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FITTING CURVES TO DESCRIBE ERRORS OF 
INDICATIONS IN USE OF MEASURING INSTRUMENTS

1. INTRODUCTION 

Measuring instruments usually are calibrated 
at discrete values; however, it is very useful for the 
user to have formulae to describe the errors1 of 
indications (and their uncertainties) as a function of 
the readings of the instrument.

The Guidelines on the Calibration of Non-
Automatic Weighing Instruments, Euramet/cg-
18/v.03. (2011) and SIMMWG7/cg-01/v.00. (2009), 
offers advice on how to derive formulae to describe 
errors related with the indications in use (R) by 
continuous functions. For this reason, it is interesting 
to make a comparative study of results arising from 
such approaches.

In this paper, though, we analyzed only 
the different approaches stated in Euramet/
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cg-18/v.03. (2011) and SIMMWG7/cg-01/v.00. 
(2009) for weighing instruments calibration, 
these methods may apply for different kind of 
measuring instruments.

2. FUNCTIONAL RELATIONS

2.1. Linear interpolation

This method assumes a linear relation 
between two consecutives errors E(I)2 and 
their uncertainties evaluated in calibration at 
the given indication (Ik , Ik+1), Euramet/cg-
18/v.03. (2011) and SIMMWG7/cg-01/v.00. 
(2009),
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  (1)

                                                                          (2)

2.2.  Approximation by polynomials

This method is based on the “minimum χ2” 
approach,

                                                                                         
                                                            (3)
where:
Pj weighing factor corresponding to 

indication j (proportional to 1/ u2j)
νj residual corresponding to indication j
ƒ approximation function containing npar 

parameters

Approximation by polynomial yields the 
general function,

         
                                                                           (4)

Where ai are the fitting coefficients and R is 
the reading of the measurement instrument.

The evaluation of the coefficients is solved 
by weighted least squares, Euramet/cg-18/v.03. 
(2011) and SIMMWG7/cg-01/v.00 (2009),

                                               (5)

where:
X matrix whose m rows are (1, Ij , I2j, ..., I nj)
a column vector whose components are the 

coefficients a0, a1 ,   , an  of the  
approximation polynomial 

e column vector whose m  components 
are the Ej

P weighing matrix (P=cov(e)-1), whose 
main diagonal is formed by the inverse 
of the variance of the errors.

Variance and covariance of the fitting 
coefficients are given by the following matrix, 

Euramet/cg-18/v.03. (2011) and SIMMWG7/
cg-01/v.00 (2009):

                                         (6)

To calculate the error of the indication for 
any reading (different to the indications evaluated 
in calibration), it can be evaluated with (4) with 
coefficients ai obtained from (5). The uncertainty 
associated to this indication error is calculated 
with the combination of the uncertainty of 
the fitting coefficients, their covariance and 
the uncertainty of the indication in use of the 
instrument R.

2.3.  Approximation by straight line

This method is the particular case of 2.2 with 
n=1 ,

                            (7)

Other possibility is to consider that the error 
in zero (indication) is null. In  Euramet/cg-18/v.03. 
(2011) and SIMMWG7/cg-01/v.00 (2009) is 
proposed an approximation to a straight line that 
crosses through zero (a0 = 0) in non-matrix notation,

                                       (8)

                                     (9)

                                      
   (10)

The evaluation of the error of the indication and 
its associated uncertainty are calculated in the same 
way that in 2.2.

Even when it is assumed that the line 
crosses trough zero (a0=0), this assumption 
has an associated uncertainty, a0 ± u (a0).This 
uncertainty is not considered in Euramet/cg-
18/v.03. (2011) and SIMMWG7/cg-01/v.00.
(2009), hence the uncertainty due to the fitting 
is underestimated.
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2.4. Numerical simulation by Monte Carlo’s 
method

In order to evaluate the performance of the 
different methods to generate the continuous 
functions E=ƒ(R), the results from such methods 
are compared against results arising from numerical 
simulation of Monte Carlo’s method JCGM 
101:2008 (2008).

The Monte Carlo’s method considered in 
JCGM 101:2008. (2008), applies to a model of 
several input quantities and just one output quantity,

However, a generalization Becerra and Nava  
(2004) and JCGM 102: 2011 (2011) to the model 
with several input quantities and several output 
quantities will be done in this paper.

