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Abstract

This paper deals with the study of an iterative method for solving
a variational inclusion of the form 0 ∈ f(x)+F (x) where f is a locally
Lipschitz subanalytic function and F is a set-valued map from Rn

to the closed subsets of Rn. To this inclusion, we firstly associate a
Newton then secondly an Inexact Newton type sequence and with
some semistability and hemistability properties of the solution x∗ of
the previous inclusion, we prove the existence of a sequence which is
locally superlinearly convergent.

Keywords: set–valued mapping; variational inclusion; semistability; hemi-
stability; subanalytic function; Newton’s method; inexact Newton’s method.

Resumen

En este art́ıculo se estudia un método iterativo para resolver una
inclusión variacional de la forma 0 ∈ f(x) + F (x), donde f es una
función punto-conjunto, subanaĺıtica, localmente Lipschitz y F es
una función multivaluada de Rn en los subconjuntos cerrados de
Rn. A esta inclusión se le asocia, en primer lugar, una sucesión
tipo Newton y, posteriormente una sucesión tipo Newton inexacto.
Bajo algunas propiedades de semi-estabilidad y hemi-estabilidad de
la solución x∗ de la inclusión variacional, se demuestra la existencia
de una sucesión que es superlinealmente localmente convergente.

Palabras clave: función multivaluada; inclusión variacional; semi-estabi-
lidad; hemi-estabilidad; función subanaĺıtica; método de Newton; método
de Newton inexacto.

Mathematics Subject Classification: 49J53, 47H04, 65K10, 14P15.

1 Introduction

The variational inclusions were introduced by Robinson [34, 36] as an
abstract model of many problems encountered in various fields such as
mathematical programming, engineering [20], optimal control. Robinson
showed in particular that complementarity problems can be expressed in
terms of variational inclusions by the use of the normal cone to a set.
Consequently, the theory that concerns the solving of these inclusions has
been developed and the number of publications in this area has increased
for these two last decades.
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local convergence of exact and inexact newton methods 33

In this paper, our goal is to solve the variational inclusion

0 ∈ f(x) + F (x) (1)

where f : X ⊂ Rn → Rn is locally Lipschitz and subanalytic on a neigh-
borhood Ω ⊂ X of x∗, solution of (1) and F : X ⊂ Rn ⇒ Rn is a
set–valued map with closed graph.

Several iterative methods have been presented to solve (1); one which is
more original was introduced by Dontchev [15, 17] in which he considered
a Newton type sequence where f is a function whose first order Fréchet-
derivative f ′ satisfies a Lipschitz condition; in [16], he showed the stability
of the method. Following these works, Pietrus [31, 32] obtained similar
results when f ′ verifies an Hölder condition obtained similar results.

Starting with Dontchev’s work, various iterative methods have been
introduced in the last decade. They consist in generating an iterative se-
quence (xk) obtained by subsequently solving implicit subproblems of the
form 0 ∈ A(xk, xk+1) + F (xk+1), where A denotes some approximation
of the mapping f. For the convenience of the reader, we mention some
of these works. For example, using a second-degree Taylor polynomial
expansion of f at xk, Geoffroy, Hilout and Pietrus in [22] introduced a
method involving the second order Fréchet-derivative and, they obtained
a cubic convergence when f ′′ is Lipschitz. In [24], they proved the sta-
bility of the method and in [23] it is showed that the previous method
is superquadratic when f ′′ satisfies a Hölder condition. Jean-Alexis pre-
sented in [27] a method without second order Fréchet-derivative, which is
also cubically convergent. Lately, the authors in [11] proposed a general-
ization of these methods by taking more iterates.

In the case where the single-valued part of the variational inclusion is
nonsmooth, the previous methods are not valid. That led us to introduce
and investigate in [10] a Newton type algorithm to solve (1) when f is a
subanalytic and locally Lipschitz function. This Newton type algorithm is
the so-called subanalytic Newton method (SNM) which can be described
in the following way: for the current iterate xk ∈ IRn, the next iterate xk+1

is computed as a solution of the pseudo-linearized Variational Inclusion
at xk:

0 ∈ f(xk) + ∆f(xk)(xk+1 − xk) + F (xk+1) (2)

where ∆f(xk) ∈ ∂◦f(xk) and ∂◦f(xk) denotes the Clarke Jacobian of f at
the point xk. In this context we obtained with some metric regularity as-
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sumptions the existence of superlinear convergent sequences
defined by (2).

