Ingeniería 33(2): 17-41, Julio-Diciembre, 2023. ISSN: 2215-2652. San José, Costa Rica DOI: 10.15517/ri.v33i2.51818 41
road to universal electrication: A critical look at present pathways and challenges”, Energies,
vol. 13, 3 2020, 1ssN: 19961073. DOI: 10.3390/en13030508.
[4] S. Poddar, J. P. Evans, M. Kay, A. Prasad y S. Bremner, “Estimation of future changes in
photovoltaic potential in Australia due to climate change”, Environmental Research Letters,
vol. 16, 11 nov. de 2021, ISSN: 17489326. Dor: 10.1088/1748-9326/ac2a64.
[5] V. Vega-Garita, M. F. Sofyan, N. Narayan, L. Ramirez-Elizondo y P. Bauer, “Energy mana-
gement system for the photovoltaic battery integrated module”, Energies, vol. 11, 12 dic. de
2018, ISSN: 19961073. Dor: 10.3390/en11123371.
[6] W. Marañda, “Diagrams for energy management in renewable energy systems”, en 2017
MIXDES-24th International Conference”Mixed Design of Integrated Circuits and Systems,
IEEE, 2017, págs. 475-478.
[7] G. Barchi, G. Miori, D. Moser y S. Papantoniou, “A small-scale prototype for the optimiza-
tion of PV generation and battery storage through the use of a building energy management
system”, en 2018 IEEE International Conference on Environment and Electrical Engineering
and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/IESCPS Europe),
IEEE, 2018, págs. 1-5.
[8] L. Mauler, F. Duner, W. G. Zeier y J. Leker, “Battery cost forecasting: a review of methods
and results with an outlook to 2050”, Energy & Environmental Science, vol. 14, n. 9, 2021.
DOI: 10.1039/d1ee01530c.
[9] V. Vega-Garita, A. Hanif, N. Narayan, L. Ramirez-Elizondo y P. Bauer, “Selecting a suitable
battery technology for the photovoltaic battery integrated module”, Journal of Power Sources,
vol. 438, 2019, Issn: 03787753. Dor: 10.1016/j.jpowsour .2019.227011.
[10] L. Millet, A. Berrueta, M. Bruch, N. Reiners y M. Vetter, “Extensive analysis of photovoltaic
battery self-consumption: Evaluation through an innovative district case-study”, Applied Physics
Reviews, vol. 6, n.° 2, pág. 021 301, 2019. DOr: 10.1063/1.5049665.
[11] L. Learning, The Payback Method. Lumen, 2021.
[12] K. Jäger, O. Isabella, A. H. Smets, R. Van Swaaij y M. Zeman, Solar Energy: The physics and
engineering of photovoltaic conversion, technologies and systems. UTT Cambridge, 2016.
[13] C.S. INC, Canadian_Solar-Datasheet- HiKu_CS3L-MS-(1000V 65 1500V)_EN, CanadianSolar.com.
(Accesado en Jun. 2022).
[14] J. A. Due y W. A. Beckman, Wiley: Solar Engineering of Thermal Processes, 4th Edition -
John A. Due, William A. Beckman. 2013, pág. 936, ISBN: 9780470873663. dirección: http://eu.wiley.
com/WileyCDA/WileyTitle/productCd-0470873663. html.
[15] I. C. de Electridad, “Plan de expansión de la generación eléctrica 2018 - 2034”, 2019. dirección:
WWW. grupoice.com.
[16] C. N. de Fuerza y Luz (CNFL), “Servicios Eléctricos para Inmuebles-Tarifas Vigentes”, 2021.
dirección: https://www.cn.go.cr/servicios/electricos/inmuebles/tramites/tarifas.