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STATISTICIAN’S NEW ROLE AS A DETECTIVE – 
TESTING DATA FOR FRAUD

Alex Ely Kossovsky1

RESUMEN

El objetivo de este trabajo es proporcionar al estadístico con un método para la difícil 
tarea de decidir si un determinado conjunto de datos podría haber sido inventado en 
forma fraudulenta o en aparente autenticidad. Esto no se hace mediante el examen de los 
números en sí, pero, sorprendentemente, se hace investigando el lenguaje digital utilizado 
en escribir esos números! Lo que las letras son para las palabras, los dígitos son para los 
números. La técnica se basa en la Ley de Benford, una ley estadística que se refiere a la 
consistencia y predictibilidad de las proporciones relativas a los dígitos que ocurren en los 
datos típicos de la vida real, estableciendo que dígitos bajos son mucho más frecuentes que 
los dígitos altos. La ley es extremadamente útil como una herramienta para detectar el 
fraude, especialmente el fraude fiscal, ya que los estafadores tienden a inventar números 
donde los dígitos tienen aproximadamente las mismas proporciones, debido a la intuición 
equivocada de que todos los dígitos aparecen en los datos con igualdad de oportunidades. 
Al comparar la distribución teórica de Benford con la distribución real de dígitos de los 
datos de la contabilidad de las empresas, el estadístico puede fácilmente descubrir el fraude 
en relación con datos falsos o inventados. Estas pruebas forenses digitales son ahora los 
procedimientos habituales en los departamentos de los ingresos fiscales de la mayoría de 
los gobiernos de todo el mundo, así como en la contabilidad de las grandes compañías de 
auditoría.

PALABRAS CLAVES: DETECCIÓN DE FRAUDE FISCAL, LENGUAJE DIGITAL, ANÁLISIS FORENSE 
DE DATOS, TERREMOTO, COMPUESTOS QUÍMICOS, DATOS ASTRONÓMICOS.

ABSTRACT

The objective of this paper is to provide the statistician with a method for the challenging 
task of deciding whether a given data set might have been invented in a fraudulent 
way or appearing authentic. This is done not by examining the numbers themselves, 
but surprisingly, rather by investigating the digital language utilized in writing those 
numbers! What letters are to words, digits are to numbers. The technique relies on 
Benford’s Law, a statistical law referring to the consistent and predictable relative 
proportions of digits occurring in typical real-life data, stating that low digits are much 
more frequent than high digits. The law is immensely useful as a tool to detect fraud, 

1	 El autor es graduado del City University of New York en Estadística y Matemática Aplicada, y ha realizado 
investigaciones en Benford’s Law durante los últimos años. Correo electrónico: akossovs@yahoo.com.
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especially tax fraud, since cheaters inventing fake data mistakenly write them with all 
digits having about the same proportion due to the erroneous intuition that all digits come 
with equal chances. By comparing theoretical Benford digit distribution to the actual 
digit distribution within the accounting data provided by companies, the statistician can 
easily discover fraud relating to fake and invented data. These digital forensic tests are now 
standard procedures in most of the Tax Revenue Departments of governments worldwide, 
as well as in large accounting and auditing companies.

KEY WORDS: TAX FRAUD DETECTION, DIGITAL LANGUAGE, FORENSIC DATA ANALYSIS, 
EARTHQUAKE, CHEMICAL COMPOUNDS, ASTRONOMICAL DATA

I. 	 INTRODUCTION 

Recent statistical discoveries allow the statistician to utilize known digital patterns in typi-
cal data to detect fraud. Previously, the task of the statistician was to analyze and summarize data, 
show patterns, and make predictions, but never to decide on the authenticity of the provided data 
itself. Data provided to the statistician was traditionally always taken as a given without an ability 
to authenticate. On the other hand, there is always a very strong need on the part of Tax Authorities 
worldwide and accounting companies to obtain professional statistical advice as to how to detect 
fake data. Data could be faked to reduce and to under-report revenues in order to pay less tax, as 
well as to inflate revenues at times in order to impress investors and present the company as being 
financially healthy. The enormous amount of tax money saved per year for various governments 
worldwide regularly via forensic digital analysis utilizing Benford’s Law can’t be underestimated, 
it is huge. Similar benefits in savings and discontinuation of on-going fraud schemes within com-
panies by insiders, fraudulent treasurers, and financial officers are also extremely valuable, and are 
achieved by the same digital techniques. 

The technique relies on Benford’s Law, a statistical law referring to the consistent and pre-
dictable relative proportions of digits occurring in typical real-life data, stating that low digits 
such as 1, 2, and 3 are much more frequent than high ones such as 7, 8, and 9. For example, num-
bers whose first digit on the left is 1 are very common, occurring in about 30.1% of values, while 
numbers beginning with digit 9 are relatively rare, occurring only about 4.6% of values. The main 
reason that this forensic test is at all possible springs from the fact that cheaters inventing fake 
data almost always erroneously write them with all digits having about the same proportion due to 
the mistaken intuition that all digits have equal chance of occurrence. By comparing theoretical 
Benford digit distribution to the actual digit distribution within the accounting data provided by 
companies, the statistician can decide if data appear suspicious or normal. During the past 15 years 
most Tax Revenue Departments of governments worldwide as well as large accounting and auditing 
companies have adopted these digital forensic tests as their standard procedures, and run them on 
a regular basis. The results of this revolutionary new technique has been a great increase in the rev-
enue of tax collection money, as well as numerous cases of fraud that have been detected, stopped, 
and prevented from further exploiting or ruining financially healthy companies.

II. 	 THE LEADING DIGITS PHENOMENA

Leading digits (LD) or first significant digits are the first digits of numbers appearing on the 
left. Such a digit is called “the leader” of the number because all other digits follow it. For 567.34 
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the leading digit is 5. For 0.0367 the leading digit is 3, as we discard the zeros. For the lone integer 
6 the leading digit is 6. For negative numbers we simply discard the sign.

