j=1 g(z + cj)
sj

P0(z)
. (2)

Theorem 1.9 Let f, g be transcendental entire functions of finite order such that
f and g share 0 CM , F1(z), G1(z) be stated as in (2), let n be an integer such
that degP0 < n+λ and F1(z) andG1(z) share P0(z)CM . If n > 2(Γ0+d)−λ
and that F1 is a Möbius transformation of G1, or if n > 3Γ0 + 2Γ1 + λ + 3d,
then one of the following cases holds:

(i) f ≡ tg for a constant t such that tκ = 1 where κ = GCD{λ0 + λ, λ1 +
λ, · · · , λn + λ} and λi(i = 0, 1, . . . , n) is stated as in Theorem 1.6;

(ii) f = eγ , g = ζe−γ , where P0 reduces to a nonzero constant c, say, and ζ
is a constant such that a2nζ

n+λ = c2, γ is a nonconstant polynomial.

Theorem 1.10 Under the assumptions of Theorem 1.9, if

Ek(1;F1(z)) = Ek(1;G1(z)).

If n > 2(Γ0 + d) − λ and that F1 is a Möbius transformation of G1, or if
k, n, d(> 0), sj(> 0)(j = 1, . . . , d) are integers satisfying one of the following
conditions:

(I) k ≥ 3, n > 2Γ1 + λ;

(II) k = 2, n > 2Γ1 + Γ0 + λ+ d;

(III) k = 1, n > 2Γ1 + 2Γ0 + λ+ 2d;

(IV) k = 0, n > 2Γ1 + 3Γ0 + λ+ 3d.

Then the conclusions of Theorem 1.9 hold.

From Theorem 1.9 and Theorem 1.10, one can get the following corollaries
immediately.

Corollary 1.1 Let f, g be transcendental entire functions of finite order such
that f and g share 0CM , F1(z), G1(z) be stated as in (2), and F1(z) andG1(z)
share z CM . If n > 2(Γ0 + d) − λ and that F1 is a Möbius transformation of
G1, or if n > 3Γ0+2Γ1+λ+3d, then f ≡ tg for a constant t such that tκ = 1
where κ = GCD{λ0+λ, λ1+λ, · · · , λn+λ} and λi(i = 0, 1, . . . , n) is stated
as in Theorem 1.6.
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Corollary 1.2 Under the assumptions of Theorem 1.9, if

Ek(z;F1(z)) = Ek(z;G1(z)).

If n > 2(Γ0 + d) − λ and that F1 is a Möbius transformation of G1, or if
k, n, d(> 0), sj(> 0)(j = 1, . . . , d) are integers satisfying one of the following
conditions:

(I) k ≥ 3, n > 2Γ1 + λ;

(II) k = 2, n > 2Γ1 + Γ0 + λ+ d;

(III) k = 1, n > 2Γ1 + 2Γ0 + λ+ 2d;

(IV) k = 0, n > 2Γ1 + 3Γ0 + λ+ 3d.

Then f ≡ tg for a constant t such that tκ = 1 where κ = GCD{λ0 + λ, λ1 +
λ, · · · , λn + λ} and λi(i = 0, 1, . . . , n) is stated as in Theorem 1.5.

Let

F2(z) = P (f)

d∏
j=1

f(z + cj)
sj − α(z),

G2(z) = P (g)
d∏

j=1

g(z + cj)
sj − α(z), (3)

where α(z) be a small function with respect to both f(z) and g(z).

Theorem 1.11 Let f, g be transcendental entire functions of finite non-integer
order such that f and g share 0 CM , F2(z), G2(z) be stated as in (3), and
F2(z) and G2(z) share α(z) CM . If n > 2Γ0 + λ, then f ≡ tg for a constant
t such that tκ = 1 where κ = GCD{λ0 + λ, λ1 + λ, · · · , λn + λ} and λi(i =
0, 1, . . . , n) is stated as in Theorem 1.6.

Theorem 1.12 Under the assumptions of Theorem 1.11, if

Ek(1;F2(z)) = Ek(1;G2(z))

and k, n, d(> 0), sj(> 0)(j = 1, . . . , d) are integers satisfying one of the fol-
lowing conditions:

(I) k ≥ 3, n > 2Γ1 + λ;
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(II) k = 2, n > 2Γ1 + Γ0 + λ+ d;

(III) k = 1, n > 2Γ1 + 2Γ0 + λ+ 2d;

(IV) k = 0, n > 2Γ1 + 3Γ0 + λ+ 3d.

Then f ≡ tg for a constant t such that tκ = 1 where κ = GCD{λ0 + λ, λ1 +
λ, · · · , λn + λ} and λi(i = 0, 1, . . . , n) is stated as in Theorem 1.6.

Remark 1.3 The following example shows that Theorem 1.11 and Theorem 1.12
may not hold for entire functions of finite integer order.

Example 1.1 Let P (z) = z4, f(z) = (z + 2)2(z + 3)e(z−2)2 , g(z) = (z +
2)2(z + 3)e−(z−2)2 , α(z) = (z + 2)8(z + 3)4(z + 4)2(z + 5), d = 1, s1 = 1
and c1 = 2. Thus, we have that f, g are of finite integer order 2 and f, g share 0
CM , Γ0 = 1, λ = 1 and n = 4 > 3 = 2Γ0 + λ, moreover, P (f)f(z + c) and
P (g)g(z + c) share α(z) CM . But, we get f ̸≡ tg for a constant m such that
tm = 1, where m ∈ Z+.

2 Some lemmas

To prove our theorems, we require some lemmas as follows.

Lemma 2.1 [29]. Let f be a nonconstant meromorphic function and P (f) =
a0+a1f+a2f

2+· · ·+anfn, where a0, a1, a2, · · · , an are constants and an ̸= 0.
Then

T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.2 [9, Theorem 5.1]. Let f be a transcendental meromorphic function
of ρ2(f) < 1, ς < 1, ε be an enough small number. Then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−ς−ε

)
= S(r, f),

for all r outside of a set of finite logarithmic measure.

