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José Ronald Argiiello '
Sharma Chakravarthy *

Resumen

Este articulo describe algoritmos clasicos y eficientes para construir arboles de decisién para muestras de datos , ya sea
directamente o incrementalmente, y como mejorarlos con extensiones algoritmicas para hacerlos escalables y Utiles para
su aplicacién en conjuntos grandes de datos. Asi, los hacemos ttiles para mineria de datos en grandes bases de datos.
Primero, mostramos los algoritmos basicos y sus problemas principales. Despiles, presentamos nuevas modificaciones
que los hacen adecuados para grandes conjuntos de datos. Segundo, mostramos  algoritmos distribuidos para tratar con
grandes y distribuidas bases de datos.

Abstract

This paper describes classical and efficient algorithms to build decision trees for samples of data, either directly or
incrementally, and how to enhance them with algorithmic extensions that make those scaleable and useful for their
application to larger sets of data. Thus we make the algorithms useful for data mining in very large databases. First,
we show the basic algorithms and their primary problems. Then, we introduce some new modifications to make them
suitable for larger data sets. Second, we show distributed algorithms to deal with large and distributed data bases.

1- INTRODUCTION
Decision Tree Induction Algorithm:
The basic algorithm for decision tree induction
was introduced by JR. Quinlan [Michalski:83] [(s1)] Select a random subset of the given
[Quinlan:86]. Incremental solutions based on | instances (the window)

tree restructuring techniques were introduced by [(s2)] Repeat

Schlimmer and Utgoff [Schlimmer:86], [(s2.1)] Build the decision tree to
[Utgoff:89]. Those algorithms requires one pass explain the current window
over previously seen data per level in the worst [(s2.2)] Find the exceptions of this
case, as does Van de Velde's incremental decision tree for the remaining
algorithm, IDL, based on topologically minimal instances

trees [Van-de-Velde:90].  First, we show those [(s2.3)] Form a new window with the
classical algorithms and then we discuss current window plus the
enhancements to make them suitable for exceptions to the decision tree
larger data sets and distribute ones. generated from it

until there are no exceptions
2- THE CENTRALIZED DECISION TREE
INDUCTION ALGORITHM Step 2.1 is called Decision Tree Derivation and
step 2.2 is called Decision Tree Testing.. Step
Quinlan's traditional algorithm for decision tree | 2.3 is the major drawback in the above
induction [Michalski:83, pp 469] was as | algorithm since it forces the process to pass aver
follows:
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all the training data (the window) again, and
therefore the algorithm is not incremental.

The algorithm presumes that none of the
instances are stored within the decision tree
thus preventing the algorithm for being
incremental, and also assumes that no
additional information is needed in each node
besides the decision data.

The Decision Tree Derivation (step 2.1)
proceeds in two stages --a selection stage
followed by a partition stage:

Derivation Algorithm:

[(s2.1.0)] If all instances are of the same class,
the tree is a leaf with value equal to
the class, so no further passes are
required.

[(s2.1.1)] Select the best attribute (the root)
according to a criterion - usually
statistic

[(s2.1.2)] Split the set of instances according to

each value of the root attribute.

[(s2.1.3)] Derive the decision subtree for each

subset of instances.

Steps s2.1.1 and s2.1.2 of this algorithm, the
selection and partition steps, respectively, each
require one pass over the data set. Selection
steps usually count the relative frequency in the
data set of every attribute-value with the class
value (Class counts) which are then used
statistically to compute the best attribute (the
root). The partition steps distribute the data
across the different branches of the root
attribute. Thus, the algorithm in general
requires two passes over the data per level of
the decision tree in the worst case.

3- THE INCREMENTAL ALGORITHMS

As mentioned above, the incremental algorithm,
devised by

originally Schlimmer

[Schlimmer:86] and Utgoff [Utgoff:89], avoids
passing unnecessarily over previously seen
instances. To achieve this, it is necessary to
keep all Class counts in every node of the
decision tree, and it is also necessary to create a
mechanism to access previous cases at all leaves
of the decision tree for restructuring the tree
during the incremental phase. This mechanism
is omitted in most implementations since it is
assumed that all instances (data base) will be
kept memory resident. All previous algorithms
start with an empty tree and gradually modify its
structure according to the input instances. For
every new instance, there is a potential cost of
one pass per level over all seen instances.