613	 ------>	 digit 6
0.0002867	 ------>	 digit 2
7	 ------>	 digit 7
-7	 ------>	 digit 7
1,653,832	 ------>	 digit 1
-0.456398	 ------>	 digit 4

The temptation here (even for the statistician!) is to believe one’s own intuition that for num-
bers occurring in everyday typical situations, all digits should have an equal chance of occurring, 
and thus uniformly distributed. But let’s look at some surprising results from the closing prices and 
daily volume of stocks traded on The New York Stock Exchange (Bolsa) on December 23, 2011. We 
choose the first 31 companies on top of the alphabetically-sorted list as our random small sample:

FIGURE 1
Prices and Volume of Stocks Traded on the New York Stock Exchange

Source: https://nyse.nyx.com/
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About half of the numbers here start with digit 1 or digit 2! Here is the exact LD distribu-
tion for this limited set of 31 companies above. It should be noted that almost all other such subsets 
down the long list on the NYSE website yield quite similar results:

FIGURE 3
Chart of Benford’s Law - 1st Digits

Simon Newcomb in 1881 and then Frank Benford in 1938 discovered that low digits lead 
much more often than high digits in everyday and scientific data and arrived at the exact expression 
of Probability[1st digit is d] = LOG10(1+1/d ) being the probability that digit d is leading. This set of 
proportions is known as the logarithmic distribution, and the law is known as Benford’s Law. For 
example, P[1st digit is 1] = LOG10(1+1/1) = LOG10(2) = 0.301.

B.L. (1st Digits) = {30.1%, 17.6%, 12.5%, 9.7%, 7.9%, 6.7%, 5.8%, 5.1%, 4.6%}.

FIGURE 2
Leading Digits of Stock Prices and Volume

Source:: UCR- Calculaciones del Bursa – New York Stock Exchange

Source: http://en.wikipedia.org/wiki/Benford’s_law
http://www.auditnet.org/articles/JFA-V-1-17-34.pdf
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The law also describes an exact distribution for the second order digits, but here proportions 
among digits are more equal. For example, the 2nd leading digit (from the left) of 603 is digit 0, of 
0.0002867 it’s digit 8, and of 1,653,832 it’s digit 6. It is noted that for the 2nd and higher orders, 
digit 0 is also included, whereas for the 1st digit order it is excluded. The exact 2nd order distribu-
tion for all 10 digits according to Benford’s Law is:

B.L. (2nd Digits) = {12.0%, 11.4%, 10.9%, 10.4%, 10.0%, 9.7%, 9.3%, 9.0%, 8.8%, 8.5%}.

613 	 ------> 	 digit 1

 0.0002867 	------> 	 digit 8

 1,653,832 	 ------> 	 digit 6

-0.456398 	 ------> 	 digit 5

 603 	 ------> 	 digit 0

Source: http://www.auditnet.org/articles/JFA-V-1-17-34.pdf

Digital proportion for the 2nd order is not nearly as skewed in favor of low digits as is the case 
for the 1st order. The 3rd order digit distribution is even more equal than the 2nd order. And finally 
there is almost total digital equality for the 4th and higher orders.

The probability of any First-Two-Digit combination (called FTD), such as 34, and exemplified 
in numbers such as 3487, 0.0341, 340 etc. is given by the formula:

Probability[1st digit is p AND 2nd digit is q ] = LOG 10 ( 1 + 1/pq ).
For example, P(10) = LOG( 1 + 1/10) = LOG(1.1) = 0.0414
P(25) = LOG( 1+1/25) = 0.0170 and P(99) = LOG(1+1/99) = 0.0044.

When numbers in the data set are long enough (i.e. many digits per number), and typically 
this is the case, namely that we almost always have plenty of digits in each value (say over 4 or 5 
digits), then the last digit distribution (digits on the right-most side) should be about uniform with 

FIGURE 4
Chart of Benford’s Law – 2nd Digits
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equal probability of 1/10 for each digit. Also, the last-two digit combinations (on the right) should 
also show uniformity with an equal probability of 1/100. This is so since there are 100 possibilities 
here, namely {00, 01, 02, …, 97, 98, 99}.

As mentioned by Hill (1995) in the first section titled “The Significant-Digit Law”, as well as 
in the 2nd section “Empirical Evidence”, the validity of Benford’s Law has been observed and veri-
fied in numerous domains including finance, accounting, economics, census data, physics, astrono-
my, chemistry, and geology, to mention just a few.

According to Durtschi C. et al. (2004), Hill (1995), and others in the literature, the follow-
ing short summery about applicability can be given. The specific types of data that ARE Benford 
include: any well-mixed data from a variety of sources, almost all accounting data such as account 
receivable, account payable, revenues, expenses, election results by city/town or province (if free and 
fair, not manipulated), population and other census data, size of files in megabytes on any typical 
large computer, sport data, the list of all the physical constants in Physics and Chemistry (com-
bined), house numbers in address data, data derived from multiplication processes such as exponen-
tial growth and decay, the Fibonacci series. While the specific types of data that are NOT Benford 
include: phone/cell numbers, lottery numbers, code and index numbers, serial numbers, purchase 
ID order numbers, ATM withdrawal amounts, any other data with pre-assigned values, data with 
artificial built-in minimum or maximum values.

Benford’s Law is a mathematical and statistical fact about how numbers are USED and 
OCCUR in everyday typical situations, expressing physical quantities as well as abstract entities 
we wish to record. But the law is NOT a mathematical law purely about our number system itself 
- totally divorced from its use. It is indeed also a physical and scientific law regarding quantitative 
measurements, and its scope covers all disciplines, as it is being almost universally observed. Rarely 
do we encounter such a prevalent law or regularity spanning all disciplines in science, linking and 
connecting various fields of study, from physics, chemistry, astronomy, and geology, to economics, 
finance, accounting, and so forth.

III. 	THE LOGARITHMIC AS REPEATED MULTIPLICATIONS

Repeated multiplication processes effectively drive numbers toward the logarithmic distri-
bution in the limit. This is so only if all intermediate values are considered and retained as part of 
that long sequence of numbers. Classical examples include: (I) Money invested in a bank account 
and locked in for 30 years at 5% interest rate, while yearly snapshots of account balance are taken 
each December 31. (II) Bacteria in the lab tube growing at 20% per hour, while count is conducted 
on an hourly basis. Both are examples of exponential growth having a fixed factor. Note the deter-
ministic nature of this process, absence any random factor involved, as oppose to statistical and 
typical real life data which are intrinsically random, and in Benford’s Law this distinction is cru-
cial and applicable.

We consider the arbitrarily chosen value of 8 being repeatedly multiplied by another arbitrary 
number 3 (exponential growth in essence). This yields the following table:
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Other arbitrarily chosen values give similar results, especially if extended much farther than 
the few 14 sequences in the above table. Hence, the above result is quite general and representative, 
and in the limit the logarithmic emerges.

Geometric series and exponential growth or decay exhibit logarithmic behavior, and that 
can be said for almost any growth rate (any factor) and any starting value, yielding the logarithmic 
almost exactly given that enough elements are being considered.

