Ingeniería ISSN Impreso: 1409-2441 ISSN electrónico: 2215-2652

OAI: https://www.revistas.ucr.ac.cr/index.php/ingenieria/oai
Comportamiento sísmico de edificios irregulares en planta considerando sistemas de aislación con excentricidad de rigidez
PDF
EPUB
HTML

Palabras clave

Aislador elastomérico
análisis paramétrico
edificio aislado de concreto
excentricidad de masa
excentricidad de rigidez
irregularidad en planta

Cómo citar

Garrido, C., & Fernandez-Davila, V. (2024). Comportamiento sísmico de edificios irregulares en planta considerando sistemas de aislación con excentricidad de rigidez. Ingeniería, 34(2), 9–20. https://doi.org/10.15517/ri.v34i2.55859

Resumen

El objetivo de la presente investigación es evaluar el efecto de los parámetros dinámicos del sistema de aislación (el grado de acoplamiento torsional [Wb], el periodo de vibración [Tb],  la razón de amortiguamiento crítico [xb] y la excentricidad de rigidez de la base de aislación [erb]) en el comportamiento torsional de una familia de edificios con seis pisos y aislados en la base de concreto armado, considerando las excentricidades de rigidez o masa (er o em, respectivamente) en la superestructura. Estas modifican su comportamiento estructural ante sismos severos e incrementan los desplazamientos laterales y las derivas de manera significativa. Para ello, se realizó un análisis no lineal tiempo-historia a cada modelo estructural, por lo que estos se sometieron a un conjunto de siete registros de aceleraciones sísmicas, medidos en la costa de Perú y Chile, los cuales fueron escalados según el espectro de diseño de pseudoaceleraciones vigente en Perú.

Como respuestas globales de interés, se consideran los desplazamientos laterales máximos y las derivas de entrepiso. Así pues, se observó que el efecto de em generó mayores amplificaciones en los desplazamientos laterales y derivas que er. Similarmente, el parámetro erb fue muy influyente en el comportamiento torsional de los edificios aislados con em y er, pues amplificó los desplazamientos laterales hasta en un 50 %. Además, el parámetro Tb impactó notablemente las derivas de entrepiso, ya que las redujo hasta en un 55 %. Por otro lado, los parámetros Wb y xb fueron poco influyentes en dichas respuestas.

https://doi.org/10.15517/ri.v34i2.55859
PDF
EPUB
HTML

Citas

C. Arnold y R. Reitherman, Building configuration and seismic design – the architecture of earthquake resistance. Nueva York, NY, Estados Unidos: John Wiley & Sons, 1982.

V.I. Fernandez-Davila y E.F. Cruz, “Parametric study of the non-linear seismic response of three-dimensional building models”, Engineering Structures, vol. 28, no. 5, pp. 756-770, abr. 2006, doi: 10.1016/j.engstruct.2005.10.007.

C. Olivares, J. De la Llera y A. Poulos, “Torsion control in structures isolated with the triple friction pendulum system”, Engineering Structures, vol. 216, p. 110503, ago. 2020, doi: 10.1016/j.engstruct.2020.110503.

A. Tena-Colunga y J.L. Escamilla-Cruz, “Torsional Amplifications in Asymmetric Base-Isolated Structures”, Engineering Structures, vol. 29, no. 2, pp. 237-247, feb. 2007, doi: 10.1016/j.engstruct.2006.03.036.

S. Nagarajaiah, A.M. Reinhorn y M.C. Constantinou, “Torsion Coupling in Sliding Base-Isolated Structures”, Journal of Structural Engineering, ASCE, vol. 119, no. 10, pp. 130-149, ene. 1993, doi: 10.1061/(ASCE)0733-9445(1993)119:1(130).

M. Fallahian, F. Khoshnoudian y V. Loghman, “Torsionally Seismic Behavior of Triple Concave Friction Pendulum Bearing”, Advances in Structural Engineering, vol. 18, no. 12, nov. 2015, doi: 10.1260/1369-4332.18.12.2151.

G. Bhatt, “A Parametric Study on Torsionally Coupled Base-Isolated Structures”, en Emerging Trends in Civil Engineering. Lecture Notes in Civil Engineering, K. Babu, H. Rao y Y. Amarnath, Eds., vol 61. Singapur: Springer, 2020, pp. 267-274. [En línea]. Disponible en: https://doi.org/10.1007/978-981-15-1404-3_22.