This cost is half of the cost of directly deriving a
tree for traditional algorithms. Hence the
importance of the incremental version.

The algorithm below will derive the tree for a
part of the database and then update it
incrementally (the updating phase) using one
instance at a time.

[ Incremental Induction Algorithm:]

Select a random subset of the data base
(the window)

Build the decision tree to explain the
current window (the Tree) -keep Class
Counts in every node.

[(s0)]
[s1]

[(s3)]

While there are exceptions, do

[(s3.1)] Find a exception of the decision tree
in the remaining instances.

[(s3.2)]  Update the decision tree Class
counts per node using this
exception,

[(s3.3)]  Reorganize (Tree), See below.

done.

Incremental algorithms usually start with a
random subset of one element. The algorithm
above doesn't preclude this possibility.
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3.1- Tree Reorganization algorithm below). In this way, some subtrees
are pruned when all subtree branches lead to the
Tree reorganization is the key for incremental | same class value.
algorithms including algorithms which are not
based on statistics over the input instances [Van- | The ID5R pull up algorithm reorganizes the
de-Velde:90]. This technique is essential to | decision tree in theway just mentioned
| avoid traversing the whole data base again | [Utgoff:39]. If a tree is just a leaf ( a set of
when dealing with very large databases. instances) , the pull up algorithm assumes the
Hopefully, tree reorganization will require justa | respective attribute as the root of the decision
small part of the database when the tree is | tree starting on that leaf. Then the leaf is
restructured. expanded i.e., the decision tree is built.

The reorganization part depends on the relative
representation suited for the algorithm. [ The ID5R pull up algorithm ]
Utgoff maps every attribute-value pair to a new
boolean attribute [Utgoff:95]. Thus, he assumes [(s1)] If the attribute A to be pulled up is

all trees are binary trees. at the root, then stop.
[ Rl 1 Acrighel ok, Bnow fodk, 5 and S seis = [(s2)] Otherwise,
* L (n) L& &) o) [(s2.1)]  Recursively pull up the attribute A
//J % y Beotl ¥ to the root of each immediate
J ® TR @ Tl i an subtree.
qﬁ o | a )‘\ « l_s_:‘L ' [(s2.2)] Transpose the tree, resulting in a
B G [i Nalhien SRS new tree with A at the root, and
] e S) I= Cess(S) the old root attribute at the root of
. each immediate subtree.
Rue2: Aorignalroct, Bnewrodt, T a tree, S aset
o/ N\« ol & _ Note that in step s2.2 the transformation rules of
(I & | figure 1 must be applied to obtain the transposed

8 b o

Van de Velde 's algorithm IDL uses the same

Rie 3 Acrignsl rot, T and T trees, X trem or set. pull up technique for reorganization as ID5SR
A (® [Van-de-Velde:90]. IDL differs from others in

o S al e\ Fal uI that it uses a topological criterion, called
) - topological relevance gain, based on the tree

G @ 9!

b| v b a L’.r'\.a- structure to select the actual root attributes for
A 2_\ L A x the subtrees. Van de Velde shows how his
: . algorithm is able to discover concepts like the
Figure N 1. Transformation rules tree ahiowh. aH 2 - while traditional

algorithms fail to discover this tree.

Tree reorganization algorithms restructure the
tree when a better attribute is detected (or
inherited in the case of a subtree).

The basic idea is to force all subtrees to keep the
same root (the best attribute) and then apply a
transformation rule to exchange the actual root
of the tree with each subtree (See figure 1 and

S
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Figure N 2. A tree for the 6-multiplexer

Basically, the topological relevance TR, (4,e)
criterion measures the number of occurrences of
a given attribute A4 for a given example e
when this is used to traverse the tree starting
from any leaf of the example class all the way up
until the node m if it is possible. It depends
uniquely on the actual tree structure and the
given example. Thus, given nodes m and s in
the classification path of an example e, with s
the immediate son
TRm (Ae) -TR;(4,e)

Gne=
TR m (A,e)

of m, the
attribute A4 is:

topological relevance gain for

When compared to its predecessor IDSR, IDL
saves computations costs in terms of class
counts, criteria computations, expansions of sets
, pruning and transformations; while keeps
better or similar accuracy.