The Fibonacci series {1, 1, 2, 3, 5, 8, 5+8, etc.} where {1, 1} are arbitrarily chosen, and subse-
quent elements being the addition of the previous (last) two elements, approaches approximately a 
repeated multiplication process, with the golden ratio 1.618 being the factor, explaining its almost 
perfect logarithmic behavior. Further readings on the Fibonacci series and the golden ratio can be 
found in Burton D. (1993) “The History of Mathematics”.

IV. 	 HILL’S SUPER DISTRIBUTION

After many decades since the re-discovery of the phenomena in 1938 by Frank Benford, and 
after numerous failed attempts at proofs, a rigorous mathematical explanation was given in 1995 
by Theodore P. Hill, demonstrating that a super distribution consisting of infinitely many distribu-
tions, all mixed together and defined on the positive x-axis, is logarithmic in the limit as the num-
ber of such distributions approaches infinity. For practical consideration, it’s enough to have just a 
few mixed densities to observe ‘almost Benford’ behavior, and therefore its application is widespread 
and typical, although surely many real-life data types, such as those pertaining to single-issue 

Source: UCR -Calculaciones del - multiplication 8 repeat times 3

FIGURE 5
Simple Mutliplication Process, 8*3i and its LD Distribution
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observations, and many others, can NOT be modeled on Hill’s construct at all. Hill’s proof explains 
and covers only a part of the entire phenomena. Hill’s argument then is that those relevant everyday 
data types pertaining to his mathematical model are simply compositions of a variety of variables 
and distributions, and that picking numbers from such real life data is schematically equivalent 
to picking from his abstract random number arising from a distribution of distributions. The 
most remarkable feature in Hill’s distribution of distributions is the multiple levels of randomness 
involved. One has to first randomly select a distribution type, then continue to select values for its 
parameters, and finally to pick a particular number from that random distribution, all in all involv-
ing 3 distinct levels of randomness.

V.	  THE SCALE INVARIANCE PRINCIPLE

What happens to digits for data in Costa Rica on gasoline purchases in Colones for example 
when converted into US Dollars or Euros? And what happens to digit distribution of data on weights 
of people in Costa Rica in Kilograms (40-90 kilos most typical), when translated into British Pounds 
(80-180 lbs most typical)? Surely digital distributions in the two cases above change dramati-
cally after such a scale conversion! Does Benford’s Law then depend on our specific global units and 
scales system we use at this current epoch? Would a sudden global change in units affect the law? 
Surprisingly, the answer is a definite and decisive NO! Surely, LD of individual types of data sets 
would be dramatically affected by such unit and scale change, yet, a large combination of data types 
all mixed in as in Hill’s model would not be affected in the least, because of trades offs and offsetting 
changes acting in opposite directions leading to cancellations and leaving it unaltered at the end. 
Hence the law is totally independent of units and scales. Moreover, any single-issue data type Xi that 
is logarithmic in its own right, is also so after multiplicative conversion by ANY factor. That is, the 
newly transformed F*Xi data set is logarithmic just the same.

A novel approach to leading digits is one based on the scale invariance principle. Pinkham 
(1961) employed the scale invariance argument to claim that if there is indeed any universal law 
for significant digits, then it should be independent of the units and scales used by society, because 
scales are cultural, arbitrary, and do not represent any fundamental properties of numbers or 
nature. In other words, if Benford’s Law were to be dependent on humanity using the Kilometer as 
oppose to the Mile, or the Kilogram as oppose to the Pound, then the law would not be universal! 
Pinkham (1961) then further demonstrated mathematically that the logarithmic distribution is 
scale-invariant, and that it’s the only distribution with such a property; therefore any first digit law 
that is independent of choices of scale must be the logarithmic! 

VI. 	AVERAGING SCHEME AS A MODEL FOR TYPICAL DATA

In another quite different approach to Benford’s Law, Kossovsky (2006) has attempted to con-
struct a limited but well-structured mathematical model that is approximately capable of capturing 
or representing many cases of typical usage of numbers, and thus to arrive at another explanation 
for this digital phenomenon. Real life data sets typically start on the left at 0 or 1, or some other 
very low value, but usually end much higher to the right at varying upper limits depending on 
topic and type. And so we consider what would happen (collectively) to leading digits distributions 
of numerous intervals (made only of the integers), short and long, and those intermediate ones in 
between, all similarly starting at 1, called Lower Bound, or LB, while differing strongly in their 
lengths, namely the Upper Bound, called UB. The plan is then to obtain an aggregate LD distribu-
tion representing all the intervals simply by taking the average of the LD distributions of all the 
individual intervals. One such scheme, with LB=1, and with UB varying from 10 to 100 in steps of 1 
unit (integer) yielded the average of: {24.5%, 18.4%, 14.5%, 11.7%, 9.4%, 7.6%, 6.0%, 4.6%, 3.3%}.
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This only resembles the logarithmic, but it is not quite close enough. What went wrong? An 
argument can be raised that the scheme is not complex enough, and that it’s too rigid, namely that 
it doesn’t average enough things as it pertains only to such a structure with BU varying between 
10 and 100 - two arbitrarily chosen values. The next (more complex) level then, is to let the edges 
of UB themselves vary progressively, 1 integer at a time, from UB_minimum to UB_maximum, 
making the selection of UB variation less arbitrary, while lower bound is still fixed at 1. In other 
words, to average results from multiple such averaging schemes all with different arrangements 
of UB layouts, so as to give a more general result. This more complex scheme gets much closer to 
the logarithmic, but it is still not close enough. The next higher order scheme is to vary UB_maxi-
mum itself also from UB_maximum_LOW to UB_maximum_HIGH, which then gives results that 
are even closer to the correct logarithmic distribution. Conclusion: What we really need here is an 
infinite scheme! Flehinger (1966) has given a rigorous mathematical proof that such an infinite 
algorithm would converge to the logarithmic in the limit. Many real life data types can be directly 
model on such a scheme (most typically the house number in address data), and so their logarith-
mic behavior can be satisfactory explained by such averaging algorithms.