Lemma 2.3 [9, Lemma 8.3]. Let T : [0,+∞) → [0,+∞) be a non-decreasing
continuous function and let s ∈ (0,+∞). If the hyper order of T is strictly less
that one, that is,

lim sup
r→∞

log log T (r)

log r
< 1,
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UNIQUENESS OF DIFFERENCE POLYNOMIALS OF ENTIRE FUNCTIONS 231

and δ ∈ (0, 1− ς), then

T (r + s) = T (r) + o

(
T (r)

rδ

)
for all r runs to infinity outside of a set of finite logarithmic measure.

Lemma 2.4 [13, Lemma 2.2]. Let φ(r) be a nondecreasing, continuous func-
tion on R+. Suppose that

0 < ρ < lim sup
r→+∞

logφ(r)

log r
,

and set
I = {t : t ∈ R+, φ(r) ≥ rρ}.

Then we have

log densI = lim sup
r→+∞

∫
I∩[1,r]

dr
r

log r
> 0.

Lemma 2.5 [31, Lemma 7.1]. Let f, g be two nonconstant meromorphic func-
tions such that g is a Möbius transformation of f . Suppose that there exists a
subset I ⊂ R+ with its linear measure mesI = +∞ such that

N(r,
1

f
) +N(r, f) +N(r,

1

g
) +N(r, g) < (λ+ o(1))T (r, f),

as r ∈ I and r → +∞, where λ < 1. If there exists a point z0 ∈ C such that
f(z0) = g(z0) = 1, then f = g or fg = 1.

In the following, we explain some definitions and notations which are used in
this paper. For a ∈ C∪∞ and k is a positive integer, we denote by N (k(r,

1
f−a)

the counting function of those a-points of f whose multiplicities are not less than
k in counting the a-points of f we ignore the multiplicities (see [10, 30]) and

Nk(r,
1

f − a
) = N(r,

1

f − a
) +N (2(r,

1

f − a
) + · · ·+N (k(r,

1

f − a
).

Definition 2.1 [1]. When f and g share 1 IM , we denote by NL(r,
1

f−1) the
counting function of the 1-points of f whose multiplicities are greater than 1-
points of g, where each zero is counted only once; similarly, we haveNL(r,

1
g−1).

Let z0 be a zero of f −1 of multiplicity p and a zero of g−1 of multiplicity q, we
also denote by N11(r,

1
f−1) the counting function of those 1-points of f where

p = q = 1.
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Lemma 2.6 [31, Theorem 7.2] Let f, g be two nonconstant meromorphic func-
tions such that f, g share 1,∞ CM . Suppose that there exists a subset I ⊂ R+

with its linear measure mesI = +∞ such that

N2(r,
1

f
) +N2(r,

1

g
) + 2N(r, f) < µT (r) + S(r),

as r ∈ I and r → +∞, where µ < 1, T (r) = max{T (r, f), T (r, g)} and
S(r) = o(T (r)), as r ∈ I and r → +∞. Then f = g or fg = 1.

Lemma 2.7 [5]. Let f and g be two meromorphic functions. If f and g share 1
CM , then one of the following three cases holds:

(i)

T (r, f) + T (r, g) ≤ 2N2(r, f) + 2N2(r, g) + 2N2(r,
1

f
) + 2N2(r,

1

g
)

+ S(r, f) + S(r, g);

(ii) f ≡ g;

(iii) f · g = 1.

Lemma 2.8 [4, Lemma 2]. Let f and g be two meromorphic functions, and let
k be a positive integer. If Ek(1; f) = Ek(1; g), then one of the following cases
must occur:

(i)

T (r, f) + T (r, g) ≤ N2(r, f) +N2(r, g) +N2(r,
1

f
) +N2(r,

1

g
)

+N(r,
1

f − 1
) +N(r,

1

g − 1
)−N11(r,

1

f − 1
) +N (k+1(r,

1

f − 1
)

+N (k+1(r,
1

g − 1
) + S(r, f) + S(r, g);

(ii) f = (b+1)g+(a−b−1)
bg+(a−b) , where a(̸= 0), b are two constants.

Lemma 2.9 [32, Lemma 4 and proof of Theorem 1]. Let f and g be two entire
functions. If f and g share 1 IM , then one of the following cases must occur:
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UNIQUENESS OF DIFFERENCE POLYNOMIALS OF ENTIRE FUNCTIONS 233

(i)

T (r, f) ≤ N2(r,
1

f
) +N2(r,

1

g
) + 2NL(r,

1

f − 1
) +NL(r,

1

g − 1
)

+S(r, f) + S(r, g),

the same inequality holding for T (r, g);

(ii) f = g;

(iii) f · g = 1.

Remark 2.1 Let f and g be two nonconstant meromorphic functions, for a ∈
C ∪ {∞}, and let NE(r, a) count those points in N(r, 1

f−a), where a is taken
by f and g with the same multiplicity, and each point is counted only once, and
N0(r, a) as ignoring multiplicities, N(r, 1

f−a) = N(r, f) as a = ∞. We say
that f, g share the value a CM∗, if

N(r,
1

f − a
)−NE(r, a) = S(r, f), N(r,

1

g − a
)−NE(r, a) = S(r, g),

and f, g share the value a IM∗, if NE(r, a) is replaced by N0(r, a).
Thus, from the proof of Theorem 1 in ref.[32], Theorem 1.48 and Theorem

7.10 in ref. [31], we can get that Lemmas 2.6-2.9 still hold if CM(IM) is
replaced by CM∗(IM∗).

Lemma 2.10 [18, Lemma 3]. Suppose that h is a nonconstant meromorphic
function satisfying

N(r, h) +N(r,
1

h
) = S(r, h).

Let f = a0h
p+a1h

p−1+· · ·+ap and g = b0h
q+b1h

q−1+· · ·+bq be polynomials
in h with coefficients a0, a1, . . . , ap, b0, b1, . . . , bq being small functions of h and
a0b0ap ̸≡ 0. If q ≤ p, then m(r, gf ) = S(r, h).

