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Abstract
In this research, we study the impacts of the traceable mobility in a two-patch environment
when the population in each patch exhibits strong Allee effects. Traveling individuals are
traced across patches by budgeting the average time spent in each patch while keeping
their place of residency. Particularly, we focus on the impact that the effective population
(residents and visitors) produces on regional dynamics. Our results show that low mo-
bility across regions produces simple dynamics, where orbits converge to single or double
extinction or to a coexistence steady state. We derive mobility conditions under which an
endangered population may benefit of the presence of a visitant one and avoid extinction
– the rescue effect. Nonetheless, increments in the visiting population would also lead the
resident population to extinction – the induced extinction effect.
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Resumen
En esta investigación, estudiamos los impactos de la movilidad rastreable en un entorno de
dos parches cuando la población en cada parche exhibe fuertes efectos Allee. Las personas
que viajan se rastrean a través de los parches al presupuestar el tiempo promedio que pasan
en cada parche, mientras mantienen su lugar de residencia. En particular, nos enfocamos
en el impacto que la población efectiva (residentes y visitantes) produce en la dinámica
regional. Nuestros resultados muestran que la baja movilidad entre regiones produce una
dinámica simple, donde las órbitas convergen en extinción simple o doble, o en un estado
estacionario de coexistencia. Derivamos las condiciones de movilidad bajo las cuales una
población en peligro puede beneficiarse de la presencia de una visitante y evitar la extin-
ción: el efecto de rescate. No obstante, los incrementos de la población visitante también
llevarían a la población residente a la extinción: el efecto de extinción inducida.
Palabras clave: Mobilidad; Tiempos de residencia; Efecto Allee; Metapoblación; Com-
portamiento
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Population mobility under Allee effects

1. Introduction
The Allee effect was first introduced in 1931 by Warder C. Allee as the idea of “inverse
density dependence in an isolated population” [1, 5], has played an important role in con-
servation ecology. By mirroring the concept of carrying capacity, the Allee effect predicts
a non-zero threshold, for which species extinction is guaranteed if the population crosses
it down.
Reproductive and survival phenomena such as the reduction of mates encounters and en-
vironment improvement have been proposed as component Allee effect mechanisms. How-
ever, it is not clear whether these may or may not have consequences on the population
scale, producing a demographic Allee effect [6, 5]. Nonetheless, mathematical models often
incorporate the demographic Allee effect from a phenomenological perspective; explicitly
incorporating a term producing positive density dependence.
The Allee theory has been widely used to study population dynamics in complex settings.
In [12], extinction, exclusion, and coexistence conditions are derived in a model of two
species in competition, where both populations show Allee effects. Recent studies have ad-
dressed the effects of migration in a two-patch environment for deterministic and stochastic
models where populations exhibit strong Allee effects [11]. For the deterministic model,
they found that the global extinction or expansion is robust to migration states. The recent
development of a framework that tracks individuals’ patch-specific residence times during
epidemics [2, 3], opens new horizons to study population dynamics in fragmented environ-
ments. This novel modeling approach allows explicitly incorporating individuals’ exposure
to heterogeneous environments by tracking the average time that a typical individual spend
in each patch.
In this research, we use the concept of residency times to study how the local and the re-
gional diversity in a fragmented habitat is affected by the interactions of local populations.
Specifically, we assume a two-patch environment where patch size allows individuals to
travel back and forth from their patch of residency. By assuming homogeneous mobility
rates within individuals of the same patch, density-independent, and constant mobility
over time, we derive conditions under which populations exhibiting a strong Allee effect in
isolation can coexist in the presence of short-term mobility. The proposed deterministic
two-patch model has coupled via individuals’ movement across patches. We derive exis-
tence and stability conditions for the set of equilibrium points, and we show that mobility
can alter the regional dynamics by: (i) a population expected to be endangered in isola-
tion (below its Allee threshold), can be benefited and avoid extinction by the presence of
conspecifics as a consequence of mobility – the “rescue effect” [9, 7, 15], and (ii) a popu-
lation expected to be non-endangered in isolation (over its Allee threshold), might be lead
to extinction by hosting a visiting population – the “extinction effect” [13]. Our results
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are illustrated through theoretical work and a series of numerical simulations showing the
expected population dynamics at different levels of mobility.

