DA LUZ, ROJAS, BUSTAMANTE: Techno-Economic Analysis of Biogas Production from Pineapple... 31
[17] E. Solís Nicolas, J. R. Vega Baudrit, E. Rodríguez Rojas,
and L. C. Mesenguer Quesada, “Estudio del efecto de la
adición de nanocelulosa obtenida del desecho del rastrojo
de piña en mezclas para materiales de construcción,” Rev.
Iberoam. Polímeros, vol. 20, no. 1, pp. 21–43, 2019.
[18] C. T. X. Nguyen, K. H. Bui, B. Y. Truong, N. H. N. Do,
and P. T. K. Le, “Nanocellulose from Pineapple Leaf and
Its Applications towards High-value Engineering Materi-
als,” Chem. Eng. Trans., vol. 89, pp. 19–24, Dec. 2021, doi:
10.3303/CET2189004.
[19] N. Hagemann, K. Spokas, H.-P. Schmidt, R. Kägi, M.
Böhler, and T. Bucheli, “Activated Carbon, Biochar and
Charcoal: Linkages and Synergies across Pyrogenic Car-
bon’s ABCs,” Water, vol. 10, no. 2, p. 182, Feb. 2018, doi:
10.3390/w10020182.
[20] K. Weber and P. Quicker, “Properties of biochar,”
Fuel, vol. 217, pp. 240–261, Apr. 2018, doi: 10.1016/j.
fuel.2017.12.054.
[21] D. Montenegro Quesada, N. Montero Rambla, R. A.
Hernández Chaverri, and J. Méndez Arias, “Evaluación del
uso de carbón activado producido a partir de rastrojo de
piña en la remoción de azul de metileno,” Ingeniería, vol.
Volumen Especial-Jornadas de Investigación, pp. 101–104,
2020.
[22] G. L. May Carrillo and M. D. Tun Caamal, “Producción
de biocarbón de rastrojo de piña (Ananas comosus) y su
aplicación en aguas residuales,” B.S. thesis, Univ. Earth,
Guápiles, Costa Rica, 2019. [Online]. Available: https://
repositorio.earth.ac.cr/handle/UEARTH/442
[23] K. Iamsaard, C.-H. Weng, L.-T. Yen, J.-H. Tzeng, C.
Poonpakdee, and Y.-T. Lin, “Adsorption of metal on
pineapple leaf biochar: Key affecting factors, mechanism
identication, and regeneration evaluation,” Bioresour.
Technol., vol. 344, p. 126131, Jan. 2022, doi: 10.1016/j.
biortech.2021.126131.
[24] T. R. Brown, M. M. Wright, and R. C. Brown, “Estimat-
ing protability of two biochar production scenarios: slow
pyrolysis vs fast pyrolysis,” Biofuels Bioprod. Biorening,
vol. 5, no. 1, pp. 54–68, Jan. 2011, doi: 10.1002/bbb.254.
[25] Y. X. Seow et al., “A review on biochar production from
different biomass wastes by recent carbonization technol-
ogies and its sustainable applications,” J. Environ. Chem.
Eng., vol. 10, no. 1, p. 107017, Feb. 2022, doi: 10.1016/j.
jece.2021.107017.
[26] A. M. Ulate Brenes and J. Jaikel Víquez, “Evaluación
del efecto del pretratamiento del rastrojo de piña, para la
producción de hidrógeno vía reformado en fase acuosa
(APR).,” Rev. Ing., vol. 31, no. 2, pp. 1–21, Feb. 2021, doi:
10.15517/ri.v31i2.43545.
[27] R. Ulate Sancho, N. Montero Rambla, N. Hernández Mon-
tero, and E. Durán Herrera, “Licuefacción hidrotérmica del
rastrojo de piña para la obtención de biocrudo/Hydrother-
mal liquefaction of pineapple stubble to obtain biocrude,”
Ingeniería, vol. Volumen Especial-Jornadas de Investi-
gación, pp. 105–108, 2020.