Lemma 2.11 Let f(z) be a nonconstant meromorphic function of finite order
ρ(f) < +∞, cj ∈ C \ {0}, (j = 1, . . . , d) be distinct constants, P (z) =
anz

n + an−1z
n−1 + · · · + a0 be a nonzero polynomial, where a0, . . . , an(̸= 0)

are complex constants, and n an integer. Let F (z) be stated as (1), then

m(r, F (z)) = (n+ λ)m(r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(1),

for all r outside of a set of finite logarithmic measure, where
λ = s1 + s2 + · · ·+ sd.
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Proof: Since f is a nonconstant meromorphic function of finite order, then
ρ2(f) = 0 < 1. Thus, by Lemma 2.2, the assumptions of Lemma 2.11, the
proof of Theorem 1.12 in [31] and the standard Valiron-Mokhon’ko lemma, we
have

(n+ λ)m(r, f(z)) = m(r, f(z)λP (f)) +O(1)

≤ m(r,
f(z)λP (f)

F (z)
) +m(r, F (z)) +O(1)

≤
d∑

j=1

sjm

(
r,

f(z)

f(z + cj)

)
+m(r, F (z)) +O(1)

≤ m(r, F (z)) + o

(
T (r, f(z))

r1−ε

)
+O(1),

that is,

m(r, F (z)) ≥ (n+ λ)m(r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(1). (4)

On the other hand, from Lemma 2.2, the proof of Theorem 1.12 in [31] and the
standard Valiron-Mokhon’ko lemma, we get

m(r, F (z)) ≤ m(r, P (f)) +m

r, f(z)λ d∏
j=1

f(z + cj)
sj

f(z)sj

+O(1)

≤ nm(r, f(z)) + λm(r, f(z)) +

d∑
j=1

sjm

(
r,
f(z + cj)

f(z)

)
+O(1)

≤ (n+ λ)m(r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(1). (5)

From (4) and (5), we can prove this lemma easily. 2

Lemma 2.12 Let f(z) and g(z) be transcendental entire functions of finite or-
ders, cj ∈ C\{0}, (j = 1, . . . , d) be distinct constants, n, d, sj(j = 1, . . . , d) ∈
N+, and α(z) be a small function of f and g, P (z) be stated as in Lemma

2.12, and let n be an integer such that n > Γ1. If P (f)
d∏

j=1
f(z + cj)

sj and

P (g)
d∏

j=1
g(z + cj)

sj share α(z) IM , then ρ(f) = ρ(g).
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Proof: Let

F ∗(z) =
P (f)

∏d
j=1 f(z + cj)

sj

α(z)
, G∗(z) =

P (g)
∏d

j=1 g(z + cj)
sj

α(z)
,

then from the assumptions of Lemma 2.12, and by Lemma 2.11, we have F ∗(z)
and G∗(z) share 1 IM and

T (r, F ∗(z)) = (n+ λ)T (r, f(z)) + o

(
T (r, f(z))

r1−ε

)
+O(log r) (6)

and

T (r,G∗(z)) = (n+ λ)T (r, g(z)) + o

(
T (r, g(z))

r1−ε

)
+O(log r) (7)

as r → ∞ and r ̸∈ E, where and in what follows, E ⊂ [0,+∞) is a set with
its logarithmic measure logmesE < ∞. Since f is of finite order ρ(f) < +∞,
then ρ2(f) = 0 < 1. Thus, if follows from Lemma 2.3 that

N(r,
1

f(z + cj)
) ≤ N(r + |cj |,

1

f(z)
) ≤ T (r + |cj |, f(z)) +O(1)

= T (r, f(z)) + o

(
T (r, f(z))

rδ

)
+O(1),

as r → ∞ and r ̸∈ E, where and in what follows, δ ∈ (0, 1) is a positive real
number. So, by using the second fundamental theorem, we have

T (r, F ∗(z)) ≤ N(r, F ∗(z)) +N(r,
1

F ∗(z)
) +N(r,

1

F ∗(z)− 1
) +O(log r)

≤ N(r,
1

P (f)
) +

d∑
j=1

N(r,
1

f(z + cj)
) +N(r,

1

G∗(z)− 1
)

+O(log r)

≤ (Γ1 + d)T (r, f(z)) + T (r,G∗(z)) + o

(
T (r, f(z))

rδ

)
+O(log r)

as r → ∞ and r ̸∈ E. Then combining (6) and (7), we have

(n+ λ)T (r, f(z)) ≤ (Γ1 + d)T (r, f(z)) + (n+ λ)T (r, g(z)) + o
(T (r, f(z))

rδ

)
+ o

(
T (r, g(z))

rδ

)
+O(log r).
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Since n > Γ1 + d− λ, it follows by Lemma 1.1.2 in [16] that

ρ(f) ≤ ρ(g). (8)

Similarly, we have
ρ(g) ≤ ρ(f). (9)

Thus, it follows from (8) and (9) that ρ(g) = ρ(f). 2

3 Proofs of theorems 1.7 and 1.8

3.1 The proof of theorem 1.7

Since f, g are entire functions of finite order, from the form of F (z), we have by
Lemmas 2.1-2.3 that

N2(r,
1

F (z)
) ≤ N2(r,

1

P (f)
) +N2(r,

1∏d
j=1 f(z + cj)

) +O(1)

≤ Γ1T (r, f(z)) +

d∑
j=1

sjT (r, f(z + cj)) +O(1)

≤ (Γ1 + λ)T (r, f(z)) + o

(
T (r, f(z))

rδ

)
+ o

(
T (r, f(z))

r1−ε

)
+O(1).

Thus, it follows from (6) that

N2(r,
1

F (z)
) ≤ Γ1 + λ

n+ λ
T (r, F (z)) + o

(
T (r, f(z))

rδ

)
+ o

(
T (r, f(z))

r1−ε

)
+O(1)

≤
(
Γ1 + λ

n+ λ
+ o(1)

)
T (r, F (z)), (10)

as r → +∞ and r ̸∈ E. Similarly,

N2(r,
1

G(z)
) ≤ Γ1 + λ

n+ λ
T (r,G(z)) + o

(
T (r, g(z))

rδ

)
+ o

(
T (r, g(z))

r1−ε

)
+O(1)

≤
(
Γ1 + λ

n+ λ
+ o(1)

)
T (r,G(z)), (11)

as r → +∞ and r ̸∈ E. From (10), (11) and f, g are entire functions, it follows

N2(r,
1

F
) +N2(r,

1

G
) + 2N(r, F ) ≤

(
2Γ1 + 2λ

n+ λ
+ o(1)

)
T (r), (12)
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as r → +∞ and r ̸∈ E, where T (r) = max{T (r, F ), T (r,G)}. Since n >
2Γ1 + λ, by Lemma 2.6, we have FG = 1 or F = G. Then, the following two
cases will be considered.
Case 1. If FG = 1, that is,

P (f(z))
d∏

j=1

f(z + cj)
sjP (g(z))

d∏
j=1

g(z + cj)
sj = 1. (13)

Suppose that the roots of P (z) = 0 are b1, b2, . . . , bm with multiplicities
l1, l2, . . . , lm. Then we have l1 + l2 + · · ·+ lm = n. From (13), we have

(f − b1)
l1(f − b2)

l2 · · ·(f − bm)lm
d∏

j=1

f(z + cj)
sj× (14)

(g − b1)
l1(g − b2)

l2 · · · (g − bm)lm
d∏

j=1

g(z + cj)
sj ≡ 1.