More recently, Utgoff has implemented the ITI
algorithm which is a direct descendant of ID5R
and uses reorganization-like techniques in a
similar way [Utgoff:95].

4- OTHER APPROACHES

SLIQ, a fast scalable classifier for Data Mining
was designed to solve the classification problem
for Knowledge Discovery  [Mehta:96].
Conceptually, the SLIQ system uses the same
algorithm, where the selection criterion is the
gini index - a criterion that splits the range of

numerical attributes in two parts. It also uses
set splitting for categorical attributes. The gini
index for aset § containing » classes is :

(6 =1- 20,

where p; is the relative frequency of class j,
and then the attribute measure is:

[G(4=a) = PU<a) *G(a<a) + P(4 > a) *G(A > a)|

where A <a or A > a represents the set of
tuples that satisfies the relation.

Thus, SLIQ representation is a binary decision

tree. In order to make the system scalable, most
of the data are handled off line with inverted
lists for all attributes and a special Class list that
maps the instances to the nodes of the decision
tree. This Class list is maintained in main
memory. The system incorporates tree pruning
using the Minimum Description length
principle Mehta et al show that the system
achieves similar or better performance than
IND-Cart and IND-C4 (ID3 descendants) for
different data sets; especially for larger data sets
(20000 to 60000). They also show that for
synthetic data bases of millions of cases, SLIQ
achieves almost linear performance on the
number of tuples and number of attributes.

5- PROBLEMS IN CLASSICAL TREE
CONSTRUCTION ALGORITHMS

The basic algorithm for decision tree induction
introduced by J. R Quinlan had two major
drawbacks for its use in very large databases: it
was not incremental and it required, in the worst
case, two passes over the entire data per level
to build the decision tree [Quinlan:86].

The incremental solution based on tree
restructuring  techniques [Schlimmer:86]
[Utgoff:89] requires one pass over previously
seen data per level in the worst case, as does

e ——————
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Van de Velde's incremental algorithm IDL
based on topologically minimal trees [Van-de-

Velde:90]. This makes the utility of the
incremental version more attractive for large
databases. However, the incremental version

requires keeping the data "“inside" the decision
tree structure [Utgoff:95] in main memory and
hence it is likely to have a high cumulative cost
[Mehta:96], which partially precludes its use for
large databases. This section describes a one-
pass per level worst case algorithm to build the
tree for a sample of data, which makes it equal
to or even better than building the tree
incrementally. In either case, the expected
number of nodes of a decision tree in very large
databases requires a mechanism to store part of
the tree in external memory. Since the size of
large databases precludes keeping several copies
of the data, data can be incorporated into the
tree leaves using indices to the main database or
using the tree as a way to fragment the database.

6- EXTENSIONS TO THE CENTRALIZED
DECISION TREE INDUCTION
ALGORITHM

6.1- Minimizing the Number of Passes over
the Data

To minimize the number of passes over the data
base, the split step and the selection of the next
step need to be combined in one pass. The trick
is to use each case (tuple) to update the Class
counts of the corresponding subtree (or subset)
and to create the data subset simultaneously.
Thus, in the next selection step, there will be
no need for an additional pass over the subsets
for every subtree in the next level. Then, even in
the worst case, we will need only one pass per
level over the data base.

The first step of the derivation must proceed like
this:

[Derivation Revisited (Initial step) ]

[(s2.1.0)] If all instances are of the same class,

the tree is a leaf with value equal to
the class, so no further passes are
- required.

[(52.1.1)] Select the best attribute (the root)
according to a criterion - usually
statistic

[(s2.1.2)] Split the set of instances according to
each value of the root attribute.
Update Class Counts for every subtree
with each instance

[(s2.1.3)] Derive the decision subtree for each
subset of instances.

Then, for each subtree:

[ Derivation Revisited ]

[(s2.1.0)] If all instances are of the same class,
the tree is a leaf with value equal to
the class, so no further passes are
required.