2. Methods
Following [11], we use a mean-field approach to capture single species dynamics with a
strong Allee effect as follows

Ṅ = rN(N − θ)(K − N) (1)

where r represents the per-capita intrinsic growth rate, K stands for the carrying capac-
ity threshold that avoids unbounded population growth, and θ between zero and K is the
so-called Allee threshold below which the population is endangered and destined to ex-
tinction. We extend the single population framework to model population dynamics in an
environment composed of two patches, and let Ni denote the population resident of patch
i, i ∈ {1, 2}. The Lagrangian type mobility framework [3] allows us to track individuals’
daily movement by using a residence times matrix P = (pi j)1≤i, j≤n, where pi j accounts for
the average time that patch i residents spend in patch j. By using this formulation, the
expected population (also referred to as effective population) in patch i accounts for resi-
dents and visitant population, and it is described by ∑2

j=1 p jiN j. For simplicity, we use pi

to denote the time individuals spend in their own patch, and 1 − pi the time individuals
spend mingling outside its patch of residency. In addition, we assume the intrinsic pop-
ulation growth rate only depends on the resident population density, not on the effective
population sojourning in each patch. Consequently, the effective population is reflected
in the terms corresponding to the Allee effect and the carrying capacity. The model de-
scribing the patch-specific population dynamics accounting for the effective population in
a two-patch setting is given by

Ṅ1 = r1N1(p1N1 + (1 − p2)N2 − θ1)(K1 − (p1N1 + (1 − p2)N2)),

Ṅ2 = r2N2(p2N2 + (1 − p1)N1 − θ2)(K2 − (p2N2 + (1 − p1)N1))
(2)

where Ki and θi stand for the patch-i carrying capacity and Allee extinction threshold in
the absence of mobility (pi = 1 and p j = 1). These parameters do not depend on the
population sojourning in patch-i, instead, these are intrinsic to the environment in relation
to a particular species. In the further section, we show that the Lagrangian mobility
assumption (letting the population spend a fraction of daily time outside its patch of
residency) modulates both: (i) the patch-specific minimal resident population expected to
undergo extinction, which we call, the effective Allee threshold,

(
θ

e f f
i =

θi
pi

)
; and, (ii) the

patch-specific maximum resident population size sustainable, which we call, the effective
carrying capacity,

(
Ke f f

i =
Ki
pi

)
.
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Lemma 1. Let ri,Ki, θi, i ∈ {1, 2} be strictly positive. The model (2) is positively invariant
and bounded in R2.

The proof of (1) is provided in the SI appendix.

3. Results
We found that simple dynamics are exhibited for low mobility levels. In these scenarios,
all orbits converge to stable nodes. The following theorem states the existence and sta-
bility conditions of the equilibrium points exhibited by the model (2) in the presence of
Lagrangian-type mobility.

Theorem 1. Model (2) exhibits at most nine equilibrium points: five boundary equilibria
and four interior equilibria. Moreover, double extinction is always a possible outcome, i.e.,
the equilibrium E0,0 is locally stable for all mobility regimes. At the same time, coexistence
at the effective Allee thresholds levels is not possible, i.e., the equilibrium Eθ1,θ2 is unstable
under all traveling regimes.

The proof of theorem (1) is provided in the SI appendix.
Table 1 shows the model’s (2) equilibria, existence, and stability conditions. The set of
interior equilibria is given by

Λ = {EK1,K2 , Eθ1,K2 , EK1,θ2 , Eθ1,θ2},

where the equilibrium EK1,K2 is the only one interior attractor corresponding to the co-
existence scenario; Eθ1,K2 and, EK1,θ2 are semi-stable equilibria, and Eθ1,θ2 is an unstable
equilibrium. Moreover, the set of boundary equilibria is given by

Ω = {EK1,0, Eθ1,0, E0,K2 , E0,θ2 , E0,0},

where the equilibrium E0,0 corresponds to the global extinction scenario, while the equilibria
EK1,0 and E0,K2 stand for the single species survival scenarios. The boundary equilibria are
of particular interest since these define effective thresholds in the presence of Lagrangian
mobility: the effective Allee threshold

(
θ

e f f
i =

θi
pi

)
, which is the population size of patch-i

residents below which the population undergoes extinction in isolation, i.e., under one-way
mobility (p1 < 1 and p j = 1); and, the effective carrying capacities

(
Ke f f

i =
Ki
pi

)
, which

is the maximum population size sustainable of patch-i residents. Thus, in the proposed
Lagrangian perspective, the effective Allee and carrying capacity thresholds depend on
both: the resident’s population size and the population’s mobility.
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Table 1: Equilibria existence and stability.