Since f, g are nonconstant entire functions, from (14), we can deduce that b1 =
b2 = · · · = bm = 0. If fact, from (14), we can get that b1, b2, . . . , bm are the
Picard exceptional values. If m ≥ 2 and bj ̸= 0(j = 1, 2, . . . ,m), by Picard’s
theorem of entire function, we can get that the Picard’s exceptional values of f
as least three. Thus, we can get a contradiction. Hence, m = 1 and l1 = n,
that is, there exists a complex constant a satisfying P (f) = an(f − a)n and
P (g) = an(g − a)n. Then

an(f − a)n
d∏

j=1

f(z + cj)
sjan(g − a)n

d∏
j=1

g(z + cj)
sj ≡ 1. (15)

Since f, g are transcendental entire functions, by the Picard’s theorem, we can
get that f −a = 0 and g−a = 0 do not have zeros. Then, we obtain that f(z) =
eγ(z) + a, g(z) = eβ(z) + a where γ(z), β(z) are two nonconstant polynomials.
We also see that f(z + cj) ̸= 0 and g(z + cj) ̸= 0 for j = 1, 2, . . . , d by (13).
Thus, it follows a = 0, that is, f(z) = eγ(z), g(z) = eβ(z) and P (z) = anz

n.
So, from (13), we have

a2n exp

n[γ(z) + β(z)] +

d∑
j=1

sj [γ(z + cj) + β(z + cj)]

 ≡ 1.

Since γ(z), β(z) are two nonconstant polynomials, we get γ(z) + β(z) ≡ ξ,
where ξ is a constant. Hence, we can easily get that f(z) = eγ and g(z) =
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ζe−γ , where γ is a nonconstant polynomial, ζ is a complex constant satisfying
a2nζ

n+λ ≡ 1 and ζ = eξ.
Case 2. If F = G, that is,

P (f(z))

d∏
j=1

f(z + cj)
sj = P (g(z))

d∏
j=1

g(z + cj)
sj . (16)

Set h = f
g , substituting f = gh into (16), we deduce that

[ang(z)
nh(z)n+an−1g(z)

n−1h(z)n−1 + · · ·+ a0]

d∏
j=1

h(z + cj)
sj

= ang(z)
n + · · ·+ a0,

where an(̸= 0), an−1, . . . , a0 are complex constants. Thus, we get

ang(z)
n
[
h(z)n

d∏
j=1

h(z + cj)
sj − 1

]
+ an−1g(z)

n−1
[
h(z)n−1×

d∏
j=1

h(z + cj)
sj − 1

]
+ · · ·+ a0

[ d∏
j=1

h(z + cj)
sj − 1

]
= 0.

(17)

Now, we will consider the following two subcases.

Subcase 2.1. Suppose that h is a constant. Thus, it follows from (17) that

ang(z)
n(hn+λ−1)+an−1g(z)

n−1(hn−1+λ−1)+ · · ·+a0(hn−1) = 0. (18)

We claim hκ = 1, where κ is stated as in Theorem 1.7.
In fact, if an ̸= 0 and ai = 0 for i = 0, 1, . . . , n − 1, since g is a transcen-

dental entire function, thus we have hn+λ = 1.
If an is not the only nonzero coefficient, assume that hn+λ ̸= 1. Then, we

can deduce T (r, g) = S(r, g) by (18), a contradiction. Hence hn+λ = 1. By
using the similar discussion, we can get that hk+λ = 1 when ak ̸= 0 for some
k = 0, 1, . . . , n. Thus, we have f = tg for a constant t such that tκ = 1, where
κ = GCD{λ0 + λ, λ1 + λ, · · · , λn + λ} and λi(i = 0, 1, . . . , n) is stated as in
Theorem 1.6.

Subcase 2.2. Suppose that h is not a constant. Then we claim

d∏
j=1

h(z + cj)
sjh(z)n ≡ 1. (19)
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In fact, if an ̸= 0 and ai = 0 for i = 0, 1, . . . , n − 1, since g is a transcen-
dental entire function, and from (17), then we have

∏d
j=1 h(z+ cj)

sjh(z)n ≡ 1.

If an is not the only nonzero coefficient, assume that
∏d

j=1 h(z+ cj)
sjh(z)n

̸≡ 1. From (17), we have

−ang(z)n = an−1g(z)
n−1

h(z)n−1
d∏

j=1
h(z + cj)

sj − 1

h(z)n
d∏

j=1
h(z + cj)sj − 1

(20)

+ · · ·+ a0

d∏
j=1

h(z + cj)
sj − 1

h(z)n
d∏

j=1
h(z + cj)sj − 1

.

Let

Hi =

h(z)n−i
d∏

j=1
h(z + cj)

sj − 1

h(z)n
d∏

j=1
h(z + cj)sj − 1

, i = 1, 2, . . . , n,

then we have

Hi =

h(z)n−i+λ
d∏

j=1
(
h(z+cj)
h(z) )sj − 1

h(z)n+λ
d∏

j=1
(
h(z+cj)
h(z) )sj − 1

, i = 1, 2, . . . , n.

Since f, g are entire functions and f, g share 0 CM , then h is an entire func-
tion, from Lemma 2.2 and Lemma 2.10, we have m(r,Hi) = S(r, h) for i =
1, 2, . . . , n. Since g is an entire function and an ̸= 0, we can deduce from (20)
that T (r, g) = m(r, g) = S(r, g), a contradiction. Then (19) holds.