In general, the evaluation of the errors of the 
indications in use is solved in two steps: first, the 
fitting coefficients of the polynomial are calculated 
and second, the error for the reading in use R is 
calculated by means of such polynomial.

In the numerical simulation developed for 
this work, the errors of the indications in use were 
calculated in one step, taking as the mathematical 
model for the simulation the combination of (4) and 
(5). The input quantities considered for simulations 
were Ij, Ej and Rk, where Ij, and Ej were the 
indications and the errors found in calibration, and 
Rk, were the indication in use (readings).The output 

quantities were the errors for the instrument E(Rk).
The mean values and the standard uncertainties 

of the input quantities were considered as the 
means and the standard deviations for the input 
pdfs (probability density functions) gi(ξi), and 
the means and standard deviations of the output 
pdfs gk(ηk)were taken as the mean values and the 
standard uncertainties of the output quantities.

3. NUMERICAL EXAMPLES

3.1. Errors characterized by a straight line 

For the numerical example, the results of the 
example G1 of Euramet/cg-18/v.03 (2011) and 
SIMMWG7/cg-01/v.00 (2009) were taken. The 
example shows the calibration of a weighing 
instrument of 200 g of maximum capacity, and 
resolution of d = 0.1 mg. Calibration results are 
shown in Table 1.

The errors for different nominal values 
were evaluated.

The standard uncertainty associated to a 
single indication, Ij, and to Rk was 0.14 mg (k 
=1), according to the example G1 of Euramet/
cg-18/v.03 (2011) and SIMMWG7/cg-01/v.00 
(2009). The uncertainty associated to a single 

Figure 1. Propagation of distributions for a measurement model with 
several input quantities and only one output quantity.

Figure 2. Propagation of distributions for a measurement model with seve-
ral input quantities and several output quantities.
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indication is the combination of the contributions 
of both resolution and repeatability of the 
measuring instrument.

The fitting coefficients for a straight line and 
the variance-covariance matrix calculated with 
the above values are,

a=
a0= -5.7443 x 10-6 g
a1= 4.3186 x 10-6

cov(a)=

1.1051 x 10-8 g2 -8.6692 x 10-11g
-8.6692 x 10-11g 1.2569 x 10-12

Figure 3. Errors of indications in use of the instrument calculated by different 
approximation methods.

The fitting coefficients ai for the 
approximation to the straight line that crosses 
through zero and their uncertainties are,

a0 = 0.00 g ± 0.14 mg (k=1)3

a1 =4.286x10-6 ± 2.8 x 10-9 (k=1)

Figure 3 shows the graph of errors of 
indications calculated by different methods. 
In Figure 3 are presented only the bars of the 
uncertainties evaluated in calibration combined 
with the contribution of the indication in use of 
the instrument.

The series shown in Figure 3 correspond to 
the following approaches,

Indication
Error unc. k = 1

g mg mg

0 0.00 0.14
30 0.10 0.17
60 0.30 0.17
100 0.40 0.17
150 0.60 0.22
200 0.90 0.23

Table. 1. Discrete errors of indications evaluated in calibration and their standard uncertainties
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Figure 4. Expanded uncertainties (k=2) associated to the errors of the indications evaluated by different 
approximation methods.

1. Discrete errors in use,
2.  Linear interpolation,
3.  Approx. by first order polynomial,
4.  Approx. by straight line that cross through 

zero, and 
5.  Numerical simulation.

In Figure 4 the uncertainties calculated by the 
different approximation methods are shown.

From Figure 3, it can be noted that the 
errors evaluated by the different methods have 
almost the same values, but the uncertainties 
evaluated by those methods show differences 
in deed. (see Figure 4).

3.2. Approximation by second order curve 

With the purpose to evaluate the performance 
of the approximation method by a second order 

polynomial, values of Table 1 were intentionally 
modified to characterize a second order function. 
The modified errors and their corresponding 
uncertainties (without modification) are listed in 
Table 2.