[(s2.1.1)] Get the best attribute (the root)
according to a criterion - usually
statistic

[(s2.1.2)] Split the set of instances according to

each value of the root attribute.
Update Class Counts for every subtree
with each instance

[(s2.1.3)] Derive the decision subtree for each
subset of instances.

Note that the initial step requires two passes to
check the data. After that, the remaining steps
require just one pass per level. The selection
step does not require a pass over the data since
all Class Counts were computed previously.

The merging of these two steps is not without
cost. Additional memory is required to keep all
frequencies (Class counts) for every subtree. If
we keep all those frequencies in memory, then it
is clear that the decision tree can be built for
every subtree, without additional disk accesses.
Note that only the class counts for the last level
are needed and that the number of counts
maintained in main memory are fewer
whenever the level (of the tree) is higher.
However, there can be thousands of leaves in a

S
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decision tree for a large data base. Eventually, a
mechanism to keep the class counts outside of
main memory is needed. But even if this is done
for every subtree, additional disk accesses will
be incurred for constructing each subtree. The
number of additional disk accesses for reading
class counts will in general be lower than the
number of disk accesses required to read the
whole subset. A threshold mechanism to avoid
incurring these overhead costs for small data
sets can easily be implemented.

6.2- Improving the Halting Criteria

The Tree Derivation Algorithm halts when all
instances in the data set are from the same class
(step 2.1.0). It is impractical to expect this since
data can be inconsistent or incomplete in the
sense that there are not enough attributes to
correctly classify the data.

Thus, a threshold criterion must be introduced
to stop the process when the sef measure is
beyond a certain point.

The set measure corresponds to the same
statistic used to evaluate and select attributes in
step 2.1.1.

Quinlan's algorithm assumes that if all data are
not from the same class, the attribute selection
step will improve the classification. The
following case shows this is not necessarily true.
Suppose we have two classes with a distribution
of 90% for positives and 10 % for negatives.
Assume that every attribute splits the set in two
halves, each one with 45% positives and 5%
negatives. The best selected attribute will be
either of them; but the average measure will be
the same since the relative distribution of classes
in each leaf is the same as it is in the original
data set. The information expected criterion will
give us 0.47 entropy (0.53 certainty) in both
cases. As the result is equal to the set measure,
no improvement has been made.

Even though, the previous example is an
extreme case, usually absent in practice, the
algorithm must check for this condition. In

general, the algorithm must check if the
average certainty is below or equal to the set
certainty.

For the Determination measure, the conjecture is
not true. For example, with 90% positive cases
and 10% negative cases, ( 0.88 Determination),
the partition in one set of 80% positive and 0%
negative, and another of 10% positive and 10%
negative, does not lead to a better average
determination ( 0.8 (1) + 0.2 (0) = 0.80).

Note that the entropy (certainty) changes from
0.47 (0.53) to 0.20 (0.30).

This property of the Determination measure will
allow us to prune the decision tree before it fits
the data unnecessarily since there is no
improvement in the measure. On the contrary,
the entropy  will continue choosing attributes
(even if they are irrelevant to the classification)
since entropy decreases (certainty increases)
with every partition if the previous conjecture is
true.

|

SymptamA  (0.45, 0.55) Det= 0.181 I

04 ,/ T i

Fever . Nofever |

7% N (0.10,0.50) I

(035009  gumptom B Symptom B Det= 0,430 |

| Det=0343 |

o i Nat sore |

Sore \ Nt sore SF€ |

03, Yl 0.4 Az |

s \ |

.0, 0.20, |

(0.27,003) (0.08, 0.02) (0.10, 0.30) " e |
Det=0.266 Det= 0.075 Det= 0268 Tt 0200

Figure N 3. Determination measures

As an example, consider the tree in figure 3.
The same tree with entropy computed measures
is shown in figure 4.

e ———————
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Figure N 4. Entropy measures

Note that the certainty always increases when
entropy is used. This tree doesn't need to be built
completely when determination is used. The
derived tree will be the tree depicted in figure 5.
Note that both subtrees starting with root
Symptom B were not needed since E(B) was
always lower than the respective set
determination (det). This coincides with the fact
that the determination chooses the most general
rule.

