
Revista de Matemática: Teoŕıa y Aplicaciones 2001 8(1) : 1–12

cimpa – ucr – ccss issn: 1409-2433

detecting constraint redundancy in

0-1 linear programming problems

Susana Muñoz∗

Received: 23 Octubre 2000

Resumen

En este trabajo se presenta un procedimiento de obtención de cotas superiores para
una función lineal a partir de ciertas familias de empaquetamientos, cubrimientos y
conjuntos ordenados especiales. Asimismo, se presenta un nuevo método de detección
de restricciones redundantes en problemas de programación lineal 0-1 basado en dichas
cotas que permite considerar conjuntamente varias restricciones. Además, se muestra
una situación de redundancia que es detectada por este método, pero no por los
métodos tradicionales, los cuales consideran las restricciones individualmente.

Palabras clave: Restricciones redundantes, empaquetamientos, cubrimientos,
conjuntos ordenados especiales, familias admisibles

Abstract

In this paper we present a procedure for obtaining upper bounds on a linear
function by means of certain families of packings, coverings and special ordered sets.
We also present a new method for detecting redundant constraints in 0-1 linear
programming problems based on these bounds that allows consideration of several
constraints jointly. Furthermore, we show a redundancy situation which is detected
by this new method, but not by the traditional methods, which consider the constraints
individually.

Keywords: Redundant constraints, packings, coverings, special ordered sets,
admissible families

Mathematics Subject Classification: 90C10,90C05

∗Departamento de Estad́ıstica e Investigación Operativa I, Facultad de Ciencias Matemáticas,
Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain. E-mail:
smunoz@eucmax.sim.ucm.es

1

2 s. muñoz

1 Introduction

Consider the 0-1 linear programming problem

max {
∑

j∈J

cjxj |
∑

j∈J

aijxj ∼ bi ∀i ∈ I, xj ∈ {0, 1} ∀j ∈ J}, (P)

where J = {1, . . . , n}, I = {1, . . . ,m}, {cj}j∈J , {aij}i∈I, j∈J , {bi}i∈I are rational numbers
and ∼ is the sense of each constraint (≤, ≥, =).

In integer programming there are many ways of representing the same problem, and
the choice of formulation is of crucial importance to solving it (see e.g. [8, 10, 13, 14]).
Preprocessing attempts to improve the initial formulation by using several automatic
techniques such as infeasibility and redundancy detection, variable fixing and constraint
reformulation (see [3, 8, 9, 12, 14] among many others). It is well known that preprocessing
techniques can considerably reduce the time required to solve large-scale integer
programming problems.

The LP relaxation of (P) is the same problem (P) where each variable xj is allowed
to take any value in the interval [0, 1].

Detection of redundant constraints in (P) (i.e., constraints whose elimination does not
add any feasible solution to the LP relaxation of (P)) is based on computing bounds on a
linear function z whose variables (xj)j∈J are restricted to take values in a certain subset
of [0, 1]n. Obviously, the best bound is the one given by the optimal value of z in the
associated optimization problem. However, in general, this problem is not easy to solve,
since it is similar to the LP relaxation of (P), see Section 4. Hence, there is a need to
develop simple procedures for obtaining bounds on z.

In easy terms, a packing, a covering and a special ordered set can be considered as
subsets of indices of 0-1 variables where at most, at least and exactly one such variable,
respectively, can take the value 1. These structures may appear explicitly in the problem,
but can also be derived from the constraint system by using probing techniques (see
e.g. [1, 7, 14]). Other methods for packing identification can be found in [4, 12] (see
also [11]).

The earliest papers dealing with obtaining bounds on linear functions consider only the
coefficients of those functions (see [3, 14] among others). In 1985, Johnson, Kostreva and
Suhl introduced a more advanced procedure that makes use of information from families
of pairwise disjoint packings (see [8, 9]) and, in 1996, Escudero, Gaŕın and Pérez improved
this procedure allowing overlapping among certain pairs of packings (see [5, 12]).

This is a theoretical paper whose contribution is twofold. First, we extend the
procedure given in [5] to obtain upper bounds on linear functions, using certain families
of packings, coverings and special ordered sets, so-called admissible families. Secondly,
we present a new method for detecting constraint redundancy in 0-1 linear programming
problems that allows consideration of several constraints jointly. This method can easily
be generalized to mixed integer programming problems with bounded variables (see
e.g. [14]).

detecting constraint redundancy in 0-1 linear programming problems 3

The paper is organized as follows: Section 2 reviews the concepts of packings, coverings
and special ordered sets. Section 3 introduces the concept of admissible families, describes
a procedure for obtaining upper bounds on a linear function based on this type of families,
and provides an example in which the procedures using only families of packings obtain
worse upper bounds. Section 4 presents our method for detecting redundant constraints in
problem (P). It also shows a situation detected by this method, but not by the methods
available in current literature, which consider single constraints. Finally, Section 5 draws
some conclusions from this work.