Let us point out that all these methods have been studied provided
a pseudo-Lipschitz property is satisfied for the set-valued map (f + F )−1

or one of its approximation and a fixed point theorem is used. For more
details on this property and the fixed point theorem evocated, the reader
can refer, for example to [1, 2, 14, 18, 19, 29, 30, 38].

It is possible to obtain interesting results without the use of the pre-
vious concepts. Recently in [7, 8, 9], the authors studied inclusion (1) in
the smooth case by using an assumption which is directly connected to
a solution: the semistability concept. This concept has been introduced
by Bonnans [6] for variational inequalities. A solution x∗ of a variational
inclusion is said to be semistable if, given a small perturbation on the
left-hand side of (1), a solution x of the perturbed variational inclusion
that is sufficiently close to x∗ is such that the distance of x to x∗ is of the
order of the magnitude of the perturbation.

Recently, Izmailov and Solodov in [26], used the concept of semistabil-
ity and another concept which is the hemistability in order to study the
existence and the convergence of the following inexact Josephy-Newton
method,

0 ∈ f(xk) + f ′(xk)(xk+1 − xk) + ωk + F (xk+1),

where ωk is a perturbation term and they obtained with some assumptions
superlinear and quadratic convergence for the sequence (xk).

Our goal in this paper is to show that we can find similar conclusions
in the nonsmooth case when the function f is Lipschitz and subanalytic.

The paper is organized as follows: in Section 2, we collect some defi-
nitions regarding semianalytic, subanalytic functions, differentiability re-
sults, semistability and hemistability of solutions of variational inclusions.
In Section 3, we study the subanalytic Newton method and in Section
4, we study the inexact subanalytic Newton method. In both cases we
obtain at least a superlinear convergence.

2 Preliminaries

Let us begin with some notations we use in the whole document. We
denote by x∗ a solution of (1), by ∥.∥ the norm in Rn; for a point x ∈ X
and a set C ⊂ X, the distance of x to the set C is defined by dist (x,C) =
inf{∥x− y∥, y ∈ C}, the closed ball centered at x with radius r by Br(x).
Let Λ : X ⇒ Y be a set–valued map, we denote by graphΛ = {(x, y) ∈
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local convergence of exact and inexact newton methods 35

X × Y, y ∈ Λ(x)} the graph of Λ, by Λ−1(y) = {x ∈ X, y ∈ Λ(x)} the
inverse of Λ and L(X,Y ) is the space of bounded linear operators from X
into Y .

2.1 Semianalytic and subanalytic functions

The first work on subanalytic sets seems to be attributed to Gabrielov
[21] in which we can find the definition 2.2, but Hironaka [25] was the
first to produce a complete and simple theory on subanalytic sets; then
other authors like Dedieu [13] continued to simplify the ideas on this
topic. We extracted the following definitions, properties and examples
from Dedieu’s paper. However, the reader who wants to have a more ex-
tensive view on the algebraic geometry can refer to this nonexhaustive list
of references as Bierstone and Milman [3], Bochnak, Coste and Roy [4] or
Lojasiewicz [28].

Definition 2.1 A subset X of Rn is semianalytic if for each a ∈ Rn there
is a neighborhood U of a and real analytic functions fi,j on U such that

X ∩ U =

r∪
i=1

si∩
j=1

{x ∈ U |fi,j(x) εi,j 0}

where εi,j ∈ {<,>,=}.

When U = Rn and the fi,j are polynomials, one says that X is semialge-
braic.

Definition 2.2 A subset X of Rn is subanalytic if each point a ∈ Rn

admits a neighborhood U such that X ∩ U is a projection of a relatively
compact semianalytic set: there is a semianalytic bounded set A in Rn+p

such that X ∩ U = Π(A) where Π : Rn+p → Rn is the projection.

Definition 2.3 Let X be a subset of Rn. A function f : X → Rm is
semianalytic (resp. subanalytic ) if its graph is semianalytic ( resp. sub-
analytic).