VII. 	CHAINS OF DISTRIBUTIONS

An alternative point of view of the averaging schemes, putting them in a statistical frame-
work, has been suggested by Kossovsky (2006). The idea is to consider those varying upper bounds 
as originating from the random process of the Uniform distribution. In other words, the corre-
sponding view here is to examine leading digits of random numbers from the continuous uniform 
on (0, B) standing for the generic single interval, and where parameter B, the upper bound, is 
itself a random number drawn from another uniform distribution on (0, C). Schematically this is 
written as: Uniform(0, Uniform(0, C)). Conveniently, the ranges for the chains here start from 0 
as oppose to the usage of 1 as LB earlier for the averaging schemes. Kossovsky argued that these 
types of chains of distributions are essentially mirror images of the averaging schemes, and gave 
numerous digital results regarding a large variety of chains of distributions employing many clas-
sical distributions all tied in sequentially in many different styles of dependencies. Traditionally 
parameters of distributions have always been thought of exclusively as constants, fixed by the par-
ticular nature of the data on hand, yet this new unorthodox approach leads to better understand-
ing of Benford’s Law and the digital phenomena in general, and it initiates the study of the behav-
ior of such complex statistical constructs which might have applications in other contexts and 
disciplines in the future. Attempts here to perform simulations of the model Uniform(0, Uniform(0, 
C)) resulted in various LD distributions, somewhat close to the logarithmic, and depending on the 
particular value of C, as might be expected.

The next natural step is U(0, U(0, U(0, K))). This yielded better conformity with the logarith-
mic. Results for the next logical step, namely U(0, U(0, U(0, U(0,M)))) are: 

{30.1%, 17.6%, 12.5%, 9.7%, 7.9%, 6.7%, 5.8%, 5.1%, 4.6%} which is almost Benford.
Clearly, what we need here is an infinite chain to obtain the logarithmic! Therefore, picking a 

number from a truly random interval, without even specifying directly parameters leads to the loga-
rithmic distribution. 

Kossovsky conjectured that this result is much more general, pertaining to most other dis-
tributions forms, and not only to the Uniform, even including combinations of a variety of mixed 
forms. Convergence here is actually very rapid, and there is ‘no need to go to infinity’ to obtain digit 
distribution that is approximately very close to Benford. Here is one notable demonstration using 
the notation Normal(mean, s.d.):

Normal(Uniform(0, chi-sqr(a die of 6 sides)), Uniform(0, 2))
Resulting in: {30.1%, 17.6%, 12.5%, 9.7%, 7.9%, 6.7%, 5.8%, 5.1%, 4.6%}. 
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Another important result in general here is that a 2-sequence chain in which all parameters 
are derived from logarithmic distributions is logarithmic immediately without any need to expand 
infinitely. In symbols: Any Distribution(Any Benford) is Benford.

Miller (2008) gave rigorous mathematical proofs to some of Kossovsky’s conjectures, includ-
ing the result of the 2-sequence chain based on logarithmic parameter.

VIII.   NATURE’S WAY OF COUNTING SINGLE-ISSUE PHENOMENON

Another common source of the logarithmic distribution and one profound reason for its 
prevalence in real life data is its physical manifestation. Data sets of single-issue quantities, such 
as amount of water in river flow, earthquake depth, time between successive earthquakes, rotation 
rates of spinning star remnants known as pulsars, population data, as well as countless others piec-
es of specific physical data sets, are logarithmic in their own right, individually considered, without 
having to be schematically averaged out or get mixed with anything else.

All this represents something quite new and striking in Benford’s Law, requiring a radically 
different explanation than that supplied by Hill’s findings, or by Flehinger’s averaging schemes and 
Kossovsky’s chains above, where data was found be to logarithmic following our man-made and 
artificial aggregation, compilation, and mixing.

The evidence that Benford’s Law is a common feature across the physical sciences spanning 
every discipline is quite compelling, and more so with the recent avalanche of additional findings 
and testing. Empirically, the logarithmic is found not only in data sets rooting in macrocosmic 
systems (stars/galaxies/rivers), but also in microcosmic systems (atomic/subatomic particles/mol-
ecules). Moreover, Benfrod’s Law is observed in Dynamic systems (earthquakes/active) as well as 
in Static systems (chemical molar mass/passive). Statisticians and mathematicians will continue 
to debate the theoretical justification for Benford’s Law existence, and the fact that it pops up so 
frequently in numerous natural phenomena wouldn’t surprise them in the least, yet it does often 
shock many scientists!

Data on all known exoplanets in our Milky Way Galaxy, as of early September 2012, contain-
ing 834 planets outside the solar system, is one remarkable example of the prevalence of Benford’s 
Law in the physical world. The data includes values for planets’ mass, angular distance, semi-major 
axis size, orbital eccentricity, and orbital period. The very fact that 5 different aspects or measure-
ments of a single physical reality are all nearly Benford is quite intriguing! The table in figure 6 
shows the first digit distributions of these 5 variables pertaining to the same physical set of 834 
planets. Results are quite close to the logarithmic, and deviations are not extreme, in spite of the 
fact that this data set is (statistics-wise) very small, representing a tiny portion of the estimated 160 
billion or so star-bound planets that exist in our Galaxy. It is noted that only 30 planets were discov-
ered in the years 1989 to 1999, while the vast majority of them, 804 in all, are very recent discover-
ies during the years 2000 to 2012 – namely during the first 12 years of this new millennium. 
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Fuente: http://exoplanet.eu/catalog/

Source: http://www.asiapacific-mathnews.com/01/0104/0001_0006.pdf
http://rses.anu.edu.au/~malcolm/papers/pdf/Sambridge-etal2011APMN.pdf

https://researchers.anu.edu.au/researchers/sambridge-ms

FIGURE 6
Five Different Aspects of Exoplanets are All Benford!

The tables shown in Figures 7 and 8 are courtesy of the geologist Malcolm Sambridge of 
the Australian National University in Canberra. The data was complied by him and his colleagues, 
providing a list of natural phenomena with properties that follow Benford’s law. In order presented 
in the tables, it includes: (1) the depths of almost 250,000 earthquakes that occurred worldwide 
between 1989 and 2009, (2) the time interval in seconds between consecutive earthquakes world-
wide in the period 01/01/1970 to 12/31/2009 with no restrictions on geographical position, depth 
or magnitude, (3) the rotation rates or frequencies of spinning remnants of dead stars also known 
as pulsars, given in Hz, from the ATNF catalogue, (4) river lengths in Canada, (5) global monthly 
averaged temperature anomalies from the gistemp database over the period 1880-2008 measured 
in degrees, (6) total numbers of cases of 18 infectious diseases within countries reported to the 
World Health Organization by 193 countries worldwide in 2007, (7) the Earth’s geomagnetic field 
model gufm1, (8) time in years between the 93 particular reversals of the Earth’s Geomagnetic field, 
(9) regional body wave seismic model, (10) the global seismic tomography shear wavespeed model 
of the Earth mantle, (11) the anisotropic shear wave mantle model saw642an, (12) the brightness 
of gamma rays that reach Earth as recorded by the Fermi Gamma-ray Space Telescope across the 
galactic in first 11 months of operation.