2 Packings, coverings and special ordered sets

Given a set of variables {x1, . . . , xn} and a set F ⊆ {1, . . . , n}, let X(F) denote the sum
of the variables whose indices belong to F , that is, X(F) =

∑

j∈F

xj .

Based on the notation used in [2], we define the following concepts:

Definition 1. A packing C is a non-empty subset of indices of 0-1 variables that induces
the constraint X(C+) − X(C−) ≤ 1 − |C−|, where C+ ∪ C− = C and C+ ∩ C− = ∅.

Definition 2. A covering C is a non-empty subset of indices of 0-1 variables that induces
the constraint X(C+) − X(C−) ≥ 1 − |C−|, where C+ ∪ C− = C and C+ ∩ C− = ∅.

Definition 3. A special ordered set C is a non-empty subset of indices of 0-1 variables
that induces the constraint X(C+)−X(C−) = 1−|C−|, where C+∪C−=C and C+∩C−=
∅.

Lemma 1 proves that any proper subset of a packing or of a special ordered set is a
packing.

Lemma 1. Let C be a packing or a special ordered set, let C ′ be a proper subset of C
and let (xj)j∈C ∈ {0, 1}|C| be a feasible solution for the constraint induced by C. Then∑

j∈C′∩C+

xj −
∑

j∈C′∩C−

xj ≤ 1 − |C ′ ∩ C−|.

Proof. Since C ′ ∩C+ = C+ \ (C+ \C ′), C ′ ∩C− = C− \ (C− \C ′),
∑

j∈C+

xj −
∑

j∈C−

xj ≤

1 − |C−| and xj ∈ {0, 1} ∀j ∈ C, we obtain that
∑

j∈C′∩C+

xj −
∑

j∈C′∩C−

xj =
∑

j∈C+

xj −

∑

j∈C−

xj −
∑

j∈C+\C′

xj +
∑

j∈C−\C′

xj ≤ 1 − |C−| + |C− \ C ′| = 1 − |C ′ ∩ C−|.

4 s. muñoz

3 Obtaining upper bounds on a linear function

Definition 4. A constraint with variables x1, . . . , xn is said to be valid for a set R ⊆ IRn

if it is satisfied by any vector (x1, . . . , xn) ∈ R.

Definition 5. Let {Ck}k∈K1 , {Ck}k∈K2 and {Ck}k∈K3 be a family of packings, coverings
and special ordered sets respectively. The family {Ck}k∈K , where K = K1∪K2∪K3, is said
to be admissible for a set R ⊆ {0, 1}n if the constraints induced by {Ck}k∈K are valid for
R and each set Kl with l ∈ {1, 2, 3} can be expressed as the union of three pairwise disjoint
sets, say Dl, Sl and Sl, that satisfy the following conditions, where D = D1 ∪ D2 ∪ D3,
S = S1 ∪ S2 ∪ S3 and S = S1 ∪ S2 ∪ S3:

(1) If k ∈ D and k′ ∈ K \ {k}, then Ck ∩ Ck′ = ∅.

(2) For each k ∈ S there exists a unique s(k) ∈ S such that Ck ∩Cs(k) = (C+
k ∩C+

s(k)
)∪

(C−
k ∩ C−

s(k)) 6= ∅, and Ck ∩ Ck′ = ∅ ∀k′ ∈ (S \ {k}) ∪ (S \ {s(k)}).

(3) For each k ∈ S there exists a unique s(k) ∈ S such that s(s(k)) = k, and Ck∩Ck′ = ∅
∀k′ ∈ S \ {k}.

Note. By conditions (2) and (3) above, we have that |S| = |S|.
All of the results stated from now on can be generalized to admissible families such

that the constraints induced by {Ck}k∈K are of the form X(C+
k) − X(C−

k) ≤ nk − |C−
k |,

X(C+
k) − X(C−

k) ≥ nk − |C−
k | and X(C+

k) − X(C−
k) = nk − |C−

k |, where nk is an integer
with 1 ≤ nk ≤ |Ck|.