Equilibrium Existence Stability
E0,0 = (0, 0) Always Always stable

EK1,0 =

(
K1

p1
, 0

)
p1 , 0 p1 >

K1

K1 + θ2
or p1 <

K1

K1 + K2

Eθ1,0 =
(
θ1
p1
, 0

)
p1 , 0 Always unstable

E0,K2 =

(
0,

K2

p2

)
p2 , 0 p2 >

K2

θ1 + K2
or p2 <

K2

K1 + K2

E0,θ2 =

(
0,
θ2
p2

)
p2 , 0 Always unstable

EK1,K2 =

(
K2 − p2(K1 + K2)

1 − p1 − p2
,

K1 − p1(K1 + K2)
1 − p1 − p2

) p1 >
K1

K1 + K2
and p2 >

K2

K1 + K2

or

p1 <
K1

K1 + K2
and p2 <

K2

K1 + K2

p1 >
K1

K1 + K2
and p2 >

K2

K1 + K2

Eθ1,K2 =

(
K2 − p2(K2 + θ1)

1 − p1 − p2
,
θ1 − p1(θ1 + K2)

1 − p1 − p2

) p1 >
θ1

θ1 + K2
and p2 >

K2

θ1 + K2

or

p1 <
θ1

θ1 + K2
and p2 <

K2

θ1 + K2

p1 <
K1

K1 + K2
, p2 <

K2

K1 + K2

and
p1r1(K1 − θ1)
p2r2(K2 − θ2)

>
p1(θ1 + K2) − θ1
p2(θ1 + K2) − K2

EK1,θ2 =

(
θ2 − p2(K1 + θ2)

1 − p1 − p2
,

K1 − p1(K1 + θ2)
1 − p1 − p2

) p1 >
K1

K1 + θ2
and p2 >

θ2
K1 + θ2

or

p1 <
K1

K1 + θ2
and p2 <

θ2
K1 + θ2

p1 <
K1

K1 + θ2
, p2 <

θ2
K1 + θ2

and
p2r2(K2 − θ2)
p1r1(K1 − θ1)

>
p1(K1 + θ2) − K1

p2(K1 + θ2) − θ2

Eθ1,θ2 =
(
θ2 − p2(θ1 + θ2)

1 − p1 − p2
,
θ1 − p1(θ1 + θ2)

1 − p1 − p2

) p1 >
θ1
θ1 + θ2

and p2 >
θ2
θ1 + θ2

or

p1 <
θ1
θ1 + θ2

and p2 <
θ2
θ1 + θ2

Always unstable

It follows from Theorem 1 that for certain initial conditions, Lagrangian-type mobility
produces global extinction. We also study how mobility impacts the critical size needed
for a population to get established. Varying traveling regimes produce changes in the
patch-specific abundance distribution, as a consequence, we found that coexistence can
be characterized in two scenarios: (i) when only one population travels, the traveling
population increases its size to its effective carrying capacity, while the host population
decreases its size below its carrying capacity–in this scenario, the carrying capacity equals
the effective carrying capacity of the host population, for instance, see Figure 2; (ii) when
both populations travel, both population sizes are strictly lower than the corresponding
effective carrying capacities, for instance, see Figure 3.
Notice that the populations’ abundance ratio (K1/K2) plays a critical role in the traveling
regimes supporting coexistence. For instance, big differences in the patch-carrying capaci-
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ties asymmetrically weigh the effects of populations traveling regimes. A direct implication
of the previous observation is that the equilibrium EK1,K2 is more sensitive to changes in
traveling regimes of the dominant (more abundant) population.
In order to facilitate results interpretation, we use the following color key to denote equi-
libria stability: attractor equilibria are colored red, semi-stable equilibria are colored blue,
while unstable equilibria are colored green. The regional dynamics of the proposed system
in terms of the number of attractors are summarized as follows:

• Nine equilibrium points - in the absence of mobility.
Under this scenario, the system exhibits 4 attractors, corresponding to a double
extinction equilibrium (E0,0), 2 single extinction equilibrium (EK1,0, and E0,K2), and a
coexistence equilibrium (EK1,K2). Moreover, the system exhibits four interior saddle-
nodes (Eθ1,K2 , EK1,θ2 , E0,θ2 , Eθ1,0); and a single interior source (Eθ1,θ2), see Figure 1.