FIGURE 7
Earthquake, Pulsar, River, Temperature, and Disease Data are Benford
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Besides measuring earthquake depths, Sambridge’s team also examined vertical displace-
ments of the ground in Peru as the tsunami-triggering Sumatra-Andaman earthquake of 2004 
progressed. A set of ground shifts before the earthquake proper did not follow Benford’s law, but 
shifts that occurred during the quake itself did. The team also examined seismic data recorded at 
the same time by a station in Canberra. The overall patterns in the shifts persisted but the exact 
extent of the adherence to Benford’s Law varied differently over time than in the Peruvian mea-
surements. The team then looked more closely at Canberra seismograms and found that they were 
consistent with a minor, local earthquake occurring at the same time, which could be the source of 
the discrepancy between the two measurements. “That’s the first time I know of where something 
physical like that was actually discovered using Benford’s law,” said Ted Hill upon learning of the 
team’s work. Detailed account of the team’s methods and conclusions can be found in Sambridge’s 
article titled “Benford’s Law in the Natural Sciences”. The significance of Sambridge’s work has 
been the demonstrated ability to detect an earthquake just from the first digit distribution of the 
seismic waveforms data, and in spite of the apparent loss of the complex information contained in 
the actual data itself –being reduced down to just its first digit proportions! Inspired by this remark-
able example, quantum physicists are recently applying Benford’s Law to detect quantum phase 
transitions with success. In general, this shows that the examination of leading digit distribution 
has the potential to detect changes in the physical world. Sambridge suggestion for application is to 
first determine empirically which phenomenon actually obeys Benford’s Law, and then to deduce (or 
suspect) unusual processes or departures from the norm by observing any possible changes from 
expected digital distribution, since such digital changes are always the features of some intrinsic 
deviation in the state of the phenomenon in question. 

A list of 2175 common chemical compounds in use worldwide is given in the website http://
www.convertunits.com/compounds/Z/. The selection of compounds was not made following any 
strict criteria, but rather simply by gathering information from many different relevant sources, 
and following the suggestions of users and chemists. The impressive variety in the list makes it 
appear to be a good and fair representative of any proper collection of chemical compounds in use 
for the purpose of Benford digital testing. It includes seemingly totally unrelated chemicals, such 
as those used in heavy industry, pharmaceutical, the food industry, and metallurgical plants, as 
well as many naturally occurring compounds. Certainly, no attention whatsoever was paid to molar 

Source: http://www.asiapacific-mathnews.com/01/0104/0001_0006.pdf
http://rses.anu.edu.au/~malcolm/papers/pdf/Sambridge-etal2011APMN.pdf

https://researchers.anu.edu.au/researchers/sambridge-ms

FIGURE 8
Geological and Celestial data that are Benford
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(molecular) mass in the process of selecting and compiling this list, at least not directly in any way. 
The molar mass is the combined or total mass of all the elements within the molecule. For example, 
the molar mass of the water molecule is 18.01528, having 2 hydrogen elements of 1.00794 weight 
each, and 1 oxygen element of 15.9994. Here are the 1st and 2nd digit distributions respectively of 
the molar mass in this list: 

{31.9%, 25.2%, 16.1%, 8.4%, 5.7%, 4.3%, 2.9%, 3.2%, 2.3%} 
{11.2%, 9.9%, 11.1%, 10.1%, 10.3%, 10.7%, 9.2%, 9.0%, 9.8%, 8.6%}
This is quite close to the logarithmic, and it constitutes one quite remarkable result! But why 

should molar mass be logarithmic? Curiosity compels one to compare this surprising result with 
a totally random selection, combination, and mixing from the Period Table. Would such blind and 
haphazard combination yield similar digital result? Monte Carlo Computer simulations of just such 
a scheme was performed, selecting randomly from the first 35 elements in the Period Table, ranging 
from the simple hydrogen, all the way to the element Bromine with its mass of 79.904 as the heavi-
est one in this simulation scheme. Bromine was arbitrarily chosen so as to avoid the heaviest of the 
elements which are rarely in use in chemistry. The first simulated element within this factitious or 
virtual molecule is then chosen as in the equal discrete uniform distribution {1 to 35}, and its fre-
quency within the molecule is simulated separately from the discrete uniform {1 to 5}. The second 
element is chosen in likewise manner, independently, with possible duplication of elements and 
quantities. The third and final element is likewise simulated, but only once a coin is flipped show-
ing a head (having 50% probability), otherwise, when a tail is found, it is aborted and the molecule 
is built just from the previous two selections. Thus the highest number of total elements a molecule 
can hope to have in such simulations is 15, while the least fortunate compound would have just 2 
elements. The fact that most molecules in the real list of common compounds actually consist of 
2 to 3 elements, and that each element usually appears no more than 5 times within a given com-
pound, has provided the motivation for the above parameters and structure in the computer simula-
tions. The 1st and 2nd digit distributions results of 10,000 such simulations came out very close to 
those of the list of real chemical compounds above, and are respectively: 

 {31.4%, 25.0%, 16.2%, 8.6%, 5.4%, 3.2%, 3.1%, 3.6%, 3.5%}
 {11.7%, 11.1%, 11.2%, 10.7%, 10.2%, 9.4%, 9.9%, 8.7%, 8.6%, 8.5%}

Furthermore, the two adjusted histograms of the data sets themselves, of the type that puts 
both data sets on equal footing by listing percent of overall total (2175 & 10000) instead of simple 
counts, are remarkably similar, as shown in Figure 9. This strongly suggests that nature’s way of 
combining elements together into molecules is done in almost totally random manner with regards 
to molar mass.
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A remarkable correspondence or analogy to the chemical molar mass data is found in 
company accounting data regarding revenues, namely the list of actual bills or receipts paid by 
customers. A typical purchase by a client shopping at an IT store might consists of 1 computer 
costing $860, 2 USB keys at $15 each, and 10 packages of CD disks at $5 a package. The total bill 
of $940 for all these products is simply derived from the random linear combination of the vari-
ous prices listed at the shop, namely 1*($860) + 2*($15) + 10*($5). In this context, the individual 
mass of an element in the Periodic Table is analogous to the price of an item on sale in the list of 
prices, and the molar mass is analogous to the total bill paid the shopper. At play here are simul-
taneous random variables and decisions that determine the very limited selection of prices for 
products (typically only 1, 2, or 3) from that very long price list (typically in the hundreds) relat-
ing to all available products on sale, and with the possibility of buying multiple number of units 
of each product chosen. It is well-known that revenue data follows Benford’s Law quite closely. 
Chemical molar mass and company’s revenue data are only two particular manifestations of a 
much wider and general principle in Benford’s Law called “Random Linear Combination” (RLC) 
which serves as yet another important cause for the prevalence of the logarithmic distribution in 
numerous real life data. Surely there are many other real life data sets having the same underly-
ing statistical structure and therefore logarithmic as well, although this may not be immediately 
obvious when one contemplates such data types. For a convincing and remarkable demonstra-
tion of the strong effect Random Linear Combination has on digits, consider an extremely small 
shop selling only 6 items with its price list of {$1.25, $1.75, $6.75, $12.50, $35.00, $58.00}. Monte 