Given a non-empty set R ⊆ {0, 1}n, we are interested in obtaining upper bounds on
a function z =

∑

j∈J

ajxj , where {aj}j∈J are rationals and (xj)j∈J ∈ R. For that, we

consider an admissible family for R, say C = {Ck}k∈K , where K = K1 ∪ K2 ∪ K3 and
{Ck}k∈K1 , {Ck}k∈K2 and {Ck}k∈K3 are a family of packings, coverings and special ordered
sets respectively. Without loss of generality let us assume that C−

k = ∅ for each k ∈ K

(otherwise, it suffices to substitute xj by 1 − x′
j ∀j ∈

⋃

k∈K

C−
k).

Let uz, C = max {
∑

j∈J

ajxj | (xj)j∈J ∈ RC}, where RC = {(xj)j∈J ∈ [0, 1]n | X(Ck) ≤ 1

∀k ∈ K1, X(Ck) ≥ 1 ∀k ∈ K2, X(Ck) = 1 ∀k ∈ K3} (if K = ∅, we define RC = [0, 1]n).
Then R ⊆ RC , since the constraints induced by {Ck}k∈K are valid for R. Thus, uz, C is an
upper bound on the function z.

Below we give some cases where eliminating one of the elements of C leaves the set RC
unchanged and, so, the bound uz, C also remains unchanged.

detecting constraint redundancy in 0-1 linear programming problems 5

Let k, k′ ∈ S ∪ S be such that Ck ⊂ Ck′ .

• If k ∈ S1 ∪S1 and k′ ∈ S1 ∪S1 ∪S3 ∪S3, we can eliminate k from S1 ∪S1 and move
k′ to D1 ∪ D3.

• If k ∈ S1 ∪S1, |Ck| = 1 and k′ ∈ S2 ∪S2, we can eliminate k from S1 ∪S1 and move
k′ to D2.

• If k ∈ S2 ∪S2 ∪S3 ∪S3 and k′ ∈ S2 ∪S2, we can eliminate k′ from S2 ∪S2 and move
k to D2 ∪ D3.

• If k ∈ S2 ∪S2 and k′ ∈ S1∪S1∪S3 ∪S3, we can fix xj = 0 ∀j ∈ Ck′ \Ck, eliminate
k′ from S1 ∪ S1 ∪ S3 ∪ S3 and move k to D3.

• If k ∈ S3 ∪S3 and k′ ∈ S1∪S1∪S3 ∪S3, we can fix xj = 0 ∀j ∈ Ck′ \Ck, eliminate
k′ from S1 ∪ S1 ∪ S3 ∪ S3 and move k to D3.

Now, let k ∈ D be such that Ck = {j}.

• If k ∈ D1, we can eliminate k from D1.

• If k ∈ D2 ∪ D3, we can fix xj = 1 and eliminate k from D2 ∪ D3.

Therefore, we can assume that, for each k ∈ K, |Ck| > 1 and, if ∃ k′ ∈ K \ {k} such
that Ck ⊂ Ck′ , then k ∈ S1 ∪ S1 and k′ ∈ S2 ∪ S2.

Any non-empty subset of RC verifies that, if (xj)j∈J is restricted to belong to that
subset, then uz, C is still an upper bound on z. Consequently, whenever uz, C is mentioned,
it will be assumed that (xj)j∈J can take any value in RC and the initial set R will be
allowed to be empty. (Note that RC 6= ∅).

Lemma 2. Let Rz,b = {(xj)j∈J ∈ [0, 1]n |
∑

j∈J

ajxj ≤ b}, where b is a rational constant.

Then RC ⊆ Rz,b if and only if uz, C ≤ b.

Proof. It follows from the definition of uz, C .

Given a set C ⊆ J , we define ϕ(C) = max {aj | j ∈ C} and ϕ0(C) = max {ϕ(C), 0}.
Let J+ = {j ∈ J | aj > 0}, J− = {j ∈ J | aj < 0}, J0 = {j ∈ J | aj = 0}, T =