From the assumptions of Theorem 1.8, we get that h has no zeros and is of
finite order, then we can write h = eω(z), where ω(z) is a polynomial. Thus, it
follows from (19) that

exp


d∑

j=1

sjω(z + cj) + nω(z)

 ≡ 1.
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Differentiating the above equation, we have

d∑
j=1

sjω
′(z + cj) + nω′(z) ≡ 0. (21)

Let ω(z) = dmz
m + dm−1z

m−1 + · · ·+ d0, where dm ̸= 0, then

ω(z + cj) = dm(z + cj)
m + dm−1(z + cj)

m−1 + · · ·+ d0

= dmz
m + (mdmcj + dm−1)z

m−1 + · · · ,
ω′(z) = mdmz

m−1 + (m− 1)dm−1z
m−2 + · · ·+ d1

ω′(z + cj) = mdmz
m−1 + (m− 1)(mdmcj + dm−1)z

m−2 + · · · ,
for j = 1, 2, . . . , d.

Thus, it follows from (21) that

m(n+ λ)dmz
m−1 + · · · ≡ 0, (22)

that is, m(n+λ)dm ≡ 0. Since n, sj , d ∈ N+ and dm ̸= 0, we have m = 0, that
is, ω(z) is a constant. Hence, h is constant, a contradiction.

From Case 1 and Case 2, we complete the proof of Theorem 1.7.

3.2 The proof of theorem 1.8

From the assumptions of Theorem 1.8, we have Ek(1;F (z)) = Ek(1;G(z)).
Thus, it follows from Lemmas 2.11 and 2.12 that ρ(f) = ρ(g) = ρ(F ) = ρ(G)
and S(r, F ) = S(r,G) = S(r, f) = S(r, g).

(I) k ≥ 3. Since

N

(
r,

1

F (z)− 1

)
+N

(
r,

1

G(z)− 1

)
+N (k+1

(
r,

1

F (z)− 1

)
+N (k+1

(
r,

1

G(z)− 1

)
−N11

(
r,

1

F (z)− 1

)
≤ 1

2
N

(
r,

1

F (z)− 1

)
+

1

2
N

(
r,

1

G(z)− 1

)
+ S(r, F ) + S(r,G)

≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, F ) + S(r,G).
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Case 1. Suppose that F (z), G(z) satisfy Lemma 2.8(i). From (10), (11) and
Lemma 2.11, we have

(n+ λ)[T (r, f) + T (r, g)] ≤ 2(Γ0 + λ)[T (r, f) + T (r, g)]

+ o

(
T (r, f)

rδ

)
+ o

(
T (r, g)

rδ

)
+ o

(
T (r, f)

r1−ε

)
+ o

(
T (r, g)

r1−ε

)
+ S(r, f) + S(r, g),

that is,

(n− 2Γ0 − λ)[T (r, f) + T (r, g)] ≤ o

(
T (r, f)

rδ

)
+ o

(
T (r, g)

rδ

)
+ o

(
T (r, f)

r1−ε

)
+ o

(
T (r, g)

r1−ε

)
+ S(r, f) + S(r, g).

Since n > 2Γ0 + λ and f, g are transcendental, a contradiction.

Case 2. If F (z), G(z) satisfy Lemma 2.8(ii), that is,

F =
(b+ 1)G+ (a− b− 1)

bG+ (a− b)
, (23)

where a( ̸= 0), b are two constants.
We now will consider three subcases as follows.

Subcase 2.1. b ̸= 0,−1. If a− b− 1 ̸= 0, then by (23) we know

N

(
r,

1

G+ a−b−1
b+1

)
= N

(
r,

1

F

)
.

Since f, g are entire functions of finite order, by the second fundamental
theorem, we have

T (r,G) ≤ N

(
r,

1

G

)
+N

(
r,

1

G+ a−b−1
b+1

)
+ S(r, g)

≤ N

(
r,

1

G

)
+N

(
r,

1

F

)
+ S(r, g)

≤ (Γ0 + d)[T (r, g) + T (r, f)] + o

(
T (r, f)

rδ

)
+ o

(
T (r, g)

rδ

)
+S(r, f) + S(r, g).
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Then from (6) and (7), we have

(n+ λ− Γ0 − d)T (r, g) ≤(Γ0 + d)T (r, f) + o
(T (r, f)

rδ

)
+ o
(T (r, g)

rδ

)
+ o
(T (r, f)
r1−ε

)
+ o
(T (r, g)
r1−ε

)
+ S(r, f) + S(r, g).

Similarly, we have

(n+ λ− Γ0 − d)T (r, f) ≤(Γ0 + d)T (r, g) + o
(T (r, f)

rδ

)
+ o
(T (r, g)

rδ

)
+ o
(T (r, f)
r1−ε

)
+ o
(T (r, g)
r1−ε

)
+ S(r, f) + S(r, g).

From the definitions of Γ0 and Γ1, and since n > 2Γ1 + λ, we have n + λ −
2Γ0 − 2d > 2(Γ1 − Γ0) + 2(λ − d) > 0. From the above two inequalities, we
have

(n+ λ− 2Γ0 − 2d)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

which is a contradiction with f, g are transcendental.
If a − b − 1 = 0, then by (23) we know F = ((b + 1)G)/(bG + 1). Since

f, g are entire functions, we get that −1
b is a Picard’s exceptional value of G(z).

By the second fundamental theorem, we have

T (r,G) ≤ N

(
r,

1

G

)
+ S(r,G)

≤ (Γ0 + d)T (r, g) + o

(
T (r, g)

rδ

)
+ o

(
T (r, g)

r1−ε

)
+ S(r, g).

Then, from (7) and n > 2Γ1 + λ, we know T (r, g) ≤ S(r, g), a contradiction.

Subcase 2.2. b = −1. Then (23) becomes F = a/(a+ 1−G).
If a+ 1 ̸= 0, then a+ 1 is a Picard’s exceptional value of G. Similar as the

discussion as in Subcase 2.1, we can deduce a contradiction again.
If a+ 1 = 0, then FG ≡ 1, that is,

P (f)

d∏
j=1

f(z + cj)
sjP (g)

d∏
j=1

g(z + cj)
sj ≡ 1.