FIGURE 9
Histogram of Simulated and Real Data on Molar Mass of Compounds
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Carlo computer simulations of bills (revenues) assuming hypothetical shoppers who buy exactly 
2 items, while throwing two fair 6-sided dice to randomly decide on quantities bought, yield 1st 
digits of: {30.8%, 19.6%, 14.0%, 9.7%, 5.5%, 6.6%, 6.2%, 5.1%, 2.6%}!

Three essential statistical distributions widely used in quantum mechanics and thermody-
namics, Boltzmann-Gibbs, Fermi-Dirac, and Bose-Einstein, have been found by Lijing Shao et al. to 
be nearly (and at times exactly) logarithmic, which implies that Benford’s Law is quite prevalent in 
those fields. Moreover, they conjectured that Benford’s Law itself might be (or might hint at) a truly 
profound and fundamental law in nature in general, and not only in physical statistics, perhaps rep-
resenting a more fundamental principle behind the complexity of nature, governing the properties 
of many physical systems.

IX. 	THE CASE OF K/X DISTRIBUTION

The probability density function f(x) = k/x occupies a central position and importance in the 
study of Leading Digits and Benford’s Law, and studying all aspects of this distribution is essential 
for a complete understanding of the phenomena.

Consider the probability density function of the form f(x)=k/x over the interval [10S,10S+G] 
where S is any real number, G is any positive integer, and k is a constant depending on the values of 
S and G. It shall be shown that the sum of all the areas under the curve where digit d leads is indeed 
LOG10(1+1/d), namely perfectly logarithmic. Let us prove this assertion. We first note that the entire 
area should sum to one, that is

fk/x dx = 1 over [10S,10S+G], therefore k[ln(10S+G) - ln(10S)] = 1, or
k[(S+G)ln10 - (S)ln10] = 1, so that k*ln10*[(S+G)-(S)]=1 and 

k* ln10*G = 1, so k = 1/[G*ln10]. Notice, that this determination of k was in total generality, 
where G can assume any value, not necessarily only an integer, and that G represents the difference 
in the base 10 exponents of the two boundaries spanning the entire interval length of x in question.

Secondly, given a particular p.d.f. of the form k/x on (a, b), we note that for any two subinter-
vals of (a, b) having the same exponent difference, their areas under the curve are identical. Given 
[10P, 10P+I] and [10Q, 10Q+I], both contained inside (a, b), P and Q being any set of numbers, not nec-
essarily integers, we know that the values of their related constant k are identical since they belong 
to the same distribution defined on

(a, b). The areas under the curve are k[ln(10P+I) - ln(10P)] and k[ln(10Q+I) - ln(10Q)] respec-
tively, or simply k[(P+I)ln10 – (P)ln10] and k[(Q+I)ln10 – (Q)ln10], simplifying we get: k*ln(10)*[(P+I) 
– (P)] and k*ln(10)*[(Q+I) – (Q)], which yields k*ln10*I as the same area for each subinterval. If the 
whole interval (a, b) is expressed as [10S,10S+G] so that k = 1/[G*ln10] then area for each is simply 
I/G, namely the ratios of exponent difference of the subinterval to the exponent difference of the 
entire range. 

For example, for k/x defined on (1, 10000), [1, 10] and [100, 1000] have equal areas,
[1, 10] is narrower on the x-axis but with a very high p.d.f. value, while [100, 1000] is extreme-

ly long on the x-axis in comparison, but it comes with a much shorter p.d.f. value. This trade-off 
cancels out each effect exactly so that areas end up the same.

To set the stage for the proof, we represent the interval in question here as
[10N+f,10N+f+G], where N is zero or some positive integer, f is some possible fractional part, and 

G is a positive integer representing the integral part of the difference in exponents.
We initially let f = 0, a restriction that would be relaxed later. Considering any digit D, the 

probability that D leads is given by the area under f(x)=k/x on the following intervals:
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{[D10N, (D+1)10N], [D10N+1, (D+1)10N+1], ...G times…[D*10(N+G-1),(D+1)*10(N+G-1)]}.
This is so because it is on these intervals and these intervals alone that D leads.
Calculating the various definite integrals we obtain:
k[ln((D+1)10N) - ln(D10N)] + k[ln((D+1)10N+1) - ln(D10N+1)]
+….G times….+ k[ln((D+1)10N+G-1) - ln(D10N+G-1)] or:
k[ln(D+1)+N*ln(10)-ln(D)-N*ln(10) ] + k[ln(D+1)+(N+1)*ln(10)-ln(D)-(N+1)*ln(10)]
+ ….G times.… + k[ln(D+1)+(N+G-1)*ln(10)-ln(D)-(N+G-1)*ln(10)]
Canceling out like terms (not involving D) we are left with:
k[ln(D+1)-ln(D)] + k[ln(D+1)-ln(D)]+ …(G times) ... + k[ln(D+1)-ln(D)]
k[ln[(D+1)/(D)]] + k[ln[(D+1)/(D)]]+ …(G times) ... + k[ln[(D+1)/(D)]]
That is: G*k*ln[(D+1)/(D)]. Substituting here the expression for k above we obtain:
G*(1/[G*ln10])*ln[(D+1)/(D)] = ln[(D+1)/D]/ln10. This expression uses the natural logarithm 

base e, and applying the logarithmic identity LOGAX=LOGBX / LOGBA 
to convert this ratio to the common base 10 we get:
LOG10[(D+1)/D]/LOG10[e] / LOG10[10]/ LOG10[e]
LOG10[(D+1)/D]/LOG10[e] / 1/ LOG10[e]
LOG10[(D+1)/D] 
LOG10[1+1/D]

Let us now see why f≠0 should not yield any different result. As shown above k depends solely 
on the difference between the exponents, being that its expression is

k = 1/[G*ln10], hence since f≠0 (a slight shift to the right from the f=0 situation) does not 
alter that difference here, and k is still of the same value (whether f equals to zero or not), and thus 
function x/k is not altered either. Now, since areas under the curve are identical for any two sub-
intervals of the same exponent difference, it follows that any nonzero f that requires an additional 
area to the right of the intervals

{[D10N, (D+1)10N], [D10N+1, (D+1)10N+1], … , [D*10(N+G-1),(D+1)*10(N+G-1)]}.
would then also require an identical subtraction on the left side of that intervals! This com-

pletes the proof.