SmpanA (045,089 de=0 |
rd
£ |
04 BA 06 |
Four ,//= 088 N\ Nofever |
/ M0y |
oS0 sarcEm i

= QBT |
|

Figure N° 5. Pruned decision tree with
determination

6.3-Pruning Using Confidence and Support

Related to the previous section but applicable in
a different way is the mechanism to prune the
tree. The most general method is called the
Minimum  Description Length  principle
introduced by Quinlan  [Quinlan:89]. It has
been succesfully used in most of the actual
systems [Utgoff:95], [Mehta:95], [Mehta:96] .
However, it improves the accuracy and reduces
the size of the decision tree; the MDL principle
is based on the future error and the cost of
building the subtree pruned. It is not related to
implicit rules or to the user viewpoint. In this

sense, the pruning is artificial and of little or not
interest to the user and the application.

The confidence and support introduced here
allow us to incorporate the end user and the
meaning of the rules to be extracted as criteria
to prune the tree. The user can specify the
thresholds for support and confidence. When the
subset cardinality in a leaf is below the
minimum support or the confidence in the final
classification is greater than a maximum
confidence factor; then the tree construction
process must be stopped. All potential rules will
satisfy the requirements. Note that, unlike the
MDL principle, we don't care about the final
error or the amount of work needed to build the
tree. Our goal is to meet the confidence and
support thresholds.

Similarly, the attribute selection criterion gave
us a good tool for tree pruning if we can predict
the final outcome in terms of confidence or
support. Entropy can not be used for this, since
there is no way to relate the entropy measure to
the set confidence. In my opinion, this is the
primary reason for the developing of pruning
criteria such as the MDL principle.

Confidence and determination are related by:

n Conf -1

5=D(PIJP2;---ppn)= """""""""" -
(n-1) Conf

and therefore

| Conf=1/n-@-1 5|

An artificial database with two classes, 5952
cases, 20 attributes plus a class attribute was
used to generate a decision tree with different
determination levels (confidence levels). The
results are shown in table 1. It can be observed
that savings until one 50% on the size of the tree
was achieved by pruning the tree with 35%
determination (87%  confidence) without
sacrificing largely the error rate (no more than
5%).

—-’
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Table N° 1. Pruning with the determination criterion
Test Prune value Tree Tree Tree Tree Tree
Error Size Height Leaves Nodes
1 099 0.0005 2316462 7 2187 2688
2 0.95 0.0087 2035728 7 1914 2363
3 0.90 0.022 1677073 7 1565 1937
4 0.85 0.058 1174018 7 1094 1350

7- EXTENSIONS TO THE INCREMENTAL
ALGORITHMS

[Partial Incremental Induction Algorithm:]

The incremental algorithm, originally devised | [(s0)] Selecta random subset of the data base

by Utgoff [Utgoff:89], avoids passing (the window)

unnecessarily over previously seen instances. [(s1)] Build the decision tree to explain the
current window (the Tree) -keep Class

With our one pass algorithm, it is necessary to counts in every node.

re-evaluate the incremental version -- since the [(s2)] Find the exceptions of this decision tree

cost of both approaches is O(n) in general in the remaining instances.

However, direct tree derivation is a pessimistic [(s3)] While there are exceptions, do

approach and assumes Nothing about the data. [(s3.1)]  Form a new window with a portion

Incremental algorithms are optimistic and they of the exceptions to the decision tree

assume that the previous decision tree reflects generated from it.

the actual decision tree. Using this information, | [(s3.2)] Update the decision tree Class counts

the practical performance of the incremental per node using the window.

algorithms can be improved as compared to the [(s3.3)] Reorganize (Ttee), See below.

direct (brute-force) approach. I will discuss [(s3.4)]  Find the exceptions to this decision

more thoroughly the re-organization approach
used in incremental algorithms in a later
section.

In general, the cumulative cost of the pure
incremental algorithm -one instance at a time-
will preclude its use over a direct derivation
algorithm over the data base. The algorithm
below will derive the tree for a part of the data
base and then update it incrementally (the
updating phase) using chunks of wrongly-
classified instances instead of one instance at a
time.

tree in the remaining instances.
done.