⋃

k∈K

Ck and

6 s. muñoz

uk =





ϕ0(Ck) ∀k ∈ D1

ϕ(Ck) ∀k ∈ D2 such that Ck ⊆ J−
∑

j∈Ck∩J+

aj ∀k ∈ D2 such that Ck 6⊆ J−

ϕ(Ck) ∀k ∈ D3

max{ϕ(Ck∩Cs(k)), ϕ0(Ck\Cs(k))+ϕ0(Cs(k)\Ck)} ∀k ∈ S1 such that s(k) ∈ S1

max{ϕ(Ck∩Cs(k)), ϕ0(Ck\Cs(k))+ϕ(Cs(k)\Ck)} ∀k ∈ S1 such that s(k) ∈ S2

and Cs(k) \ Ck ⊆ J−

ϕ0(Ck) +
∑

j∈(Cs(k)\Ck)∩J+

aj ∀k ∈ S1 such that s(k) ∈ S2

and Cs(k) \ Ck 6⊆ J−

max{ϕ(Ck∩Cs(k)), ϕ0(Ck\Cs(k))+ϕ(Cs(k)\Ck)} ∀k ∈ S1 such that s(k) ∈ S3

max{ϕ(Ck∩Cs(k)), ϕ(Ck\Cs(k))+ϕ0(Cs(k)\Ck)} ∀k ∈ S2 such that s(k) ∈ S1

and Ck \ Cs(k) ⊆ J−
∑

j∈(Ck\Cs(k))∩J+

aj + ϕ0(Cs(k)) ∀k ∈ S2 such that s(k) ∈ S1

and Ck \ Cs(k) 6⊆ J−

max{ϕ(Ck∩Cs(k)), ϕ(Ck \ Cs(k))+ϕ(Cs(k)\Ck)} ∀k ∈ S2 such that s(k) ∈ S2

and Ck ∪ Cs(k) ⊆ J−

ϕ(Ck) +
∑

j∈(Cs(k)\Ck)∩J+

aj ∀k∈S2 such that s(k) ∈ S2,

Ck⊆J− and Cs(k)\Ck 6⊆J−
∑

j∈(Ck\Cs(k))∩J+

aj + ϕ(Cs(k)) ∀k∈S2 such that s(k) ∈ S2,

Ck\Cs(k) 6⊆J− andCs(k)⊆J−
∑

j∈(Ck∪Cs(k))∩J+

aj ∀k∈S2 such that s(k) ∈ S2,

Ck 6⊆ J−and Cs(k) 6⊆ J−

max{ϕ(Ck∩Cs(k)), ϕ(Ck\Cs(k))+ϕ(Cs(k)\Ck)} ∀k ∈ S2 such that s(k) ∈ S3

and Ck \ Cs(k) ⊆ J−
∑

j∈(Ck\Cs(k))∩J+

aj + ϕ(Cs(k)) ∀k ∈ S2 such that s(k) ∈ S3

and Ck \ Cs(k) 6⊆ J−

max{ϕ(Ck∩Cs(k)), ϕ(Ck\Cs(k))+ϕ0(Cs(k)\Ck)} ∀k ∈ S3 such that s(k) ∈ S1

max{ϕ(Ck∩Cs(k)), ϕ(Ck\Cs(k))+ϕ(Cs(k)\Ck)} ∀k ∈ S3 such that s(k) ∈ S2

and Cs(k) \ Ck ⊆ J−

ϕ(Ck) +
∑

j∈(Cs(k)\Ck)∩J+

aj ∀k ∈ S3 such that s(k) ∈ S2

and Cs(k) \ Ck 6⊆ J−

max{ϕ(Ck∩Cs(k)), ϕ(Ck\Cs(k))+ϕ(Cs(k)\ Ck)} ∀k ∈ S3 such that s(k) ∈ S3

Theorem 1. uz, C =
∑

k∈D∪S

uk +
∑

j∈J+\T

aj.

Proof. Since the sets {Ck}k∈D, {Ck ∪ Cs(k)}k∈S are pairwise disjoint, it can easily be

detecting constraint redundancy in 0-1 linear programming problems 7

verified that
∑

j∈J

ajxj ≤
∑

k∈D∪S

uk +
∑

j∈J+\T

aj ∀(xj)j∈J ∈ RC . On the other hand, it is

clear that ∃(x∗
j)j∈J ∈ RC such that

∑

j∈Ck

ajx
∗
j = uk ∀k ∈ D,

∑

j∈Ck∪Cs(k)

ajx
∗
j = uk ∀k ∈ S

and
∑

j∈J\T

ajx
∗
j =

∑

j∈J+\T

aj. Hence, we have that
∑

j∈J

ajx
∗
j =

∑

k∈D∪S

uk +
∑

j∈J+\T

aj , which

proves the assertion.

Corollary 1. Let z′ = λ z, where λ is a non-negative rational constant. Then uz′, C =
λ uz, C.

Corollary 2. uz, C ≥ 0 if K2 = K3 = ∅.

In general, there will exist several admissible families for the set R. Example 1
illustrates the great variations in the value that uz, C takes depending on the family C
that has been selected; this demonstrates the importance of making a good choice.