Since n > 2Γ1 + λ, by using the same argument as in Case 1 of Theorem
1.7, we can get that the conclusion (ii) of Theorem 1.8 holds.

Subcase 2.3. b = 0. Then (23) becomes F = (G+ a− 1)/a.
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If a − 1 ̸= 0, then N
(
r, 1

G+a−1

)
= N

(
r, 1

F

)
. Similar to discuss as in

Subcase 2.1, we can deduce a contradiction again.
If a− 1 = 0, then F ≡ G, that is

P (f)

d∏
j=1

f(z + cj)
sj ≡ P (g)

d∏
j=1

g(z + cj)
sj .

Using the same argument as in the proof of Case 2 in Theorem 1.7, we can get
that f, g satisfy Theorem 1.8(i).

(II) k = 2. Since

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
−N11

(
r,

1

F − 1

)
(24)

+
1

2
N (k+1

(
r,

1

F − 1

)
+

1

2
N (k+1

(
r,

1

G− 1

)
≤ 1

2
N

(
r,

1

F − 1

)
+

1

2
N

(
r,

1

G− 1

)
≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, F ) + S(r,G),

N (k+1

(
r,

1

F − 1

)
≤ 1

2
N
(
r,
F

F ′

)
=

1

2
N
(
r,
F ′

F

)
+ S(r, F ) (25)

≤ 1

2
N
(
r,

1

F

)
+ S(r, F )

≤ 1

2
(Γ0 + d)T (r, f) + o

(T (r, f)
rδ

)
+ o
(T (r, f)
r1−ε

)
+ S(r, f),

and

N (k+1

(
r,

1

G− 1

)
≤ 1

2
(Γ0+d)T (r, g)+o

(T (r, g)
rδ

)
+o
(T (r, g)
r1−ε

)
+S(r, g).

(26)
Case 1. If F (z), G(z) satisfy Lemma 2.8(i), from f(z), g(z) are transcendental
entire functions and (24)-(26), we have

T (r, F (z)) + T (r,G(z)) ≤ 2N2

(
r,

1

F

)
+ 2N2

(
r,

1

G

)
+ (Γ0 + d)[T (r, f)

+T (r, g)] + o
(T (r, f)
r1−ε

)
+ o
(T (r, g)
r1−ε

)
+S(r, f) + S(r, g).
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From (10), (11) and Lemma 2.11, we have

(n− λ− Γ0 − 2Γ1 − d)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g). (27)

Since n > 2Γ1+Γ0+λ+d and f, g are transcendental entire functions, we can
get a contradiction.

Case 2. If F (z), G(z) satisfy Lemma 2.8(ii). Similar to the proof of Case 2 in
(I), we can get the conclusions of Theorem 1.8.

(III) k = 1. Since

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
−N11

(
r,

1

F − 1

)
(28)

≤ 1

2
N

(
r,

1

F − 1

)
+

1

2
N

(
r,

1

G− 1

)
≤ 1

2
T (r, F ) +

1

2
T (r,G) + S(r, F ) + S(r,G),

we have

N (2

(
r,

1

F

)
≤ N

(
r,
F

F ′

)
= N

(
r,
F ′

F

)
+ S(r, f) ≤ N

(
r,

1

F

)
+ S(r, f)

(29)

≤ (Γ0 + d)T (r, f) + o

(
T (r, f)

rδ

)
+ o

(
T (r, f)

r1−ε

)
+ S(r, f),

and

N (2

(
r,

1

G

)
≤ (Γ0+d)T (r, g)+o

(
T (r, g)

rδ

)
+o

(
T (r, g)

r1−ε

)
+S(r, g). (30)

Case 1. If F (z), G(z) satisfy Lemma 2.8(i), since f, g are entire functions, from
(10), (11), (24)-(26), (29) and (30), we have

T (r, F ) + T (r,G) ≤ 2(Γ1 + Γ0 + λ+ d)[T (r, f) + T (r, g)]

+o

(
T (r, f)

rδ

)
+ o

(
T (r, g)

rδ

)
+ o

(
T (r, f)

r1−ε

)
+o

(
T (r, g)

r1−ε

)
+ S(r, f) + S(r, g).

From Lemma 2.11, we have

[n− λ− 2Γ0 − 2Γ1 − 2d] [T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g). (31)
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Since n > 2Γ1 + 2Γ0 + 2d + λ, from (27) and f, g are transcendental, we can
get a contradiction.

Case 2. If F (z), G(z) satisfy Lemma 2.8(ii). Similar to the proof of Case 2 in
(I), we can get the conclusions of Theorem 1.8.

(IV) k = 0, that is, F (z), G(z) share 1 IM . From the definitions of F (z), G(z),
we have

NL

(
r,

1

F − 1

)
≤ N

(
r,
F

F ′

)
= N

(
r,
F ′

F

)
+ S(r, F ) (32)

≤ N

(
r,

1

F

)
+ S(r, F )

≤ (Γ0 + d)T (r, f) + o
(T (r, f)

rδ

)
+ S(r, f),

similarly, we have

NL

(
r,

1

G− 1

)
≤ (Γ0 + d)T (r, g) + o

(T (r, g)
rδ

)
+ S(r, g). (33)

Case 1. Suppose that F (z), G(z) satisfy Lemma 2.9(i). From (32) and (33), we
have

T (r, F (z)) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 2(Γ0 + d)[2T (r, f) + T (r, g)]

+ o
(T (r, f)

rδ

)
+ o
(T (r, g)

rδ

)
+ o
(T (r, f)
r1−ε

)
+ o
(T (r, g)
r1−ε

)
+ S(r, f) + S(r, g).

From (10), (11) and Lemma 2.11, we have

(n+ λ)T (r, f) ≤(2Γ0 + Γ1 + λ+ 2d)T (r, f) + (Γ0 + Γ1 + λ+ d)T (r, g)

+ o
(T (r, f)

rδ

)
+ o
(T (r, g)

rδ

)
+ o
(T (r, f)
r1−ε

)
+ o
(T (r, g)
r1−ε

)
+ S(r, f). (34)

Similarly, we have

(n+ λ)T (r, g) ≤(2Γ0 + Γ1 + λ+ 2d)T (r, g) + (Γ0 + Γ1 + λ+ d)T (r, f)

+ o
(T (r, f)

rδ

)
+ o
(T (r, g)

rδ

)
+ o
(T (r, f)
r1−ε

)
+ o
(T (r, g)
r1−ε

)
+ S(r, f). (35)
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From (34) and (35), we have

(n− λ− 3Γ0 − 3d− 2Γ1)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g). (36)

Since n > 3Γ0 + 2Γ1 + λ+ 3d, we can get a contradiction.

