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Abstract 
Temperature-dependent cluster decay half-lives are investigated based on the double folding model (DFM). 
The temperature dependence of the interaction potential is introduced through the charge and matter density 
distributions of the interacting nuclei, and the half-lives are calculated within a preformed cluster model. 
Subsequently, the temperature-dependent universal decay law (UDL) is fitted using the half-lives calculated 
with the double folding model. 
 

Resumen 
Los tiempos de vida media en la desintegración cluster, dependientes de la temperatura, son investigados con 
base en el modelo de doble plegado (DFM). La dependencia de la temperatura del potencial de interacción se 
introduce a través de las distribuciones de densidad de carga y materia de los núcleos interactuantes, y los 
tiempos de vida media se calculan dentro de un modelo de preformación de clusters. Posteriormente, se ajusta 
la ley de desintegración universal dependiente de la temperatura (UDL) utilizando los resultados obtenidos con 
el modelo de doble plegado 
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I. INTRODUCTION 

A result of a type II supernova explosion is the creation and ejection of uranium and other heavy 
elements into space. Experimental observations provide a way to analyze the relative abundances of star 
material, but creating accurate models that can predict observations of heavy element abundance is a 
challenging task (Clayton, 1983; Iliadis, 2015). The main sources of the changes in element abundance are 
nuclear processes, mainly reactions, photodisintegrations, beta-decay, and alpha-decay. However, there 
exists the possibility of a small contribution from cluster decay, which in such astrophysical environments 
remains unexplored. 

Sandulescu, Poenaru, and Greiner (1980) predicted a new kind of radioactivity in which the emitted 
particle is heavier than the alpha particle but lighter than the lightest fission fragment. This phenomenon is 
known as cluster radioactivity or cluster decay. The cluster decay was first observed with the emission 
of		!"𝐶 from 	##$𝑅𝑎 (Rose & Jones, 1984). From then on, many other emitted clusters were detected 
namely,	#%𝑂,	#$𝐹,	#"&#'𝑁𝑒,	#(,$%𝑀𝑔, and	$"𝑆𝑖. 

Many theoretical approaches employed to investigate 𝛼-decay have been extended to study the 
cluster emission. These models are based on the assumption of a preformed cluster of the decay products 
inside a parent nucleus, such that the decay happens due to the penetration of the light nucleus through the 
Coulomb barrier formed by the interaction of the light nucleus with the heavy daughter nucleus. The decay 
rate  Γ or the half-life   

 𝑡!/# =
ℏ ln 2
Γ

 (1) 

is often calculated within the semiclassical JWKB approximation. 
On the other hand, the empirical formula for the half-lives of radioactive decay processes, 

depending on some properties such as the 𝑄 value of the emitted particle, was first formulated in connection 
with 𝛼-decay by Geiger and Nuttall (1911). Different expressions have been tried to generalize the Geiger-
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Nuttall law to cluster decay (Royer, 2000; Poenaru et al. 2006). The linear formula of the logarithm of the 
cluster decay half-lives is known as the universal decay law (UDL). One such law was proposed by Qi et 
al. (2009): 

 log 𝑡̃!/# = 𝑎𝜒+ + 𝑏𝜌+ + 𝑐 (2) 

where 𝑡̃!/# is the dimensionless cluster decay half-life, χ+ = Z,Z-@A/Q,, ρ+ = EAZ,Z- FA-
!/$ + A,

!/$G and 

the values of the parameters 𝑎, 𝑏, and 𝑐 are determined using a fitting procedure. Z,, A,, Z-, and A- are the 
atomic and mass numbers of the light nucleus (referred to as cluster here) and the daughter nucleus, 
respectively.  
 
Before delving into a detailed investigation of cluster decay under the high-temperature and high-density 
conditions characteristic of astrophysical environments, it is beneficial to explore the sensitivity of the 
universal decay law (UDL), specifically the coefficients in this law, to temperature. To achieve this 
objective, the present work focuses on the temperature dependence of cluster decay and is organized as 
follows. Firstly, we introduce the double-folding model (DFM) utilized to evaluate the decay half-lives 
within a semiclassical approach to the tunneling problem. The temperature dependence in the DFM is 
introduced through temperature-dependent matter and charge density distributions. Next, the parameters in 
the UDL are fitted to reproduce the temperature-dependent DFM half-lives. Finally, we discuss the 
temperature dependence of the parameters thus obtained. 
 

II. FORMALISM 
The decay width in Eq. (1) is given within the semiclassical JWKB approximation (Gurvitz & 

Kalbermann, 1987; Kelkar & Castañeda, 2007) as  
 

Figure 1 
Total potential for cluster-daughter nucleus tunneling problem. 

 
Note: The cluster-daughter interaction potential V(r) for the decay	!"!U →	!#Ne+!$%Pb. The three classical turning 
points determined by 𝑉(𝑟&)=𝑄' are pointed out.  
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where 𝑆. is the preformation factor, 𝜇 is the reduced mass of the cluster and the daughter nucleus system, 
the exponential factor is the penetration probability and the factor in front of it is the normalization of the 
bound-state wave function in the region between 𝑟! and 𝑟#, the first and second turning points that are 

solutions of 𝑉(𝑟0)=𝑄. (as shown in Fig. 1). The wave number is given by 𝑘(𝑟) = E#1
ℏ!
[ |𝑉(𝑟) − E| ] where 

E	 is the energy of the tunneling particle (taken to be the 𝑄. value here). The interaction potential 𝑉(𝑟) is 
composed of the nuclear potential 𝑉3(𝑟), the Coulomb potential 𝑉4(𝑟), and the centrifugal barrier with the 
Langer modification to ensure the correct behavior of the JWKB wave function near the origin (Langer, 
1937). The total potential is then given by 

 𝑉(𝑟) = λ 𝑉3(𝑟) + 𝑉4(𝑟) +
ℏ!567"!8

!