Let us note that the class of semianalytic sets is stable for elementary
set operations (finite union, finite intersection, set difference), the closure,
the interior and the connected components of a semianalytic set are semi-
analytic. The same properties hold for subanalytic sets. The image of
a bounded semianalytic set by a semianalytic function is not necessarily
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semianalytic. Consequently, the class of semianalytic functions is not sta-
ble under algebraic operations (sum, product, composition see [28], page
133). Subanalytic functions have been introduced for this reason: if X is
a subanalytic and relatively compact set the image of X by a subanalytic
function is subanalytic (see [3], page 16).

In the references given above, we can find interesting examples of sub-
analytic functions in relation with optimization like the distance function
or the supremum of a finite family of subanalytic continuous functions.

2.2 Differentiability results

Proposition 2.1 (canonical approximation) If f : X ⊂ Rn → Rn is a
subanalytic locally Lipschitz mapping then for all x ∈ X

||f(x+ d)− f(x)− f ′(x; d)|| = ox(||d||).

where f ′(x; d) is the directional derivative of f at x in the direction d.

We know by [39] that, the subanalytic function t → ox(t) admits a
Puiseux development; so there are a positive constant c, a real number ε >
0 and a rational number γ > 0 that come from the Puiseux development
such that ||f(x+ d)− f(x)− f ′(x; d)|| = c||d||γ whenever ||d|| ≤ ε.

Definition 2.4 Let f : Rn → Rm be a locally Lipschitz continuous func-
tion.
The limiting Jacobian of f at x ∈ Rn is defined as

∂f(x) = {A ∈ L(Rn,Rm) : ∃uk ∈ D; f ′(uk) → A, k → +∞}

where D denotes the points of differentiability of f and the Clarke Jacobian
∂◦f(x) of f at x ∈ Rn is a subset of X∗, defined as the closed convex hull
of ∂f(x) (see [12], page 70 ).

A consequence of the Lipschitz property is that the Clarke Jacobian
of f is a nonempty compact convex set. Moreover we have the following
proposition:

Proposition 2.2 [5] Let f : Rn → Rn be locally Lipschitz and subanalytic,
there exists a positive rational number γ such that:

∥f(y)− f(x)−∆f(y)(y − x)∥ ≤ Cx∥y − x∥1+γ (3)

where ∆f(y) is any element of ∂◦f(y) and Cx is a positive constant.
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2.3 Semistable and hemistable solutions

Definition 2.5 A solution x∗ of (1) is said to be semistable if for any
r ∈ IRn close enough to zero, any solution x(r) of the perturbed variational
inclusion

r ∈ f(x) + F (x) (4)

close enough to x∗ satisfies the estimate

∥x(r)− x∗∥ = O(∥r∥).

It is well-known, that semistability only gives information on the rate
of convergence of trajectories which converge to x∗ but does not guarantee
solvability of the problem (1) for a trajectory (xk) close to x∗. In order to
obtain existence, we need the following notion.

Definition 2.6 Let f : IRn → IRn be a smooth function. A solution x∗

of (1) is said to be hemistable if for any x ∈ IRn close enough to x∗, the
variational inclusion

0 ∈ f(x) + f ′(x)η + F (x+ η)

has a solution η(x) such that η(x) → 0 as x → x∗.

Generally, none of the two properties of semistability and hemistability
is implied by the other. In [6], it has been briefly shown that a sufficient
condition for both to be satisfied is the strong regularity condition of
Robinson [35].

The above condition has no sense for nonsmooth functions, it is the
reason why we extend this notion to Lispchitz function which admits a
subgradient. In this case, we replace the above definition by the following
which is more general.

Definition 2.7 Let f : IRn → IRn be a Lipschitz continuous function (not
necessarily smooth). A solution x∗ of (1) is said to be hemistable if for any
x ∈ IRn close enough to x∗ and ∆f(x) ∈ ∂◦f(x), the variational inclusion

0 ∈ f(x) + ∆f(x)η + F (x+ η)

has a solution η(x) such that η(x) → 0 as x → x∗.

Remark 2.1

• This definition is valid in the case where f is a semi-smooth function
(see [33]) in particular when f is Lipschitz subanalytic.