The values of the fitting coefficients for the 
second order function and the covariance matrix, 
evaluated by (5) and (6), are listed next, 

a=

a0 = 7.6585 x 10-5 g
a1 = -8.4698 x 10-6

a2 = 1.9877 x 10-7 g-1

cov(a)=

4.033 x 10-9 g2 -8.139 x 10-11 g 3.262 x 10-13

-8.139 x 10-11 g  3.188 x 10-12 -1.575 x 10-14 g-1

3.262 x 10-13 -1.575 x 10-14 g-1 8.639 x 10-17 g-2

Indication
Error unc. k=1

g mg mg

0 0.00 0.14
30 0.10 0.17
60 0.40 0.17
100 1.20 0.17
150 3.00 0.22
200 6.50 0.23

Table 2. Discrete errors of indications (intentionally modified) and their standard uncertainties



Ingeniería 22 (1): 13-23, ISSN: 1409-2441; 2012. San José, Costa Rica18

With the above values, errors for selected 
indications as in normal use of the instrument 
were evaluated.

The uncertainty values of the indication 
errors in use were evaluated taking into 
account the uncertainty contributions due 
to the fitting coefficients, their covariance 
and the uncertainty contribution due to the 
indication in use,(0.14 mg, k =1).

Subsequently, a numerical simulation by 
Monte Carlo’s method was performed and their 
results were compared against matrix method 
results.

In Figure 5, the indication errors evaluated 
by both methods, and also the errors of 
indications found in calibration (Table 2) are 
shown. The uncertainty values include the 
uncertainty contributions due to the calibration 
and due to the indication in use of the instrument. 
In Figure 5 only the expanded uncertainty bars 
for the discrete calibration values are shown.

The data series correspond to,
1. Discrete errors in use, 
2. Approx. by second order polynomial, 
3. Numerical simulation. 

From Figure 5, as in the case of the straight 
line approximation, it can be noted that the 
errors evaluated by an approximation by second 
order polynomial and numerical simulation 
methods have almost the same values, but, the 
uncertainty values evaluated by these methods 
show differences with the calibration values and 
among them too, see Figure 6.

4.  INTERPOLATION AND 
EXTRAPOLATION

Usually, procedures for calibration of 
instruments should include the testing of limiting 
values of the range of the instrument (Min and 
Max), and as many as possible of  nominal values 
to be tested between the limiting values; however, 
this is not possible to do for some calibrations, 
that is why it is important to analyse both 
interpolation and extrapolation calculations.

Figure 5. Errors of indications calculated by different 
approximation methods.

Figure 6. Expanded uncertainties (k = 2) associated to the 
errors of the indications calculated by different approxima-

tion methods.

4.1. Interpolation

In order to evaluating the performance of 
the approximation by polynomials, the data 
of examples 3.1 and 3.2 were evaluated with 
the following modification: values of 60 g and 
150 g were eliminated as if they were never 
tested, in order to have lower number of tested 
nominal values.

For the data of 3.1, Table1 (except for 60 
g and 150 g), the fitting coefficients and the 
variance-covariance matrix are,
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a=
a0 = -1.8217 x 10-5 g
a1 = 4.4458 x 10-6

cov(a)=

1.252 x 10-8 g2 -9.235 x 10-11 g
-9.235 x 10-11 g 1.572 x 10-12

For the data of 3.2, Table 2 (except for 60 
g and 150 g), the fitting coefficients and the 
variance-covariance matrix are,

a=
a0 = 4.7035 x 10-5 g
a1 = -7.9027 x 10-6

a2 = 2.0027 x 10-7 g-1

cov(a)=

4.096x10-9 g2 -8.371x10-11 g 3.259x10-13

-8.371x10-11 g 4.199x10-12 -2.046x10-14 g-1

3.259 x10-13 -2.046 x10-14 g-1 1.100x10-16 g-2

In both examples, the calculated errors 
from different approaches are quite similar 
to those values evaluated in 3.1 and 3.2, but 
regards to the uncertainty values there are some 
differences. The uncertainty values calculated by 
the polynomial function remain under the values 
of the uncertainties calculated in calibration, even 
when these results are slightly larger than if the 
tested values of 60 g and 150 g were included, see 
Figures 8 and 9.

4.2. Extrapolation

In order to evaluate the performance of 
the approximation by polynomials, the data of 
examples 3.1 and 3.2 were evaluated with the 
following modification: values of 0 g and 200 g 
were eliminated as if never were tested, in order 
to avoid the limits of the range of the instrument.