• Eight equilibrium points - one-way mobility.
The system exhibits 3 attractors: a double extinction, a single extinction, and the
coexistence equilibrium; three boundaries, an interior saddle-node, and a source. In
the scenario of high enough one-way mobility, the system loses one of its interior
saddle-nodes, this occurs via a transcritical bifurcation when a saddle-node hits a
stable single extinction equilibrium (0,K2) or (K1, 0). Figure 2 shows this scenario
when only the N1 population increases mobility and drives a transcritical bifurcation.
In this scenario, the equilibrium point EK1,θ2 equals EK1,0, undergoing a transcritical
bifurcation, where the equilibrium point EK1,θ2 loses its biological meaning afterward
and, where the equilibrium point EK1,0 becomes stable.
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Figure 1: In the absence of mobility,
the system exhibits up to nine equilibrium
points.
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Figure 2: Eight equilibrium points. Three
attractors: coexistence, single extinction,
and double extinction, four saddle-nodes,
and a source.

• Seven equilibrium points.
After a saddle-node vanished, mobility and the ratio of the populations’ vulnerabili-

ties
η = K1

θ1
K2
θ2

 define three ways to reach this scenario:

(a) saddle-node and coexistence equilibrium vanished in the case η < 1.
The less vulnerable population increases its traveling regime enough to drive the
host population to extinction. In this case, the system exhibits three boundary
attractors: two single extinction and the double extinction equilibrium; two
boundaries and an interior saddle point; and the interior source point. Figure 3
shows the N2 population traveling regime that leads coexistence equilibrium to
vanish.

(b) saddle-node and source vanished, when η > 1.
In this case, the more vulnerable population increases traveling, and as a conse-
quence, the source node vanishes before the coexistence equilibrium does it. In
this case, the system exhibits three attractors: double extinction, single extinc-
tion, and coexistence equilibrium; three boundary saddle-nodes and the interior
source equilibrium. In Figure 4, the N2 population is assumed more vulnerable
than N1, and as p2 goes to zero, the source node vanishes.

(c) Both interior saddle-node equilibria vanish, given that both populations travel.
In a two-way mobility regime, both interior saddle-nodes vanish. In this case,
the system exhibits two attractors: double extinction and coexistence equilib-
rium points; four saddle-nodes, and a source node. Figure 5 shows the phase
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plane where orbits converge either to coexistence or double extinction. Note:
the coexistence equilibrium basin of attraction increases significantly. In the
following section, the coexistence equilibrium basin of attraction is analyzed as
mobility varies.

0 20 40 60 80 100
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10
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40

N1

N2 Seven eq. points (a)

Figure 3: Case (a): Interior saddle-node
and coexistence equilibria vanished. Three
attractors: two single extinction and global
extinction, three saddle-nodes, and a source.
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Figure 4: Case (b): Interior saddle-node
and source equilibria vanished. Three at-
tractors: coexistence, single extinction, and
global extinction, three saddle-nodes, and a
source.
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Figure 5: Case (c): Both interior saddle-nodes vanished. Two attractors, coexistence and global
extinction.

• Six equilibrium points.
Since the interior equilibria account for two saddle-nodes, a source, and an attractor;
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in terms of the last interior point surviving, there are three possible scenarios for
the system to exhibit six equilibrium points: saddle-node, source, and coexistence
equilibrium. In the scenario where both populations travel, Figure 6 shows the co-
existence equilibrium would survive, while Figure 7 shows the source would survive.
Moreover, if one of the populations travels, Figure 8 shows that only a single interior
saddle-node equilibrium survives.
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80

N1

N2 Six eq. points (a)

Figure 6: Only coexistence equilibrium sur-
vives.
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N2 Six eq. points (b)

Figure 7: Only interior source equilibrium
survives.
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Six eq. points (c)

N1

N2

Figure 8: Only interior saddle-node equilibrium survives.