• In the case of smooth functions both definitions coincide.
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3 Convergence analysis of the subanalytic
Newton type method

In [10], we obtained the existence of Newton type sequences for varia-
tional inclusions and we prove the superlinear convergence of these tra-
jectories. In this work the result has been obtained with a more theo-
retical assumption of metric regularity on the set valued map. For more
details on this topic and applications, the reader could be referred to
[1, 2, 18, 14, 29, 30, 37, 38] and the references therein.

In the rest of the paper we suppose that f is a Lipschitz and subanalytic
function.

Our aim here is to give some results on the rate of convergence of these
sequences using semistability or hemistability of the solution instead of
the metric regularity. We start with a first result which gives the rate of
convergence when we suppose the existence and the convergence of the
sequence.

Theorem 3.1 Let x∗ be a semistable solution of (1), and let (xk)k≥0

defined by (2) converges towards x∗ then the convergence is superlinear.

Proof:
We can write the Newton step (2) by

rk ∈ f(xk+1) + F (xk+1)

where rk = f(xk+1) − f(xk) − ∆f(xk)(xk+1 − xk) and ∆f(xk) ∈
∂◦f(xk).

As in [5, 10], denoting C∗ the biggest value of the constant Cx in
an appropriate neighborhood Ω of x∗, the inequality (3) in Proposition
2.2 remains valid replacing Cx by C∗. Thus, from the Proposition 2.2
we obtain the existence of a rational constant γ > 0 such that ∥rk∥ =
O(∥xk+1 − xk∥1+γ) = o(∥xk+1 − xk∥).

The semistability of x∗ implies that

∥xk+1 − x∗∥ = O(∥rk∥) = o(∥xk+1 − xk∥) = o(∥xk+1 − x∗∥+ ∥xk − x∗∥),

hence xk+1−x∗ = o(xk−x∗) and we obtain the superlinear convergence
of (xk). �

In the previous theorem we suppose the existence and the convergence
of the sequence and obtain the rate of convergence, the following result is
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local convergence of exact and inexact newton methods 39

more general in the sense that we also prove existence of trajectories using
in addition the hemistability assumption.

Theorem 3.2 Let x∗ be a semistable and a hemistable solution of (1).
Then there exists ε > 0 such that for any starting point x0 ∈ IRn close
enough to x∗, there exists a trajectory (xk)k≥0 defined by (2) and ∥xk+1−
xk∥ ≤ ε. Moreover this trajectory converges towards x∗ and the rate of
convergence is superlinear.

Proof:
The semistability gives the existence of c1 > 0 and c2 > 0 such that for any
r ∈ IRn and any solution x(r) solution of (4), satisfying ∥x(r)− x∗∥ ≤ c1,
one has ∥x(r)− x∗∥ ≤ c2∥r∥.

Let us remark that if ∥xk − x∗∥ is sufficiently small, the hemistability
property allows to find a solution xk+1 of (2) such that ∥xk+1 − x∗∥ is
small. For this reason, if we take ε0 ≤ min(c1,

1
5c2), from the hemistability

condition it holds that for some ε ∈ (0, c1) sufficiently small, ∥xk−x∗∥ ≤ 4
5ε

implies the existence of xk+1 solution of (2) such that ∥xk+1 − x∗∥ ≤ ε0 .

It is easy to see that xk+1 is also solution of the equation rk ∈ f(xk+1)+
F (xk+1) with rk := f(xk+1)− f(xk)−∆f(x)(xk+1 − xk).

From Proposition 2.2, we obtain the existence of a rational constant
γ > 0 such that ∥rk∥ = O(∥xk+1−xk∥1+γ). Reducing ε0 and ε if necessary,
we obtain ∥xk+1 − xk∥ < 1 and

∥rk∥ ≤ 1

5c2
∥xk+1 − xk∥.

As ε0 ≤ c1, the semistability property implies that

∥xk+1 − x∗∥ ≤ c2∥rk∥ ≤ 1

5
∥xk+1 − xk∥ ≤ 1

5
∥xk+1 − x∗∥+ 1

5
∥xk − x∗∥,

hence

∥xk+1 − x∗∥ ≤ 1

4
∥xk − x∗∥

which yields

∥xk+1 − xk∥ ≤ ∥xk+1 − x∗∥+ ∥xk − x∗∥ ≤ 1

4
∥xk − x∗∥+ ∥xk − x∗∥ ≤ ε.