Case 2. Suppose that F (z), G(z) satisfy Lemma 2.9(ii). Similar to the proof of
Case 2 in (I), we can get the conclusions of Theorem 1.8 easily.

Thus, the proof of Theorem 1.8 is completed.

4 Proofs of theorems 1.9 and 1.10

4.1 The proof of theorem 1.9

Since f, g are entire functions of finite order, from the assumptions of Theorem
1.9, by Lemma 2.12, we have ρ(f) = ρ(g) = ρ(F1) = ρ(G1). Now, we consider
three cases as follows.

Case 1. Suppose that F1 is a Möbius transformation of G1. Thus, it follows
from the standard Valiron-Mokhon’ko lemma that

T (r, P (f)

d∏
j=1

f(z + cj)
sj ) = T (r, P (g)

d∏
j=1

g(z + cj)
sj ) +O(log r).

From (6), (7), Lemmas 2.4, 2.12 and the condition that f, g are transcendental
entire functions we deduce that there exists a subsetE ⊂ R+ withmesE = +∞
such that

T (r, f) ≥ rρ(f)−1+ε, T (r, g) ≥ rρ(g)−1+ε, r → ∞, r ̸∈ E, (37)

and moreover,

lim
r→∞,r ̸∈E

T (r, f)

T (r, g)
= 1, lim

r→∞,r ̸∈E

T (r, F )

T (r, f)
= n+ λ. (38)

Since f, g are entire functions of finite order and P0(z) is a polynomial, it follows
by Lemma 2.3 that

N(r, F1) +N(r,
1

F1
) ≤ N(r,

1

P (f)
) +

d∑
j=1

N(r,
1

f(z + cj)
) +O(log r)

≤ Γ0T (r, f) +
d∑

j=1

T (r,
1

f(z + cj)
) +O(log r)

≤ (Γ0 + d)T (r, f) + o
(T (r, f)

rδ

)
+ o
(T (r, f)
r1−ε

)
+O(log r),
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as r → ∞, r ̸∈ E, that is,

N(r, F1)+N(r,
1

F1
) ≤ (Γ0+d)T (r, f)+o

(T (r, f)
rδ

)
+o
(T (r, f)
r1−ε

)
+O(log r).

(39)
Similarly, we have

N(r,G1)+N(r,
1

G1
) ≤ (Γ0+d)T (r, g)+o

(T (r, g)
rδ

)
+o
(T (r, g)
r1−ε

)
+O(log r).

(40)
Thus, it follows from (37)-(40) that

N(r, F1)+N(r,
1

F1
)+N(r,G1)+N(r,

1

G1
) ≤

(
2(Γ0 + d)

n+ λ
+ o(1)

)
T (r, F1(z)),

(41)
as r → ∞, r ̸∈ E. By the second fundamental theorem, we have

T (r, F1(z)) ≤ N(r, F1(z)) +N(r,
1

F1(z)
) +N(r,

1

F1(z)− 1
) +O(log r)

≤ (Γ0 + d)T (r, f) +N(r,
1

F1(z)− 1
) + o

(T (r, f)
rδ

)
+ o
(T (r, f)
r1−ε

)
+O(log r),

as r → ∞, r ̸∈ E. Thus, it follows from (6), (37) and (38) that

(n+ λ− Γ0 − d)T (r, f) ≤ N(r,
1

F1(z)− 1
) + o{T (r, f)}, (42)

as r → ∞, r ̸∈ E. From (42) and the fact that F1, G1 share 1 CM∗ we know
that there exists z0 ∈ C such that F1(z0) = G1(z0) = 1. Hence from (41),
Lemma 2.5 and the condition n > 2Γ0 + 2d− λ we get F1G1 = 1 or F1 = G1.
We discuss the following two subcases.

Case 1.1. Suppose that F1 = G1. Then it follows

P (f)

d∏
j=1

f(z + cj)
sj = P (g)

d∏
j=1

g(z + cj)
sj .

By using the same argument as in Case 2 in the proof of Theorem 1.6, we can
get the conclusion (i) of Theorem 1.9 is true.

Case 1.2. Suppose that F1G1 = 1, then we have

P (f)

d∏
j=1

f(z + cj)
sjP (g)

d∏
j=1

g(z + cj)
sj = P0(z)

2. (43)
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We first claim from (43) that P (z) has at most one zero. In fact, assuming that
P (z) has two zeros, say u1, u2, u1 ̸= u2, then P (f) = an(f −u1)n1(f −u2)n2 ,
where n1, n2 are positive integers such that n1 + n2 = n. Since the zeros of
f − u1 and f − u2 are also the zeros of P0(z), thus f − u1 and f − u2 have
at most finitely many zeros. By using the second fundamental theorem, we can
get a contradiction easily. Then we may write P (f) = an(f − a)n, where a is a
complex constant. From (43), we know that f(z), f(z+cj), g(z), g(z+cj), (j =
1, 2, . . . , d) have at most finitely many zeros. So, from f, g are entire functions
of finite order, we can write that

f(z) = φ(z)eβ(z) + a, g(z) = ψ(z)eγ(z) + a, (44)

and

f(z + cj) = φj(z)e
βj(z), g(z + cj) = ψj(z)e

γj(z), (45)

where φ(z), ψ(z), φj(z), ψj(z) are nonzero polynomials, β(z), γ(z), βj(z) and
γj(z) are nonconstant polynomials for j = 1, 2, . . . , d. From (44) and (45), we
have

f(z + cj) = φ(z + cj)e
β(z+cj) + a ≡ φj(z)e

βj(z).

We can get a = 0. And since f, g share 0 CM , we have φ(z) = ψ(z). Thus, it
follows that f = φeβ and g = φeγ . Substituting them to (43), we get

a2nφ
2

d∏
j=1

φ(z+cj)
2sj exp

{
n(β+γ)+

d∑
j=1

sj [β(z+cj)+γ(z+cj)]
}
≡ P0(z)

2.