For data of 3.1 (except for 0 g and 200 g), 
the fitting coefficients and variance-covariance 
matrix are:

a=
a0 = 1.1000 x 10-5 g
a1 = 3.9938 x 10-6

cov(a)=

3.455 x 10-8 g2 -3.448 x 10-10 g
-3.448 x 10-10 g 4.450 x 10-12

For data of  3.2 (except for 0 g and 200 g), the 
fitting coefficients and the variance-covariance 
matrices are,

a=
a0 = 1.283x 10-4g
a1 = -5.669 x 10-6

a2 = 1.652 x 10-7 g-1

Figure 7. Expanded uncertainties (k = 2) associated to the 
errors of the indications calculated in use (series 1) and by 

the approximation by polynomial (series 2) for data of table 1 
(except values of 60 g and 150 g).

Figure 8. Expanded uncertainties (k = 2) associated to the 
errors of the indications calculated in use (series 1) and by 

the approximation by second order polynomial (series 2) for 
data of table 2 (except values of 60 g and 150 g).
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cov(a)

3.580 x 10-8 g2 -9.059 x 10-9 g 4.681 x 10-12

-9.059 x 10-9 g 2.585 x 10-11 -1.412 x 10-13 g

4.681 x 10-12 -1.412 x 10-13 g 3.795 x 10-15 g-2

In both examples, similar than in Section 
4.1, the main differences of results are in the 
uncertainties associated to the error of indications. 
The extrapolation of the indication errors throws 
larger values of uncertainty for nominal values out 
of the calibration range, especially for the second 
order polynomial function, see Figures 10 and 11.

5. PROPOSAL FOR THE CALCULATION 
OF A POLYNOMIAL FUNCTION 
FOR THE EVALUATION OF THE 
INDICATION ERRORS AND A 
POLYNOMIAL FUNCTION FOR THE 
ASSOCIATED UNCERTAINTIES

Considering that the Monte Carlo’s method 
is one of the best methods to evaluate the 
uncertainty associated to the indication errors 
evaluated by a polynomial function, but as this 
method is not simple to apply by the final users, 
the authors recommend to the metrologist the 
following procedure for the evaluation of the 
fitting curve to describe errors of indications 
on calibration of measuring instruments (as 
a polynomial function) which include the 
information of Monte Carlo’s method for the 
uncertainty evaluation but expressed as a 
polynomial function too:

• Calibrate the instrument and calculate the errors 
of indications and their associated uncertainties 
for discrete values (regular calibration),

• If it is possible, the nominal values tested 
at calibration should include the minimum 
and the maximum capacity or the measuring 
range for the “normal” use of the instrument. 
The metrologist should keep in mind that 
more nominal values tested represent a lower 
uncertainty but higher cost of calibration,

• Find the fitting curve by the use of the 
weighted least squares method, (5). This 
fitting curve could be a first or second 
order polynomial, (4),

• Apply the chi-squared test χ2 in order to check 
if the polynomial selected fits properly,

• Estimate along all the measurement range 
of the instrument, include enough indication 
errors (at least ten) in the simulation by Monte 
Carlo’s method using the mathematical model 
of weighted least squares (5) for a polynomial 
function (4). The errors of indications found in 
calibration a), and their associated uncertainties 
should be taken as the means and as the 
standard uncertainties of the pdfs of the input 
quantities. If the nominal values tested could be 
considered as input quantities with variability 
(as it is assumed in the total least squares 
approach, Krystek M., Anton M. (2007); this 
situation should be modeled on the simulation,

• From the pdfs of the indication errors resulting 
from the simulation, a polynomial function 
should be calculated in order to have a function 
of the uncertainty of the indication errors 
in relation with the nominal values of the 
indications of the instrument. This function 
could be calculated by ordinary least squares.

a´=(XTX)-1XTS                                      (11)

Where a´ is a column vector of the fitting 
coefficients for the function of uncertainty (related 
to the indication error) and S is the column vector 
of the standard deviations of the pdfs of the output 
quantities of the simulation.