This completes the proof, the superlinear convergence coming from
Theorem 3.1. �
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4 Convergence analysis of the subanalytic
inexact Newton type method

The aim of this section is to study the behavior of the Newton method
considering some particular perturbations. The inexact Newton method
we consider is of the following form

0 ∈ f(xk) + ∆f(xk)(xk+1 − xk) + ωk + F (xk+1) (5)

where ∆f(xk) ∈ ∂◦f(xk) and ωk ∈ IRn is a perturbation term.

Theorem 4.1 Let x∗ be a semistable solution of (1). Let a sequence (xk)
be convergent to x∗, and assume that xk+1 satisfies (5) for each k = 0, 1, . . .
with some ωk ∈ IRn such that

∥ωk∥ = o(∥xk+1 − xk∥+ ∥xk − x∗∥) (6)

Then the rate of convergence is superlinear. Moreover if ∥ωk∥ =
O(∥xk+1−xk∥2+∥xk−x∗∥2), the order of convergence is equal to min{2, 1+
γ} where γ is the rational number given in Proposition 2.2.

Proof:
We can remark that if for some k xk = x∗, then from the semistability of
x∗ we obtain that xm = x∗ for all m ≥ k and the proof of the theorem
easily follows. For the rest of the proof we suppose that xk ̸= x∗ for all k.

We can note that for each k, xk+1 is a solution of the inclusion rk ∈
f(x) + F (x) with

rk = f(xk+1)− f(xk)−∆f(xk)(xk+1 − xk)− ωk. (7)

Using Proposition 2.2 and (6) , there exist C∗ and a rational number
γ such that

∥rk∥ ≤ C∗∥xk+1 − xk∥1+γ + ∥ωk∥ = o(∥xk+1 − xk∥+ ∥xk − x∗∥).

The semistability of x∗ implies that

∥xk+1 − x∗∥ = O(∥rk∥) = o(∥xk+1 − xk∥) + o(∥xk − x∗∥)
= o(∥xk+1 − x∗∥+ ∥xk − x∗∥)

and we obtain the superlinear convergence.
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The rest of the proof is very close to the one given in [26]. We give it
here for the paper to be self-contained.

If γ ≤ 1 then ∥rk∥ = O(∥xk+1−x∗∥1+γ + ∥xk −x∗∥1+γ). The semista-
bility of x∗ implies that ∥xk+1 − x∗∥ = O(∥rk∥) and this means that the
quantity

∥xk+1 − x∗∥
∥xk+1 − x∗∥1+γ + ∥xk − x∗∥1+γ

=
1

∥xk+1 − x∗∥γ + ∥xk−x∗∥1+γ

∥xk+1−x∗∥

forms a bounded sequence. Then this is possible if and only if there exists
η > 0 such that

∥xk − x∗∥1+γ

∥xk+1 − x∗∥
≥ η, ∀k ≥ 0,

or equivalently

∥xk+1 − x∗∥ ≤ 1

η
∥xk − x∗∥1+γ , ∀k ≥ 0,

which gives the superlinear convergence rate of (xk).

If γ ≥ 1 then ∥rk∥ = O(∥xk+1 − x∗∥2 + ∥xk − x∗∥2). The semistability
of x∗ implies that

∥xk+1 − x∗∥ = O(∥rk∥),

this means that the quantity

∥xk+1 − x∗∥
∥xk+1 − x∗∥2 + ∥xk − x∗∥2

=
1

∥xk+1 − x∗∥+ ∥xk−x∗∥2
∥xk+1−x∗∥

forms a bounded sequence. Then this is possible if only if there exists
δ > 0 such that

∥xk − x∗∥2

∥xk+1 − x∗∥
≥ δ,∀k ≥ 0,

or equivalently

∥xk+1 − x∗∥ ≤ 1

δ
∥xk − x∗∥2,∀k ≥ 0,

which gives the quadratic convergence rate of (xk). �

Let us note that in this second case where γ ≥ 1 we find the same
order of convergence than the inexact Newton method (see [26]).
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42 c. cabuzel – a. pietrus – s. burnet

We now give a more general result for inexact Newton’s subanalytic
method where here the perturbation affects the multi-valued term. The
problem we are interested in is the following:

0 ∈ f(xk) + ∆f(xk)(x− xk) + Ω(xk, x− xk) + F (x) (8)

where Ω : Rn × Rn → 2R
n
is a given multifunction. This implies that

the perturbation term appearing in (5) has to satisfy the inclusion ωk ∈
Ω(xk, xk+1 − xk).