F. Khoshnoudian y N. Azizi, “Nonlinear response of a torsionally coupled base-isolated structure”, Proceedings of the ICE - Structures and Buildings, vol. 160, no. 4, pp. 207-219, ago. 2007, doi: 10.1680/stbu.2007.160.4.207.

S. Nagarajaiah, A.M. Reinhorn y M.C. Constantinou, “Torsion in Base Isolated Structures with Elastomeric Isolation Systems”, Journal of Structural Engineering, ASCE, vol. 119, no. 10, pp. 2932-2951, oct. 1993, doi: 10.1061/(ASCE)0733-9445(1993)119:10(2932).

T. Pan y J.M. Kelly, “Seismic response of torsionally coupled base isolated structures”. Earthquake Engineering and Structural Dynamics, vol. 11, no. 6, pp. 749-770, nov. 1983, doi: 10.1002/eqe.4290110604.

R.S. Jangid y T.K. Datta, “Performance of base isolation system for asymmetric building subject to random excitation”, Engineering Structures, vol.17, no. 6, pp. 443-454, jul. 1995, doi: 10.1016/0141-0296(95)00054-B.

A. Tena-Colunga y L.A. Gomez-Soberon, “Torsional Response of Base-Isolated Structures due to Asymmetries in the Superstructure”, Engineering Structures, vol. 24, no. 12, pp. 1587-1599, dic. 2002, doi: 10.1016/S0141-0296(02)00102-5.

A. Tena-Colunga y C. Zambrana-Rojas, “Dynamic torsional amplifications of base-isolated structures with an eccentric isolation system”, Engineering Structures, vol. 28, no. 1, pp. 72-83, ene. 2006, doi: 10.1016/j.engstruct.2005.07.003.

C. Garrido y V. Fernández-Dávila, “Efecto de las excentricidades de rigidez y de masa en la respuesta sísmica de edificios de concreto armado aislados en la base”. Presentado en XIII Congreso Chileno de Sismología en Ingeniería Sísmica ACHISINA, Viña del Mar, Chile, oct. 24-26, 2023.

V. Kilar y D. Koren, “Seismic behaviour of asymmetric base isolated structures with various distributions of isolators”, Engineering Structures, vol. 31, no. 4, pp. 910-921, abr. 2009, doi: 10.1016/j.engstruct.2008.12.006.

S. Etedali y M.K. Kareshk, “Mitigation of torsional responses in asymmetric base-isolated structures using an optimal distribution of isolators in base story”, Structures, vol. 35, pp. 807–817, ene. 2022, doi: 10.1016/j.istruc.2021.11.053

V. Zayas, S. Low y S. Mahin, “The FPS earthquake resisting system experimental report”, Earthquake Engineering Research Center, University of California Berkeley, Berkeley, CA, Estados Unidos, Report No. UCB/EERC-87/01, jun. 1987.

H. Tajammolian, F. Khoshnoudian y V. Loghman, “Rotational components of near-fault earthquakes effects on triple concave friction pendulum base-isolated asymmetric structures”, Engineering Structures, vol. 142, pp. 110-127, jul. 2017, doi: 10.1016/j.engstruct.2017.03.042.

H. Tajammolian, F. Khoshnoudian y N. Partovi Mehr, “Seismic responses of isolated structures with mass asymmetry mounted on TCFP subjected to near-fault ground motions”, International Journal of Civil Engineering, vol. 14, pp. 573-584, dic. 2016, doi: 10.1007/s40999-016-0047-9.

T. C. Becker, E. Keldrauk, M. Mieler, S. Mahin y B. Stojadinovic, “Effect of Mass Offset on the Torsional Response in Friction Pendulum Isolated Structures”, presentado en 15th World Conference on Earthquake Engineering, Lisboa, Portugal, sep. 24-28, 2012.

]. J. Wang, Y. Ding y D. Li, “Seismic Response of the Asymmetric Structure Isolated by the Friction Sliding Bearings”, Advanced Materials Research, vol. 163-167, pp. 4218-4221, ene. 2011, doi: 10.4028/www.scientific.net/AMR.163-167.4218.

E. Ozer, M. Inel y B.T. Cayci, “Seismic behavior of LRB and FPS type isolators considering torsional effects”, Structures, vol. 37, pp. 267–283, mar. 2022, doi: 10.1016/j.istruc.2022.01.011.

D. Dao, “Seismic Response of a Full-scale 5-story Steel Frame Building Isolated by Triple Pendulum Bearings under Three-Dimensional Excitations”, Tesis de Doctorado, University of Nevada, Reno, NV, Estados Unidos, 2012.