Example 1. Let z = x1 − 4x2 + 2x3 + 6x4 − x5 − 3x6 − 5x7 + 4x8 and let R be the set of
solutions (x1, . . . , x8) ∈ {0, 1}8 that satisfy the following constraints:

x1 + x2 + x3 + x7 ≤ 1 (1)
x3 + x4 + x7 ≤ 1 (2)

x2 + x6 + x7 ≥ 1 (3)
x4 + x5 + x8 = 1 (4)

Consider the packings C1 = {1, 2, 3, 7} and C2 = {3, 4, 7}, the covering C3 = {2, 6, 7}
and the special ordered set C4 = {4, 5, 8}. (Note that constraints (1)-(4) are induced by
C1, . . . , C4 respectively).

The family {C1, C2, C3, C4} is not admissible for R, since C1 ∩ C2 ∩ C3 6= ∅.
Nevertheless, by Lemma 1 any non-empty set C ⊂ Ck, where k ∈ {1, 2, 4}, is a packing
whose induced constraint X(C) ≤ 1 is valid for R.

Let C′ = {C ′
1, C

′
2, C

′
3}, where C ′

1 = {1, 2, 3, 7}, C ′
2 = {3, 4, 7} and C ′

3 = {5, 8}. Taking
D1 = {3}, S1 = {1}, S1 = {2} and D2 = S2 = S2 = D3 = S3 = S3 = ∅ we have that C′ is
an admissible family for R and, by Theorem 1, uz, C′ = u1 + u3 = max {2, 1 + 6}+ 4 = 11.

Let C′′ = {C ′′
1 , C ′′

2 , C ′′
3 }, where C ′′

1 = {3, 4, 7}, C ′′
2 = {2, 6, 7} and C ′′

3 = {5, 8}. Taking
D1 = {3}, S1 = {1}, S2 = {2} and S1 = D2 = S2 = D3 = S3 = S3 = ∅ we have that C′′ is
an admissible family for R and, by Theorem 1, uz, C′′ = u1 + u3 + a1 = max {−5, 6 − 3} +
4 + 1 = 8.

Let C′′′ = {C ′′′
1 , C ′′′

2 , C ′′′
3 , C ′′′

4 }, where C ′′′
1 = {1, 2, 7}, C ′′′

2 = {3, 4}, C ′′′
3 = {2, 6, 7}

and C ′′′
4 = {4, 5, 8}. Taking S1 = {1, 2}, S2 = {3}, S3 = {4} and D1 = S1 = D2 =

S2 = D3 = S3 = ∅ we have that C′′′ is an admissible family for R and, by Theorem 1,
uz, C′′′ = u1 + u2 = max {−4, 1 − 3} + max {6, 2 + 4} = 4.

8 s. muñoz

The best upper bound on the function z is given by C′′′, since uz, C′ > uz, C′′ > uz, C′′′.
Furthermore, choosing x1 = x4 = x6 = 1 and x2 = x3 = x5 = x7 = x8 = 0, we obtain that
(x1, . . . , x8) ∈ R and x1−4x2+2x3+6x4−x5−3x6−5x7+4x8 = 4. Consequently, there is
no upper bound on z stronger than uz, C′′′ . (Note that if one restricts the admissible families
for R to families of packings, as the traditional procedures do, then the associated upper
bounds on z will be greater than 4, since max {x1−4x2 +2x3 +6x4−x5−3x6−5x7 +4x8 |∑

j∈Ck

xj ≤ 1 ∀k ∈ {1, 2, 4}, xj ∈ [0, 1] ∀j ∈ {1, . . . , 8}} = 7).

4 Detecting constraint redundancy

Let r ∈ I, R−
r = {(xj)j∈J ∈ [0, 1]n |

∑

j∈J

aijxj ∼ bi ∀i ∈ I \ {r}} and Rr = {(xj)j∈J ∈

[0, 1]n |
∑

j∈J

arjxj ∼ br}. We are interested in determining whether the rth constraint is

redundant, that is, whether R−
r ⊆ Rr (in this case the rth constraint can be dropped

from (P), although it may be preferable not to do so, since, in some cases, redundant
constraints can be converted into non-redundant ones by applying coefficient increasing
or reduction methods, see [6]).