7.1- Tree Reorganization Algorithms

As we discussed above, tree reorganization
algorithms restructure the tree when a better
attribute is detected (or inherited in the case of a
subtree). A more detailed algorithm for tree
reorganization is given below. Again, I have
based the algorithm on the transformation rules
in figure 1.

7.1.1-The Reorganization Algorithm

The reorganization procedure involves two
parameters: the actual decision tree (Tree) and
the new root attribute (NewRoot).
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Reorganize(Tree, NewRoot):

[(s1)] If the NewRoot is null then
NewRoot = better attribute for Tree.
[(s2)] If Treeis aleaf,

[(s2.1)]  Create a new tree by splitting the

set according to the NewRoot
[(s2.2)] Make Tree equal to this new Tree.
[(s2.3)] return

[(s3)] otherwise (If Tree is not a leaf)

[(s3.1)] If Tree.Root = NewRoot then
return
otherwise
[(s3.2)] For each Subtree,
[(s3.2.1)] Reorganize(Subtree, NewRoot),
[(s3.2.2)] Apply the transformation rule
[(s3.2.3)] Update class counts for the
subtrees. (now starting with
previous root Tree.Root).
[(s3.3)] For each subtree STree,
Reorganize(STree)
[(s3.4)] return

In step s3, the best attribute is bubbled up until it
reaches the root of the current decision tree.
This is repeated for the next level of the decision
tree until all subtrees hold the best attributes as
roots or until they are just leaves. There is a
potential for doing a pass over the data at the
leaves for each level and therefore the
algorithm requires one pass per level. However,
in practice, we expect that one attribute for the
root candidate is already a subroot of a subtree
and there is no need to reorganize the subtree.
Thus, this algorithm will in general be better
than the direct approach if the previous decision
tree resembles the actual decision tree, which is
likely since the tree was based on a
representative subset (a  percentage) of the
actual data. See example in figure 6.

8- DISTRIBUTED TREE INDUCTION
ALGORITHMS

8.1- Distributed Subtree Derivation

The partitioning part of the Derivation
algorithm (step s2) can easily be adapted to a
multiprocess or a multiprocessor environment.
Every data subset obtained in the partition is
given to each available processor to continue
with the tree derivation. Thus, the tree induction
mechanism can easily be made in parallel
Additionally the subsets can be kept on
secondary storage thereby allowing even larger
sets to be used for induction with the restriction
that the tree must be loaded into memory if the
whole tree is needed for processing (for
example, for a centralized testing phase).
However, it is possible to design a mechanism to
keep subtrees in secondary storage and loaded
only when needed. The updating phase will
proceed like any centralized algorithm. I term
this the DSD algorithm.

The DSD algorithm:

Make a pass over the data set to select
the attribute (the root).

Split the data base (or create new
index files) into as many data subsets
as there are values of the root attribute.

[(sD]
[(s2)]

Make each data subset available for
other processors (saving one for

itself).

[(s3)]

[(s4)] While there are subsets,
apply the DSD to each subset.

If all data subtrees are ready, then
make the decision tree, attaching to
each branch of the root the
respective decision tree.

Exit.

[(s5)]

[(s6)]
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Figure N° 6. Tree Reorganization

In step s3, the relative speed of every available
processor can be taken into account or every
subset will simply be distributed on a first-come
first-served basis. Similarly, in order to fully
use the distributed capabilities of the system, a
set will be available if its size is greater than a
threshold set previously by the user.

The algorithm is useful when several processes
or processors can cooperate to help in the
decision tree derivation. It is assumed that they

at least share a file system. For example, the
algorithm can be used when the decision tree
does not fit in the memory available for each
Process or processor.

8.2- Distributed Tree Derivation

An alternative use of distributed processing
capability in deriving decision trees is to assume
that the training data is already distributed

—————————
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among processors (if not, a first pass can
distribute the data equally among available
processors). Thus, processors can interchange
class counts on every attribute-value pair and
then each one will arrive at the same conclusion
on the selected attribute as a root. Then, as each
data set will be partitioned accordingly, a new
interchange of class counts will occur for each

Communication is reduced to a minimum since
data sets are not interchanged, just the attribute-
value-class frequencies or Class counts (See
Figure 7). This will be called the DTD
algorithm,

For this algorithm, each processor has its own
data set.

possible subtree, until the complete decision tree
is derived for each processor.
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Figure N 7. Distributed Tree Derivation.
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The DTD algorithm:

Make a pass over the local data set and
create the Class Counts.