Hence, we can get that n(β+ γ)+
∑d

j=1 sj [β(z+ cj)+ γ(z+ cj)] ≡ (n+λ)χ
and β + γ ≡ χ, where χ is a nonzero constant. Thus, it follows that

a2nηφ(z)
2n

d∏
j=1

φ(z + cj)
2sj ≡ P0(z)

2, (46)

where η = e(n+λ)χ is a nonzero constant.
If φ(z) is not a constant, the degree of the left side of (46) is not less than

2(n + λ). However, since degP0 < n + λ, by comparing the degree of (46)
on both sides, we can get a contradiction easily. Therefore, φ and P0 reduce to
nonzero constants, say t0 and c. Set ζ = t0e

χ, then the assertion (ii) of Theorem
1.9 now follows from (46).
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Case 2. Suppose that n > 2Γ1 + λ. By (2), Lemma 2.3 and Lemma 2.11, we
have

2N(r, F1) +N2(r
1

F1
) ≤ N2(r,

1

P (f)
) +

d∑
j=1

N2(r,
1

f(z + cj)sj
)

+O(1) +O(log r)

≤ (Γ1 + λ)T (r, f) + o

(
T (r, f)

rδ

)
+O(log r)

≤ Γ1 + λ

n+ λ
T (r, F1) + o

(
T (r, f)

r1−ε

)
+ o

(
T (r, f)

rδ

)
+O(log r)

≤
(
Γ1 + λ

n+ λ
+ o(1)

)
T (r, F1),

that is,

2N(r, F1) +N2(r
1

F1
) ≤

(
Γ1 + λ

n+ λ
+ o(1)

)
T (r, F1), (47)

as r → ∞, r ̸∈ E. Similarly,

2N(r,G1) +N2(r
1

G1
) ≤

(
Γ1 + λ

n+ λ
+ o(1)

)
T (r,G1), (48)

as r → ∞, r ̸∈ E. Thus, it follows from (47), (48) and N(r,G1) = O(log r)
that

2N(r, F1)+N2(r
1

F1
)+N2(r

1

G1
) ≤

(
Γ1 + λ

n+ λ
+ o(1)

)
T (r)+o{T (r)}, (49)

as r → ∞, r ̸∈ E, and where T (r) = max{T (r, F1), T (r,G1)}. Since n >
2Γ1 + λ, then Γ1+λ

n+λ < 1, it follows by Lemma 2.6 that F1G1 = 1 or F1 = G1.
Then by using the same argument as in Cases 1.1 and 1.2 of Theorem 1.9, we
can get the conclusions.

From Cases 1 and 2, we complete the proof of Theorem 1.9.

4.2 The proof of theorem 1.10

By using the same argument as in proof of Theorem 1.8, we can get the conclu-
sions of Theorem 1.10.
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5 Proofs of theorems 1.11 and 1.12

5.1 The proof of theorem 1.11

Since f, g are entire functions of finite order and α(z) is a small function with
respect to f, g, from the assumptions of Theorem 1.11, by Lemma 2.12, we have
ρ(f) = ρ(g) = ρ(F2) = ρ(G2). Now, we consider three cases as follows.

Case 1. Suppose that F2, G2 satisfy Lemma 2.7 (i). Since

N2(r,
1

F2(z)
) ≤ N2(r,

1

P (f)
) +N2(r,

1∏d
j=1 f(z + cj)

) + S(r, f)

≤ Γ1T (r, f(z)) +
d∑

j=1

sjT (r, f(z + cj)) + S(r, f)

≤ (Γ1 + λ)T (r, f(z)) + o
(T (r, f(z))

rδ

)
+ o
(T (r, f)
r1−ε

)
+ S(r, f). (50)

Similarly, we have

N2(r,
1

G2(z)
) ≤ (Γ1 + λ)T (r, g(z)) + o

(T (r, g(z))
rδ

)
+ o
(T (r, g)
r1−ε

)
+ S(r, g).

(51)

and
N2(r, F2) = S(r, f), N2(r,G2) = S(r, g). (52)

Since n > 2Γ1 + λ, and by Lemma 2.7(i) and (50)-(52), thus we can get a
contradiction with f, g are transcendental entire functions.

Case 2. Suppose F2 = G2, that is,

P (f)

d∏
j=1

f(z + cj)
sj = P (g)

d∏
j=1

g(z + cj)
sj .

By using the same argument as in Case 2 in the proof of Theorem 1.7, we can
get the conclusion (i) of Theorem 1.11 is true.

Case 3. Suppose F2G2 = 1, that is,

P (f)

d∏
j=1

f(z + cj)
sjP (g)

d∏
j=1

g(z + cj)
sj = α(z)2. (53)
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Since f, g are entire functions of finite order and α(z) is a small function, by
comparing the zeros of both sides of (53), we get

N(r,
1

P (f)
) = S(r, f), N(r,

1

P (g)
) = S(r, f).

Suppose that P (z) has two distinct zeros, say γ1, γ2, then P (f) = an(f −
γ1)

n1(f − γ2)
n2 , where n1, n2 are positive integers such n1 + n2 = n. By

comparing the zeros of both sides of (53), we get

N(r,
1

f − γ1
) = S(r, f), N(r,

1

f − γ2
) = S(r, f).

By using the second fundamental theorem, we can get a contradiction with f, g
are transcendental.

Suppose that P (z) has only one zero. Thus, we can write P (f) = an(f −
a)n, where a is a complex constant. Since f, g are entire functions of finite order
and f, g share 0 CM , we can write

f(z) = ϕ(z)eβ(z) + a, g(z) = ϕ(z)eγ(z) + a, (54)

where β(z), γ(z) are nonconstant polynomials, and ϕ(z) is an entire function
with ρ(ϕ) < deg β, ρ(ϕ) < deg γ. Thus, we can get ρ(f) = deg β, which is a
contradiction with f is an entire function of finite non-positive integer order.

Thus, this completes the proof of Theorem 1.11.

5.2 The proof of theorem 1.12

By combining the conditions of Theorem 1.12 and using the same argument as
in proof of Theorem 1.8, we can get the conclusions of Theorem 1.12.
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