Note that, in the case when both populations are equally vulnerable
(
θ1
K1
=
θ2
K2

)
, the

system goes directly from having eight equilibrium points to six, by losing the coex-
istence and source equilibrium at the same mobility level.

• Five equilibrium points.
This case corresponds to the scenario where one of the populations leads the second
to extinction. The only possible scenario (in the weakly connected system) to show
five equilibrium points is when only boundary equilibria remain. In this case, the
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system exhibits two attractors: double extinction and single extinction, and three
saddle-nodes. Figure 9 shows this scenario when N2 population leads N1 population
to extinction.

0 20 40 60 80 100

0

20

40

60

80

100

N1

N2 Five eq. points

Figure 9: In this scenario, only the N1 population travels, driving the N2 population to extinction.
Consequently, all interior equilibria vanish, and global extinction or extinction of the host population
is possible.

Then, p∗1 =
K1

K1+θ2
and p∗2 =

K2
K2+θ1

, are the minimum mobility levels capable of perturbing the
system enough to produce a qualitative change. Although these do not affect coexistence
equilibrium stability, mobility at those levels is able to unstabilize the single extinction
attractors, leaving coextinction or coexistence as the only steady states. In the SI appendix
section A, we explore the system’s (2) bifurcations as the population N1 increases its
mobility level.
3.1. Mobility may induce endangered populations rescue or extinction of es-

tablished populations
It is well known that an endangered population can benefit from the presence of conspecifics
as a consequence of mobility, this is called “the rescue effect”. However, a detrimental
impact can also occur when the patch’s maximum carrying capacity is exceeded by the
effective population size sojourning. The following results establish mobility conditions
under which the rescue and the induced extinction effects are produced.

Theorem 2 (The rescue effect). Assume the population N j is expected to be endangered in
isolation (below its Allee threshold, N j < θ j), and let the population Ni be well established
in isolation (over its Allee threshold, Ni > θi). The following traveling conditions lead to
populations coexistence

θ j

Ki + θ j
< 1 − pi <

K j

Ki + K j
, (3)

where {i, j} ∈ {1, 2} and i , j. In other words, the Ni population produces the rescue effect
on the population N j under the mobility conditions in (3).
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The proof of the theorem (2) is included in the SI appendix. Inequality (3) shows that the
rescue effect is reached whenever the equilibrium EK1,0 (or E0,K2 , by the symmetry of the
system) switches from being stable to unstable by undergoing a transcritical bifurcation
along with the equilibrium points EK1,θ2 (E0θ1,K2), as mobility increases. In other words,
an already established population (Ni > θi) can prevent an endangered population from
going to extinction (N j < θ j) whenever its traveling time (1 − pi) is greater than θ j

Ki+θ j
. In

this scenario, the presence of conspecifics helps an endangered population avoid extinction
induced by a strong Allee effect exhibited in isolation. Notice that the rescue threshold
θ j

Ki+θ j
can be expressed as 1

1+Ki/θ j
, meaning that environmental heterogeneity expressed by

the ratio between the visitant population’s carrying capacity to the resident’s population
Allee threshold

(
Ki
θ j

)
measures the effort required for the visitant population to produce a

rescue effect:

• Ki ≪ θ j implies that θ j
Ki+θ j

≈ 1, and the rescue effect is difficult to achieve since it
requires “high” mobility levels.

• Ki ≫ θ j implies that θ j
Ki+θ j

≈ 0, and the rescue effect requires “low” mobility levels of
the visiting population.

Figure 10 shows the scenario when both populations are able to produce the rescue effect
by traveling enough to destabilize both equilibria: EK1,0 and E0,K2 .

N2

N1

EK1,K2

EK1,0

E0,K2

E0,0

E✓1,✓2

The rescue e↵ect

Figure 10: The rescue effect occurs when
one of the populations is not at risk of ex-
tinction (Ni > θi). The shaded region repre-
sents the basin of attraction of the coexis-
tence equilibrium EK1,K2 , while the white re-
gion shows the basin of attraction of the dou-
ble extinction equilibrium E0,0.