[(sD)]

[(s2)] Send the Class Counts to every
processor.
[(s3)] Receive the Class counts from each
processor and summarize.
[(s4)] Select the best attribute (the root).
[(s5)] If the tree is a leaf, then return
otherwise
Split the local set according to the
root values
[(s6)] For every subset,
recursively derive the tree.
[(s7)] Make the decision tree, attaching to

each branch of the root the respective
decision tree.

In the above algorithm, the Class Counts
interchange among processors can be improved
significantly if a processor is selected as a group
coordinator and is in charge of the selection
stage. This Coordinator will notify each
processor the next root at every subtree. Each
processor will send the Class Counts of its
respective subset to the Coordinator. Thus, only
one copy of the Class Counts will be
transmitted. With the coordinator, the number of
messages transmitted will change from O(n’) to
O(n), where n is the number of processors. The
revised DTD algorithm is given below:

The Revised DTD algorithm:

Make a pass over the local data set and
create the Class Counts.
Send the Class Counts to the

[(sD]

[(s2)]
Coordinator.
[(s3)] If Processor = Coordinator, then
[(s3.1)] Receive the Class counts from each
processor and summarize.

[(s3.2)] Select the best attribute (the root).
[(s3.3)] Notify each processor of the root
selected and next subset to process
[(s4)] Wait until root is defined.
[(s5)] T the tree is a leaf, then return
otherwise
Split the local set according to the
root values
[(s6)] For every subset,
recursively derive the tree.
[(s7)] Make the decision tree, attaching to

each branch of the root the respective
decision tree.

A root will be defined when the message from
the Coordinator is received or when the
coordinator itself determines the root.

The waiting time could consist a major
disadvantage of this approach in step s4.

Figure 8 illustrates the algorithm.

The update phase in a distributed setting is
handled as follows. Each processor will receive
its respective update data, get its partial class
counts and send them over to all other
processors or the coordinator. Each processor
will receive all class counts and update the tree.
In the first approach, each processor will call its
reorganization procedure. Computing, time will
be saved if we use the coordinator approach. In
this case, the final tree must be transmitted to all
remaining processors.

9- CONCLUSIONS

If one were to use any incremental algorithm,
such as the ITI algorithm [Utgoff:95] or the
algorithm by Schlimmer [Schlimmer:86] and
the algorithm is based on class counts, then it is
possible to employ the approach proposed here
for the derivation and updating every tree
incrementally using chunks of updating data

| _
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(sending class counts for a single case will be
more costly than sending the case data).
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Figure N 8. Revised Distributed Tree Derivation.

Even small subsets will be big enough to make
To get an estimate of the data to be stored in | class count interchange beneficial.
memory (or secondary storage), consider the
following parameters; 25 attributes, 100 values

per attribute and 100 classes. Then the array of

It is clear that if a processor keeps only a few
tuples, it will be better to transmit these tuples

frequencies will be at most 250,000 entries. The
expected universal domain for a database with
those parameters will be 10%° potential entries.

than to transmit the class counts. However, the
receiving processor must compute the
frequencies and some time can be saved if one

—
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uses the idle processors to do this instead of
eventually loading the receiving processor with
small computations from different sets. It is
worth mentioning that other algorithms based
on compute and interchange frequencies or class
counts to derive association rules in a distributed
environment have shown better performance
than other approaches [Agrawal:93,94 , 96].

The applicability of tree induction techniques in
large databases requires tree reorganization ,
incremental procedures, good attribute selection
criteria and good grouping of continuos values
to minimize the number of branches.
Algorithms as those shown are useful when
dealing with large amounts of data [Arguello:
96a, 96b] [Grossman et al, 96].

Exhaustive procedures are  eventually
prohibitive; mostly when only a small percent of
the database has been modified and previous
rules or classification need to be updated.
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