[28] A. R. K. Gollakota, N. Kishore, and S. Gu, “A review
on hydrothermal liquefaction of biomass,” Renew. Sus-
tain. Energy Rev., vol. 81, pp. 1378–1392, Jan. 2018, doi:
10.1016/j.rser.2017.05.178.
[29] A. Al-Wahaibi et al., “Techno-economic evaluation of bio-
gas production from food waste via anaerobic digestion,”
Sci. Rep., vol. 10, no. 1, p. 15719, Dec. 2020, doi: 10.1038/
s41598-020-72897-5.
[30] M. A. Vargas-Vargas, R. A. Hernández-Chaverri, and A.
Jiménez-Silva, “Caracterización de la biomasa de piña
(Ananas comosus) y su valoración en la propagación mice-
lial del hongo shiitake (Lentinula edodes),” Yulök Rev. Inn-
ov. Académica, vol. 3, no. 1, pp. 13–27, 2019.
[31] M. Samoraj et al., “The challenges and perspectives for an-
aerobic digestion of animal waste and fertilizer application
of the digestate,” Chemosphere, vol. 295, p. 133799, May
2022, doi: 10.1016/j.chemosphere.2022.133799.
[32] S. K. Pramanik, F. B. Suja, S. M. Zain, and B. K. Praman-
ik, “The anaerobic digestion process of biogas production
from food waste: Prospects and constraints,” Bioresour.
Technol. Rep., vol. 8, p. 100310, Dec. 2019, doi: 10.1016/j.
biteb.2019.100310.
[33] L. D. P. Castro-Molano, H. Escalante-Hernández, L. E.
Lambis-Benítez, and J. D. Marín-Batista, “Synergistic
effects in anaerobic codigestion of chicken manure with
industrial wastes,” DYNA, vol. 85, no. 206, pp. 135–141,
Jul. 2018, doi: 10.15446/dyna.v85n206.68167.
[34] L. R. Miramontes-Martínez et al., “Anaerobic co-digestion
of fruit and vegetable waste: Synergy and process stability
analysis,” J. Air Waste Manag. Assoc., vol. 71, no. 5, pp. 620–
632, May 2021, doi: 10.1080/10962247.2021.1873206.
[35] P. Namsree, W. Suvajittanont, C. Puttanlek, D. Uttapap,
and V. Rungsardthong, “Anaerobic digestion of pineapple
pulp and peel in a plug-ow reactor,” J. Environ. Man-
age., vol. 110, pp. 40–47, Nov. 2012, doi: 10.1016/j.jen
-
vman.2012.05.017.
[36] G. Unnikrishnan and V. Ramasamy, “Anaerobic Digestion
of Pineapple Waste for Biogas Production and Application
of Slurry as Liquid Fertilizer Carrier for Phosphate Sol-
ubilizers,” Indian J. Agric. Res., no. Of, Jun. 2021, doi:
10.18805/IJARe.A-5777.
[37] N. Pattharaprachayakul, N. Kesonlam, P. Duangjumpa, V.
Rungsardthong, W. Suvajittanont, and B. Lamsal, “Optimi-
zation of Hydraulic Retention Time and Organic Loading
Rate in Anaerobic Digestion of Squeezed Pineapple Liq-
uid Wastes for Biogas Production,” Appl. Sci. Eng. Prog.,
vol. 14, no. 3, pp. 468–476, Apr. 2021, doi: 10.14416/j.
asep.2021.04.004.
[38] A. Azevedo, J. Gominho, and E. Duarte, “Performance
of Anaerobic Co-digestion of Pig Slurry with Pineapple
(Ananas comosus) Bio-waste Residues,” Waste Biomass
Valorization, vol. 12, no. 1, pp. 303–311, Jan. 2021, doi:
10.1007/s12649-020-00959-w.