Let R = {(xj)j∈J ∈ {0, 1}n |
∑

j∈J

aijxj ∼ bi ∀i ∈ I} and let C = {Ck}k∈K be an

admissible family for R, where K = K1∪K2∪K3 and {Ck}k∈K1 , {Ck}k∈K2 and {Ck}k∈K3

are a family of packings, coverings and special ordered sets respectively. The family C will
be obtained as follows:

We start by identifying a family C0 of packings, coverings and special ordered sets
whose induced constraints are valid for R and that contains the family CP of packings,
coverings and special ordered sets that induce contraints of problem (P), see Section 1.
If C0 is an admissible family for R, we take C = C0; otherwise, by Lemma 1 it is easy
to determine an admissible family for R from C0, see Example 1. (For simplicity, we can
assume that, for each k ∈ K, C−

k = ∅, |Ck| > 1 and, if ∃ k′ ∈ K \ {k} such that Ck ⊂ Ck′ ,
then k ∈ S1 ∪ S1 and k′ ∈ S2 ∪ S2).

Let IC be the set of indices of the constraints in (P) that are induced by {Ck}k∈K .
Without loss of generality, from now on we assume that every constraint in (P) is an

inequality of type ≤. (Note that any inequality of type ≥ can be converted into another
one of type ≤ by multiplying it by −1, and any equality can be decomposed into two
inequalities).

Proposition 1. Let i1, . . . , ip ∈ I \ IC be such that il 6= il′ ∀ l, l′ ∈ {1, . . . , p} with l 6= l′,
and let z =

∑

j∈J

(λ1 ai1 j −λ2 ai2 j − . . .−λp aip j)xj , where p ≥ 1 and λ1, . . . , λp are positive

integers relatively prime. If uz, C ≤ λ1 bi1 − λ2 bi2 − . . . − λp bip and R−
i1

⊆ RC , then the
i1th constraint is redundant.

detecting constraint redundancy in 0-1 linear programming problems 9

Proof. Let b = λ1 bi1 − λ2 bi2 − . . . − λp bip . If uz, C ≤ b and R−
i1

⊆ RC , by Lemma 2 it

follows that R−
i1

⊆ Rz,b. Moreover, for each l ∈ {2, . . . , p} we have that
∑

j∈J

ail j xj ≤ bil

∀(xj)j∈J ∈ R−
i1

, since i1 6= il. Thus, λ1

∑

j∈J

ai1 j xj ≤ λ1 bi1 +
∑

j∈J

(λ2 ai2 j + . . .+λp aip j)xj −

λ2 bi2 − . . . − λp bip ≤ λ1 bi1 ∀(xj)j∈J ∈ R−
i1

, hence R−
i1
⊆ Ri1 .

In Proposition 1 it is not necessary to impose the condition that λ1, . . . , λp be integers
relatively prime. Assuming they are integers, λ1bi1−λ2bi2−. . .−λpbip and the coefficients of
the function z are rationals. On the other hand, if λ1, . . . , λp are positive integers, it follows
from Corollary 1 that the result of applying Proposition 1 by considering λ1, . . . , λp is the

same as by considering
λ1

M
, . . . ,

λp

M
, where M is the greatest common divisor of λ1, . . . , λp.

Therefore, in order to make the calculation of λ1 bi1 − λ2 bi2 − . . . − λp bip and uz, C easier,
it is advisable that λ1, . . . , λp be relatively prime (if p = 1, we will take λ1 = 1).

If when applying Proposition 1 one obtains that uz, C ≤ λ1 bi1 −λ2 bi2 − . . .−λp bip and
R−

i1
6⊆ RC , then adding the constraints induced by {Ck}k∈K(i1) to the constraint system

of (P), where K(i1) = {k ∈ K1 | R−
i1
6⊆ {(xj)j∈J ∈ [0, 1]n | X(Ck) ≤ 1}} ∪ {k ∈ K2 | R−

i1
6⊆

{(xj)j∈J ∈ [0, 1]n | X(Ck) ≥ 1}} ∪ {k ∈ K3 | R−
i1

6⊆ {(xj)j∈J ∈ [0, 1]n | X(Ck) = 1}}, we
have that R−

i1
⊆ RC and, consequently, the i1th constraint is redundant.

It is clear that Proposition 1 also holds for any indices i2, . . . , ip ∈ I such that
i1 6= il ∀l ∈ {2, . . . p}. Now, Lemma 3 proves that if some of them belong to IC and
Proposition 1 detects the redundancy of the i1th constraint by considering i2, . . . , ip, then
it will also detect it by considering only those indices in I \ IC .