For the numerical examples of Sections 3.1 and 
3.2, the formulae to describe the indication errors 
and their standard uncertainties are:

Figure 9. Expanded uncertainties(k = 2) associated to the 
errors of the indications calculated in use (series 1) and by 

the approximation by polynomial of first order (series 2), for 
data of table 1 (except 0 g and 200 g).
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Figure 10. Expanded uncertainties(k = 2) associated to the errors of the indications calculated in use (series 1) 
and by approximation of polynomial of second order (series 2), for data of table 2 (except 0 g and 200 g).

For the straight line function,

E(R)/mg=-5.171 x10-3 + 4.308 x 10-3 R
u(ER)/mg=1.032x10-1-8.501 x 10-4R + 6.109 x 
10-6 R2

And for the second order polynomial function,

E(R)/mg= 7.630 x 10-2 - 8.425 x 10-3 R+ 
   1.986x10-4 R2

u(ER)/mg=1.072x10-1 - 2.236 x 10-4R 
     + 5.510 x 10-8 R2+ 1.642 x 10-8R3

With these formulae, the user can evaluate 
the indication error and the standard uncertainty 
related to any reading of the instrument in 
normal use. The standard uncertainty calculated 
by these functions should be combined with 
the rest of contributions that are involved in the 
specific mathematical model where is used the 
calibrated instrument.

6.  CONCLUSIONS

In this work the methods of approximation to 
describe errors in relation to indications mentioned 

in Euramet/cg-18/v.03. (2011) and SIMMWG7/
cg-01/v.00. (2009) were analyzed, results from 
those methods were compared against values 
calculated by Monte Carlo’s simulation method.

The uncertainty of the fitting coefficients 
of the polynomial will depend on the number 
of nominal values tested and on the selected 
approximation for the fitting of the indication 
errors. For the matrix model dealt in this paper 
to calculate approximation function to describe 
errors related to the indications, the fitting could 
be tested with x2 test Euramet/cg-18/v.03. (2011) 
and SIMMWG7/cg-01/v.00. (2009).

Indeed it is not recommended to calculate 
errors of indications by an approximation 
function out of range of the nominal values 
tested; because of that, calibration should 
include the limits of the measurement range 
(Min and Max) of the instrument and as many as 
possible of nominal values to be tested.

Results (indication errors) of numerical 
simulation by Monte Carlo’s method are 
practically the same than results calculated by 
the approximation by polynomials (2.1).

The evaluation of the uncertainty for 
the straight line that crosses through zero 
approximation specified in Euramet/cg-18/v.03. 
(2011) and SIMMWG7/cg-01/v.00. (2009) does 
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not consider the contribution of the uncertainty 
due to the assumption that a0 is zero, but this 
supposition has an associated uncertainty, 
which in this work was considered identical to 
the uncertainty of a single indication. 

The evaluation of the uncertainty for 
the error of the reading in use by linear 
interpolation method recommended in 
Euramet/cg-18/v.03. (2011) and SIMMWG7/
cg-01/v.00. (2009), Formula (2), considers 
that the uncertainty of the readings in use will 
be described by a linear interpolation too, in 
similar way as the calcul ation of the errors, 
however if the uncertainty of the errors is 
calculated using the law of propagation of 
uncertainty JCGM 101:2008 (2008) applied 
to the mathematical model (1), the arising 
uncertainty is lower than that estimated by (2).

The closer approximation to the 
uncertainty evaluated by Monte Carlo’s 
method is that evaluated by the polynomial 
method, even when this calculation throws 
uncertainties values higher than those 
evaluated by numerical simulation method.

A proposal for the calculation of the 
indication errors and their uncertainties by 
polynomials functions is presented in this 
paper, see Chapter 5.

NOTES

1. The meaning of “error” (of indication) 
considered in this work corresponds to 

“measurement error” (with regard to the 
indication) according to the new VIM, 
JCGM 200:2012. (2012).

2. The notation I is used for the indication 
(reading) of the instrument at calibration, 
and the notation R is used for the indication 
(reading) in use after calibration.

3. The value of a0 is assumed as zero, but it 
should be assigned an uncertainty value 
equal to a single reading of the instrument in 
use. For the calculation of the uncertainty of 
the error E(R) for this method, the correlation 
between a0 and a1 a1 is not considered.
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