N2

N1

EK1,0

E0,K2

E0,0

E✓1,✓2

The induced extinction e↵ect

Figure 11: Induced extinction of the N2
population caused by high mobility of the
N1 population. The shaded region represents
the basin of attraction of the single extinc-
tion equilibrium EK10, while the white region
shows the basin of attraction of the double
extinction equilibrium E0,0.
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Theorem 3 (The induced extinction effect). Assume populations Ni and N j with mobility
conditions θ j

Ki+θ j
< 1− pi <

K j
Ki+K j

where {i, j} ∈ {1, 2} and i , j. The Ni population induces the
N j population extinction by increasing its mobility according to the following conditions,

1 − pi >
K j

Ki + K j
(4)

where i, j ∈ {1, 2} and i , j.

The proof of the theorem (3) is included in the SI appendix. The induced extinction
result shows that if a visitant population Ni travels more than the hosting population in
relative abundance

(
1 − pi >

K j
Ki+K j

)
, the presence of a visitant population equal or greater

than the host’s patch-specific carrying capacity leads the host population to extinction.
Figure 11 shows the phase plane in the scenario when the N1 population induces the N2
population extinction by traveling above its relative abundance 1− p1 ≥ K2

K1+K2
. Notice that

mobility-induced extinction can occur only in the scenario where the population induced
to extinction travels enough to destabilize the boundary equilibrium corresponding to the
single survival scenario ( θ j

Ki+θ j
< 1 − pi <

K j
Ki+K j

). If this mobility condition is not attained,
single-population survival or double extinction are possible outcomes, depending on the
initial conditions.
Our previous results highlight the impact of the population abundance heterogeneity, which
can be expressed in terms of heterogeneity among the patches in a fragmented environment.
This plays a critical role in shaping the stability region of the species coexistence equilibrium
(EK1,K2) by weighting the effects of the populations’ mobility. On the other hand, our
results show the role of the populations’ relative vulnerability (K1/θ1,K2/θ2) in shaping the
stability regions of the single species equilibrium points (Eθ1,K2 and EK1,θ2).

4. Conclusions
We investigated the population dynamics exhibited in a two-patch Lagrangian mobility
model, where the patch-specific population dynamics are intertwined. In the Lagrangian
mobility framework, the effective carrying capacities, the effective Allee thresholds, and
the populations’ mobility determine the persistence of a population. Mobility alters the
patch-specific expected population, which in turn impacts population persistence or extinc-
tion conditions. We found that mobility leads the regional species abundance to converge
towards stable nodes of double extinction, single species persistence, or species coexis-
tence. Individuals daily traveling across regions modulate the regional species abundance
by modulating the patch-specific effective populations. Depending on the mobility regime,
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the expected population abundance differs from those expected in populations exhibiting
the Allee effect in isolation.
Our results suggest that in the presence of Lagrangian-type mobility: (i) the patch-specific
population size is smaller or equal to the patch-effective carrying capacity, (ii) a population
expected to be endangered in the absence of mobility, may survive in the presence of
mobility even if the resident population size is below the Allee extinction threshold, and,
(iii) an established population may lead to extinction if it travels and hosts a “big enough”
visitant population. The intuition behind the first result is that the patch resources are
shared among the resident and the visitant population. Therefore, limiting the resident
population growth to a lower or equal level than the patch’s carrying capacity. Our second
and third results are direct implications of the increment of the expected population size
due to mobility. While a population may be endangered in isolation, the presence of
conspecifics would prevent the population from undergoing extinction. On the other hand,
an established population may suffer a critical reduction of the resources available in its
own patch of residency by hosting a visiting population. Consequently, producing that the
effective population size surpasses the patch carrying capacity.
Individual-level movement processes on short timescales can affect community processes
and patterns on longer, ecological timescales [14]. While previous work has been done using
a migration mobility perspective, that is, without labeling individuals residency across
patches, [11], we find Lagrangian mobility to be a suitable framework to study the regional
impact of individuals’ moving across heterogeneous environments, while at the same time
being consistent with concepts from the niche theory [10, 4, 8].
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