Lemma 3. Let i1, . . . , ip′ ∈ I \ IC be such that il 6= il′ ∀l, l′ ∈ {1, . . . , p′} with l 6= l′,
let ip′+1, . . . , ip ∈ IC be such that il 6= il′ ∀l, l′ ∈ {p′ + 1, . . . , p} with l 6= l′, let z =∑

j∈J

(λ1 ai1 j − λ2 ai2 j − . . . − λp aip j) xj and z′ =
∑

j∈J

(λ1 ai1 j − λ2 ai2 j − . . . − λp′ aip′ j) xj,

where 1 ≤ p′ < p and λ1, . . . , λp are positive integers relatively prime. If uz, C ≤ λ1 bi1 −
λ2 bi2 − . . . − λp bip, then uz′, C ≤ λ1 bi1 − λ2 bi2 − . . . − λp′ bip′ .

Proof. Let b = λ1bi1−λ2bi2−. . .−λpbip and b′ = λ1 bi1−λ2 bi2−. . .−λp′ bip′ . If uz, C ≤ b,
by Lemma 2 it follows that RC ⊆ Rz,b and, since ip′+1, . . . , ip ∈ IC and λp′+1, . . . , λp > 0,
we have that RC ⊆ Rz′,b′ , hence uz′, C ≤ b′.

Given i1, . . . , ip∈I\IC , if K2 =K3 =∅ and λ1bi1−λ2bi2−. . .−λpbip <0 ∀λ1, . . . , λp >0,
it is not necessary to apply Proposition 1, since uz, C ≥ 0 by Corollary 2 and, so,
uz, C > λ1 bi1 − λ2 bi2 − . . . − λp bip .

If K2 = K3 = ∅, without loss of generality we may assume that the family C0 from
which C has been obtained (see above) is formed only by packings C such that |C| > 1
and 6 ∃ C ′ ∈ C0 \ {C} with C+ ⊆ C ′+ and C− ⊆ C ′− (see Lemma 1). Then by Lemma 4 it
follows that, taking p = 1 in Proposition 1, the redundancy of a constraint induced by a
packing will not be detected.

10 s. muñoz

Lemma 4. Let r ∈ I \ IC and z =
∑

j∈J

arjxj. If r is the index of a constraint induced by

a packing and K2 = K3 = ∅, then uz, C > br.

Proof. Let C be the packing that induces the rth constraint and let C0 be the family
of packings from which C has been obtained. Since C ∈ C0, we have that |C| > 1 and
6 ∃ C ′ ∈ C0 \ {C} such that C+ ⊆ C ′+ and C− ⊆ C ′−.

If |C−| > 1, then br < 0, hence uz, C > br, since uz, C ≥ 0.
If |C−| = 1, then |C+| ≥ 1 and br = 0. Thus, considering that arj = 1 ∀j ∈ C+, by

Theorem 1 it follows that uz, C ≥ 1 > br.
If |C−| = 0, then |C+| ≥ 2, C = C+ and br = 1. Therefore, since r /∈ IC , it must be

C 6⊆ Ck ∀k ∈ K and, by Theorem 1, we obtain that uz, C ≥ 2 > br.

Example 2 shows a situation where it is possible to detect a redundant constraint by
considering it jointly with another constraint, but not by considering it alone.

Example 2. Let (5)-(8) be the constraint system that defines the feasible region of (P).

3x1 + 5x2 − x3 + x4 + 6x5 ≤ 10 (5)
x1 + x2 − x3 + x4 + 4x5 ≤ 4 (6)
x1 + x2 ≤ 1 (7)

x4 + x5 ≤ 1 (8)

Let C = {{1, 2}, {4, 5}}. (Note that constraints (7) and (8) are induced by the packings
{1, 2} and {4, 5} respectively). By applying Proposition 1 to constraints (5) and (6) we
have that z = (3λ1 − λ2)x1 + (5λ1 − λ2)x2 + (−λ1 + λ2)x3 + (λ1 − λ2)x4 + (6λ1 − 4λ2)x5,
uz, C = max {5λ1 − λ2, 0} + max {λ1 − λ2, 6λ1 − 4λ2, 0} + max {−λ1 + λ2, 0} and
λ1 bi1 − λ2 bi2 = 10λ1 − 4λ2.

• If λ1 ≤ 1
5

λ2, then uz, C = −λ1 + λ2 = 10λ1 − 4λ2 − 11λ1 + 5λ2 > λ1 bi1 − λ2 bi2.

• If
1
5

λ2 < λ1 <
2
3

λ2, then uz, C = 5λ1−λ2−λ1+λ2 = 4λ1 = 10λ1−4λ2−6λ1+4λ2 >

λ1 bi1 − λ2 bi2.

• If
2
3

λ2 ≤ λ1 ≤ λ2, then uz, C = 5λ1 − λ2 + 6λ1 − 4λ2 − λ1 + λ2 = 10λ1 − 4λ2 =
λ1 bi1 − λ2 bi2.