X. 	 DETECTING ACCOUNTING FRAUD 

In the early 1990s it was first suggested to apply the digital property of Benford’s Law as a 
technique in forensic data analysis of accounting and financial data to detect fraud.

Following this innovation soon afterwards, it has been increasingly used by account-
ing firms, governmental tax authorities such as the IRS in the USA, and now in most other tax 
authorities worldwide, as routine check on data. It is important to recognize the fact that each 
well-defined piece of data has its own particular leading digits signature, a sort of a hidden digi-
tal code - not immediately obvious during the first visual (preliminary) inspection of it when the 
focus is on numbers and quantities but not on their digital language. Fraud, anomalies, data 
entry errors, and irregularities can be detected using Benford’s Law by comparing the actual dis-
tribution of the first digits in a set of accounting or financial data to the theoretical distribution 
given by Benford’s Law. Maliciously invented fake data obviously does not obey Benford’s Law, but 
instead digits appear all equally likely just as most people would mistakenly intuit. A cautionary 
flag is raised if deviation of actual from theoretical is significant, which calls for further scrutiny 
and examination of data.

As an example we look at some hypothetical accounting data from 5 different Costa Rican 
companies (firms) representing revenues, that is, sales receipts:
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Initially, by just looking at the numbers, we can not detect anything unusual or wrong. Yet, 
forensically investigating 1st leading digit distributions, we get this result:

FIGURE 11
Leading Digits of the Accounting Data of Five CR Companies

Now when data is visualized digitally it is obvious that Firm D comes under some strong 
suspicion since it gives approximately uniform digital distribution. Data of all other companies are 
not exactly Benford but show a clear and decisive approximation of it. For better forensic result it is 
recommended to include 4 digital tests:

1)	 First digits distribution.
2)	 Second digits distribution.
3)	 Combination of the first-two digits distribution.
4)	 Combination of the last-two digits distribution.

The following is a chart of the First-Two Digit test performed on a hypothetical company:

FIGURE 10
Accounting Data for Five Costa Rican Companies
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FIGURE 12
First-Two Digit Test Performed on a hypothetical company

The continuous line is the theoretical Benford proportion, LOG 10 ( 1 + 1/pq ), which falls 
off gradually from 4.1% to 0.4%. There is a material issue for the auditors to examine further here 
because of the substantial spike at 26. It means that there were excess amounts starting with 26, 
such as $26,800, $260, or $260,598. This needs to be audited and examined in more details. Since 
the issue here with the 26 spike would not have been detected employing just the 1st digit distribu-
tion, it is recommended always to look also into FTD. The following is a chart of the Last-Two Digit 
test performed on a hypothetical company:

FIGURE 13
Last-Two Digit Test Performed on hypothetical company

The continuous line is the theoretical Benford proportion, which is steady at 1/100, because it 
gives equal proportion to all 100 possibilities of {00, 01, 03, … , 97, 98, 99}. There is a material issue 
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for the auditors to examine further in this accounting data set because of the substantial spike at 
40. It means that there were excess amounts ending with 40, such as $19,755.40, $81.40, or $46.40. 
This needs to be audited and examined in more details.

What part of the data do we examine? We never examine sums, aggregates, summaries, and 
totals in digital analysis. Rather we look into actual (original/raw) expenses, revenues, account 
receivables, and so forth, because they follow Benford’s Law, not totals!

Unlike typical statistical methods and practices regarding data itself where samples are 
more economical and practical to take, or are the only possible choice in surveys and studies, 
here for digital examinations it is preferred to examine ALL the data available relating to the 
accounting test in the audit. This is so because there is more accuracy and reliability for large 
data sets than smaller ones in digital analysis. For statistical significance, the test is performed 
only if the company has a lot of values, therefore the more values the better. A very small com-
pany with few entries would not be suitable for digital analysis using Benford’s Law, because Type 
I errors would occur too frequently. Type I error, also known as “false positive”, occurs when digi-
tal analysis mistakenly concludes that an honest company is fraudulent. The standard practice 
is to eliminate from the data set all negative values, all zero values, as well as all low values less 
than 10, before any digital analysis is done. There are two reasons for eliminating values less than 
10; (i) they are not so important to the auditor, (ii) their 2nd digit is often 0 since $7 is written as 
$7.00 therefore artificially increasing digit 0.

It is important to note that when a company is suspected of fraud due to a failure to pass 
Benford’s digital test, we still do NOT know which entries were fake, and which were honest. Per-
haps all were fake. All we know is that the tax report in its entirety is likely to be dishonest. If a 
company has tens of thousands of entries in its tax report, and gave only a few fraudulent values, 
say just 23, it would be impossible to discover such fraud in digital analysis. The challenge arises 
when these 23 fake values are of very high values representing a large proportion of money involved, 
yet not being detected at all, in short: having false negatives. Fortunately, almost all cheaters and 
fraudsters do not know about the existence of Benford’s Law (at this present epoch at least) and so 
they may prefer to cheat by changing thousands of numbers instead of only 23, mistakenly thinking 
that by spreading the fraud around many numbers this will not be detected. 

When a company wants to report strong income to attract investors for example, then 
amounts such as 797,156 and 29.9 are changed and rounded up and reported as 800,000 and 30. 
This would artificially increase the proportion of the 0 digit in any digital analysis. On the other 
hand, when a company wants to under-report profits in order to pay less tax it would round down 
profits, and this will result in artificially reducing the 0 digit in the analysis. Hence over-representa-
tion of digit 0 indicates an attempt to increase amounts, while under-representation of it indicates 
an attempt to decrease amounts. In general, an excess in the 0 digit proportion indicates that some 
fake rounding of amounts occurs.

For super large account such as ones with more than 100,000 values for example, forensic 
digital analysis might calls for the examination of too many numbers (amounts) thought to be sus-
picious, which is too costly and expensive for the company. In this case is it better to apply the First-
Three-Digit test utilizing the theoretical probability LOG10 (1 + 1/pqr) followed by the Value Dupli-
cation test discussed below, because then the focus of analysis is narrowed down to fewer numbers 
(amounts), thus lowering the expense of the examination.