Y.K. Wen, “Method for Random Vibration of Hysteretic Systems”, Journal of the Engineering Mechanics Division, ASCE, vol. 102, no. 2, pp. 249-263, abr. 1976, doi: 10.1061/JMCEA3.0002106.

S. Nagarajaiah, A.M. Reinhorn y M.C. Constantinou, “Nonlinear Dynamic Analysis of 3-D-Base-Isolated Structures”, Journal of Structural Engineering, ASCE, vol. 117, no. 7, pp. 2035-2054, jul. 1991, doi: 10.1061/(ASCE)0733-9445(1991)117:7(2035).

Y.J. Park, Y.K. Wen y AH-S Ang, “Random Vibration of Hysteretic Systems under Bi-directional Ground Motions”, Earthquake Engineering and Structural Dynamics, vol. 14, no. 4, pp. 543–557, jul. - ago. 1986, doi: 10.1002/eqe.4290140405.

R.L. Mayes y F. Naeim, “Design of Structures with Seismic Isolation”, en The Seismic Design Handbook, F. Naeim, Ed., Boston, MA, Estados Unidos: Springer, 2001, cap. 14, pp. 724-755.

C. Garrido, “Comportamiento sísmico de edificios asimétricos con sistemas de aislación”, Tesis de Maestría en Ingeniería Civil, Pontificia Universidad Católica del Perú (PUCP), Lima, Perú, 2023.

Cargas, Norma Técnica Peruana E.020, Ministerio de Vivienda, Construcción y Saneamiento, Perú, dic. 2020. [En línea]. Disponible en: https://drive.google.com/file/d/15atg-9w0OEXjR5C1m6IXUFihwYeUh1aN/view

P. Tsopelas, S. Nagarajaiah, M. Constantinou y A. Reinhorn, “3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures”, National Center for Earthquake Engineering, Buffalo, NY, Estados Unidos, Technical report NCEER-91-0014, may. 1991.

G.C. Giuliani, “Design experience on seismically isolated buildings”, Nuclear Engineering and Design, vol. 127, no. 3, pp. 349-366, jun. 1991, doi: 10.1016/0029-5493(91)90059-Q.

H. Akehashi y I. Takewaki, “Critical Analysis of Nonlinear Base-Isolated Building Considering Soil–Structure Interaction under Impulsive and Long-Duration Ground Motions”, Geotechnics, vol. 1, no. 1, pp. 76-94, jun. 2021, doi: 10.3390/geotechnics1010005.

Aislamiento Sísmico, Norma Técnica Peruana E.031, Ministerio de Vivienda, Construcción y Saneamiento, dic. 2020. [En línea]. Disponible en: https://drive.google.com/file/d/1IZ22Z1h3jfZpp4GKdsLLFQ1FIVSUVUso/view.

A. Mendo y V.I. Fernandez-Davila, “Bases for standard of analysis and design of base isolation system for buildings in Perú”, presentado en 16th World Conference on Earthquake Engineering WCEE, Santiago, Chile, jun 9-13, 2017.

Diseño Sismorresistente, Norma Técnica Peruana E.030, Ministerio de Vivienda, Construcción y Saneamiento, dic. 2020. [En línea]. Disponible en: https://drive.google.com/file/d/1W14N6JldWPN8wUZSqWZnUphg6C559bi-/view.

E. Kalkan y A.K Chopra, “Practical Guidelines to Select and Scale Earthquake Records of Nonlinear Response History Analysis of Structures”, U.S. Geological Survey , Reston, VA, Estados Unidos, Open-file Report 2010-1068, jul. 2010.

S. Mazzoni, M. Hachem y M. Sinclair, “An Improved Approach for Ground Motion Suite Selection and Modification for Use in Response History Analysis”, presentado en 15th World Conference on Earthquake Engineering, Lisboa, Portugal, sep. 24-28, 2012.

CSI Analysis reference manual for SAP2000, ETABS, SAFE and CSI Bridge, Computer and Structure Inc., Berkeley, California, Estados Unidos, 2016.

E.L. Wilson, Three-Dimensional Static and Dynamic Analysis of Structures. Berkeley, CA, Estados Unidos: Computers and Structure Inc., 2002.

Hazus-MH 2.1 Technical Manual - Earthquake Model, Department of Homeland Security, Federal Emergency Management Agency, Washington, DC, Estados Unidos, 2013.

Comentarios

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2024 Cesar Garrido, Victor Fernandez-Davila

Descargas

Los datos de descargas todavía no están disponibles.