Theorem 4.2 Assume that x∗ be a semistable solution of (1) and let
Ω : Rn×Rn → 2R

n
be a multifunction satisfying the following assumptions:

• (INSM1) For each x ∈ Rn close to x∗, the variational inclusion

0 ∈ f(x) + ∆f(x)η +Ω(x, η) + F (x+ η)

has a solution η(x) such that η(x) → 0 as x → x∗.

• (INSM2) The estimate

∥ω∥ = o(∥η∥+ ∥x− x∗∥)

holds uniformly for ω ∈ Ω(x, η), x ∈ Rn and η ∈ Rn close enough to
zero and satisfying

0 ∈ f(x) + ∆f(x)η + ω + F (x+ η)

Then there exists δ ≥ 0 such that for any starting point x0 ∈ Rn

close enough to x∗, there exists a trajectory {xk} ⊂ Rn such that
xk+1 is a solution of (8) for each k = 0, 1, . . . satisfying

∥xk+1 − xk∥ ≤ δ

any such trajectory converges to x∗ and the rate of convergence is
superlinear.

Proof:
Let us remark that the semistability of x∗ implies the existence of δ1 > 0
and M > 0 such that for any r ∈ Rn and any solution x(r) of the inclusion
r ∈ f(x) + F (x) satisfying ∥x(r)− x∗∥ ≤ δ1 one has

∥x(r)− x∗∥ ≤ M∥r∥. (9)
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Now for any (fixed) δ2 ∈
]
0,min( 8

11 , δ1)
]
and according to (INSM1),

there exists δ ∈
(
0, 58δ2

)
such that the estimation ∥xk − x∗∥ ≤ 3

5δ implies
the existence of a solution xk+1 of (8) satisfying ∥xk+1 − x∗∥ ≤ δ2.

Let us remark that xk+1 is a solution of the equation rk ∈ f(x)+F (x)
with rk defined as in the proof of the previous theorem (see (8)) and with
ωk ∈ Ω(xk, xk+1 − xk) .

The estimations of rk given in the proof of the previous theorem and
the one which is given for ω in (INSM2) imply that

∥rk∥ ≤ 1

4M
(∥xk+1 − xk∥+ ∥xk − x∗∥)

for sufficiently small value of δ2.

Since (9) holds with r = rk and x(rk) = xk+1 and taking in account
the previous inequality, we obtain

∥xk+1 − x∗∥ ≤ 1

4
(∥xk+1 − xk∥+ ∥xk − x∗∥)

≤ 1

4
∥xk+1 − x∗∥+ 1

2
∥xk − x∗∥

which yields

∥xk+1 − x∗∥ ≤ 2

3
∥xk − x∗∥, (10)

which implies that

∥xk+1 − x∗∥ ≤ 2

5
δ (11)

and finally

∥xk+1 − xk∥ ≤ δ.

It is easy to observe that if ∥xk − x∗∥ ≤ 3
5δ and ∥xk+1 − xk∥ ≤ δ, we

obtain ∥xk+1 − x∗∥ ≤ 8
5δ ≤ δ2 ≤ δ1 and we can start again the procedure

with xk+1 and find the same estimations as in (10) and (11).

In this way, starting with a point x0 satisfying ∥x0−x∗∥ ≤ 3
5δ, we find

the next iterate x1 solution of (8) for k = 0 and satisfying ∥x1−x∗∥ ≤ 3
5δ.

Thus, starting with x1 we can find the next iterate x2 solution of (8) for
k = 1 and satisfying ∥x2 − x∗∥ ≤ 3

5δ. Repeating this argument, we show
the existence of a trajectory {xk} such that for each k, xk+1 is a solution
of the variational inclusion (8) satisfying the inequality (11) which implies
∥xk+1 − x∗∥ ≤ 3

5δ.

The convergence of the sequence comes from the inequality (10). �
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[8] Burnet, S.; Jean-Alexis, C.; Piétrus, A. (2011) “An iterative method
for semistable solutions”, RACSAM 105(1): 133–138.
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