Clearly, any fraud due to unreported dealings where no transaction is actually recorded in 
company data, such as bribes, kickbacks, asset thefts, and so forth, can not be detected by digital 
analysis. In addition, very few (rare) accounting data types do not obey Benford’s Law to begin with 
and therefore can not be so tested, such as payroll (salaries) amounts, amounts with an arbitrary 
minimum or maximum, or amounts that are influenced by human thought like ATM withdrawals 
and fixed prices. 
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Post statistical result:

 If the company’s data is found not to obey Benford’s Law, then there are 4 possibilities:

1.	 False positive. The company is honest, but by some rare random statistical chance its data devia-
ted from Benford.

2.	 The assumption that this particular type of accounting data follows (or should follow) Benford’s 
Law is not really true, and the company is actually honest.

3	 The company has some particular items under sale that causes its revenues to favor certain 
digits. For example, if its main product is a very popular laptop with a price of $799, then digit 7 
would be over-represented, and digital tests would always indicate possible fraud, but the com-
pany is actually honest.

4.	 The company is dishonest, and the data is fraudulent – faked by its accountants.

XI. 	STATISTICAL TESTS IN DIGITAL DATA ANALYSIS 

Both, the Z Test and the chi-sqr Test in this section are applicable only in those ideal 
situations where the statistician is drawing a truly random sample from some population data to 
determine whether the population is logarithmic or not. In reality, the accountant or the audi-
tor performing forensic digital analysis in fraud detection environment can not assume that, 
because the data itself here is indeed the whole population in question. Unfortunately, both tests 
have been used, and are still being used erroneously to test for Benford compliance. There are two 
types of tests: (I) An overall test taking all the digits into account by combining all 9 (or more) 
deviations from expected proportions. (II) A digit-by-digit test (separately for each digit), where 
perhaps some appear deviant and suspicious and some appear correct as expected. The latter test 
gives more specific information about which digits are off, but Type I error (false positive) is about 
7 times more likely than for the overall test. The relevant digits in question could be: 1 to 9 for 
the 1st order; 0 to 9 for the 2nd order; 10 to 99 for the first-two digits order, and 00 to 99 for the 
last-two digits test.

Note that for digital forensic analysis in the context of Benford’s Law, the significance level of 
5% is traditionally used. The strict level of 1% is not considered appropriate here.

Z Test:
H0: Data obeys Benford’s Law in the context of the particular digit i. 
Pe = the expected Benford’s proportion log(1+1/i) for the particular digit i in question.
Po = the observed (actual) proportion of numbers being led by digit i in the data set.
N = the number of observations (money values) in the data set of the particular account.
The standard deviation SDi for each particular i digit’s expected proportion is:
SDi = Square Root [ Pe(1-Pe) / N ] for digit i in (1-9) or (0-9) or (10-99)
This Z test is performed on one particular digit i (individually) with:
Zi statistic = ( |Po – Pe| - 1/(2N) ) /SDi

Reject the Null Hypothesis H0 at the p% confidence level if Zi value is larger than Z with p% 
critical value. Z refers to the Standardized Normal Distribution, that is N(0, 1).

The term 1/(2N) is the continuity correction factor and is used only when it is smaller than 
the absolute value term (hence Zi is never a negative quantity). 

An alternative expression for the Z statistic is:
Zi statistic =(√N)* ( |Po – Pe| - 1/(2N) ) /(√( Pe (1 - Pe) ))
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A major difficulty with the Z-test in the context of Benford’s Law is that when N is large 
the test becomes too sensitive and even very small deviation from the Benford proportion are 
flagged as significant (false positive). In short: the z-test suffers from excess power. Generally 
speaking, any account with over 100,000 entries is considered too large for the Z-test as well as 
for the chi-sqr test.

Chi-sqr Test:
H0: The data set obeys Benford’s Law overall considering the set of all relevant digits in ques-

tion, namely for digits (1-9), or (0-9), or (10, 99).
Chi-sqr statistic = N*∑ [(Pe – Po)2/Pe] summed over digits (1-9) or (0-9) or (10-99)

Reject the Null Hypothesis H0 at the p% confidence level if chi-sqr value is larger than chi-
sqr-p% critical value with (RD-1) degrees of freedom. RD is the number of Relevant Digits in the 
particular test. For example, RD=9 for the 1st digits, RD=10 for the 2nd digits, RD=90 for the first-
two digits, and RD=100 for the last-two digits. 

Here again the major difficulty is when N is large (>100,000 approximately) and the test 
becomes too sensitive that even very small deviations from the Benford proportions flags the entire 
data set as significantly non-logarithmic (false positive). In short: chi-sqr test suffers from excess 
power, and its use by auditors is almost always erroneous!

Note that rejecting the null hypothesis via the chi-sqr test does not tell us specifically 
which digits are problematic and which are not, which are over-represented and which are 
under-represented. 

Value Duplication Test:
This is a test to identify the specific numbers that were causing the spikes on the 1st digits, 

2nd digits, first-two digits, and last-two digits graphs. It frequently helps to discover some specific 
numbers occurring abnormally too often. To perform this test a table is created (typically in MS-
Access or other Database software) showing all values and their frequencies of occurrence. This 
table is typically ordered high to low for easy inspection.

XII. 	CONCLUSIONS

Examination of digital distributions in data provides a practical new technique in foren-
sic data analysis with regards to authenticity or falseness of data. The use of these digital 
forensic tests have been spreading rapidly in the past 15 years and have become the standard 
procedures in most Tax Revenue Departments of governments worldwide, as well as in large 
accounting and auditing companies. There are some limits and difficulties applying them at 
times, especially when very few invented values of large and significant amounts are inserted 
into a large authentic data set, resulting in low concentration of false values. In addition, a 
minority of data types does not obey Benford’s Law in the first place, such as salary accounts 
for example, and therefore these primary digital tests are not available for forensic analysis 
there. Yet, apart from these two examples and a few other cases, the vast majority of everyday 
real data obeys Benford’s Law, or at least is very close to it, a fact which enables the statisti-
cian to apply the law in almost all financial and accounting situations. Another interesting 
application in this context is the possibility of forensic data analysis of official election results, 
testing for the possibility of having a fraudulent democracy. Since population data by city or 
by province are almost perfectly Benford, so should be electoral data result, which is simply its 
breakdown by the fractions of the relevant political parties.
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