• If λ1 > λ2, then uz, C = 5λ1 −λ2 +6λ1 − 4λ2 = 11λ1 − 5λ2 = 10λ1 − 4λ2 +λ1 −λ2 >
λ1 bi1 − λ2 bi2.

So, to detect the redundancy of constraint (5) it suffices to choose λ1 and λ2 such that
2
3
λ2 ≤ λ1 ≤ λ2. However, if Proposition 1 is applied only to constraint (5), the redundancy

is not detected, since taking λ1 = 1 we obtain that uz, C = 5 + 6 = 11 > bi1 .

detecting constraint redundancy in 0-1 linear programming problems 11

5 Conclusions

In this paper we have presented a new procedure for obtaining upper bounds on linear
functions that makes use of the information provided by certain families of packings,
coverings and special ordered sets. It can determine better upper bounds than the
traditional procedures, which do not consider either coverings or special ordered sets,
and it can be particularly useful in problems without packings. We have also presented
a new method for detecting redundant constraints in 0-1 linear programming problems
based on these upper bounds. It can detect some redundancy situations that the methods
available in current literature cannot, since it allows consideration of several constraints
jointly, whereas the existing methods consider only single constraints. Consequently, this
new method can improve the current preprocessing techniques.

Acknowledgements

I am deeply grateful for the hospitality shown to me while a visitor at the Department
of Artificial Intelligence of the School of Computer Science of the Technical University of
Madrid, where I have written this paper.

References

[1] Atamtürk, A.; Nemhauser, G.L.; Savelsbergh, M.W.P. (2000) “Conflict graphs in
solving integer programming problems”, European Journal of Operational Research
121(1): 40–55.

[2] Bixby, R.E.; Ceria, S.; McZeal, C.M.; Savelsbergh, M.W.P. (1998) “An updated mixed
integer programming library: MIPLIB 3.0”, Technical Report TR98-03, Department
of Computational and Applied Mathematics, Rice University. Available from URL:
http://www.caam.rice.edu/˜bixby/miplib/miplib.html

[3] Crowder, H.; Johnson, E.L.; Padberg, M. (1983) “Solving large-scale zero-one linear
programming problems”, Operations Research 31(5): 803–834.

[4] Dietrich, B.L.; Escudero, L.F.; Gaŕın, A.; Pérez, G. (1993) “O(n) procedures for
identifying maximal cliques and non-dominated extensions of consecutive minimal
covers and alternates”, Top 1(1): 139–160.

[5] Escudero, L.F.; Gaŕın, A.; Pérez, G. (1996) “On using clique overlapping for detecting
knapsack constraint redundancy and infeasibility in 0-1 mixed integer programs”,
Top 4(1): 87–98.

[6] Escudero, L.F.; Muñoz, S. (1998) “On characterizing tighter formulations for 0-1
programs”, European Journal of Operational Research 106(1): 172–176.

[7] Guignard, M.; Spielberg, K. (1981) “Logical reduction methods in zero-one program-
ming. Minimal preferred variables”, Operations Research 29(1): 49–74.

12 s. muñoz

[8] Hoffman, K.L.; Padberg, M. (1991) “Improving LP-representations of zero-one linear
programs for branch-and-cut”, ORSA Journal on Computing 3(2): 121–134.

[9] Johnson, E.L.; Kostreva, M.M.; Suhl, U.H. (1985) “Solving 0-1 integer programming
problems arising from large scale planning models”, Operations Research 33(4):
803–819.

[10] Johnson, E.L.; Nemhauser, G.L.; Savelsbergh, M.W.P. (2000) “Progress in linear
programming-based algorithms for integer programming: An exposition”, INFORMS
Journal on Computing 12(1): 2–23.

[11] Muñoz, S. (1995) “A correction of the justification of the Dietrich-Escudero-Gaŕın-
Pérez O(n) procedures for identifying maximal cliques and non-dominated extensions
of consecutive minimal covers and alternates”, Top 3(1): 161–165.

[12] Muñoz, S. (1999) Reforzamiento de Modelos en Programación Lineal 0-1. Tesis
Doctoral, Universidad Complutense de Madrid, Madrid.

[13] Nemhauser, G.L.; Wolsey, L.A. (1988) Integer and Combinatorial Optimization. John
Wiley, New York.

[14] Savelsbergh, M.W.P. (1994) “Preprocessing and probing techniques for mixed integer
programming problems”, ORSA Journal on Computing 6(4): 445–454.