#9/!
, (4) 

where 𝑟 is the separation between the center of masses of the cluster and the daughter nucleus, and 𝜆 is the 
strength of the nuclear interaction and is fixed by imposing the Bohr-Sommerfeld quantization condition, 

 ∫ 𝑘(𝑟)𝑑/!
/"

𝑟 = F𝑛 + !
#
G𝜋. (5) 

where 𝑛 is the number of nodes of the quasibound wavefunction of cluster relative motion. 
 

The nuclear potential is calculated using a realistic nucleon-nucleon (NN) interaction folded with 
the density distributions of both interacting nuclei (Kelkar & Castañeda, 2007; Kelkar & Nowakowski, 
2016; Perez Velasquez et al. 2019). The nuclear and Coulomb potentials are obtained within the double-
folding model (Satchler & Love, 1979) as 

 𝑉3(𝒓) = K𝑑𝒓𝟏 𝑑𝒓𝟐	𝜌.(𝒓𝟏)𝑣(|𝒔| = |𝒓𝟐 + 𝒓 − 𝒓𝟏|)𝜌<(𝒓𝟐). (6) 

 
where 𝑣(|𝒔|) is M3Y-Reid-type nucleon-nucleon interaction 

 𝑣3(𝒔) = 7999
exp(−4|𝒔|)

4|𝒔|
− 2134

exp(−2.5|𝒔|)
2.5|𝒔|

 (7) 

where |s| = |r + r# − r!| is the distance between a nucleon in the daughter nucleus and a nucleon in the 
cluster. The Coulomb potential is calculated in a similar way as Eq. (6) using the charge density 
distributions ρ=(𝒓) and the standard proton-proton interaction. 

 
In order to introduce temperature dependence, the matter and charge density distributions of the 

nuclei can be calculated as (Antonov et al., 1989; Gupta et al., 2007; Aygun, 2019), 

 𝜌(𝑟, 𝑇) = 𝜌%(𝑇) J1 + exp n
𝑟 − 𝑅0(𝑇)
𝑎0(𝑇)

oQ
&!

, (8) 
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where 𝜌%(𝑇) is obtained by normalizing and the thermal effects are introduced as (Gupta et al., 2007) 

 𝑅0(𝑇) = 𝑅%0(𝑇 = 0)[1 + 0.0005𝑇#], (9) 

and 
 𝑎0(𝑇) = 𝑎0(𝑇 = 0)[1 + 0.01𝑇#]. (10) 

where R%> = 1.07A>
!/$	fm and 𝑎0 = 0.54	fm. 

 
The temperature dependent cluster decay half-lives are calculated for different isotopes, namely, 
 

 

	##(Th →	#%O+#%(Pb, 
	#$#U →#" Ne+#%(Pb, 
	#$'Pu →#( Mg+#%(Pb, 
	#"#Cm →$" Si+#%(Pb. 

 

 

The results on the calculated half-lives of those isotopes at different temperatures allow us to refine 
the universal decay law (UDL) in Eq. (2) including the temperature dependence within the parameters 𝑎, 
𝑏, and 𝑐. The UDL is then rewritten as 

 log 𝑡̃!/# (𝑇) = 𝑎(𝑇)𝜒+ + 𝑏(𝑇)𝜌+ + 𝑐(𝑇), (11) 

where 

 
𝑎(𝑇) = 𝑎% + 𝑎!𝑇 + 𝑎#𝑇#, 
𝑏(𝑇) = 𝑏% + 𝑏!𝑇 + 𝑏#𝑇#, 
𝑐(𝑇) = 𝑐% + 𝑐!𝑇 + 𝑐#𝑇#. 

 
(12) 
 

The temperature dependent parameters 𝑎(𝑇), 𝑏(𝑇), and 𝑐(𝑇) are fitted from the outcome of the 
cluster decay half-lives using the temperature dependent double folding model. An improved version of 
this simple UDL formula with a deeper analysis of the temperature dependence  has been presented in 
(Rojas-Gamboa et al 2022). 
 

III. RESULTS AND DISCUSSION 
 

To investigate the effect of temperature in cluster decay, we numerically calculate the half-lives of 
some even-even nuclei using the double folding model (with Γ evaluated as in Eq. (3) but assuming 𝑆. =
1). The temperature dependence is incorporated into the charge and matter density distribution through the 
half-density radius, as given in Eq. (9), and the surface diffuseness, as given in Eq. (10). Thi temperature 
dependence causes a shift in the positions of the second and third turning points, which are solutions of 
𝑉(𝑟0) = 𝑄.. Here, the total potential 𝑉(𝑟) is obtained using Eqs. (4) and (6), with the strength of the nuclear 
potential 𝜆 fixed at each temperature by the Bohr-Sommerfeld quantization condition, as expressed in Eq. 
(5).  
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Figure 2 
Influence of Temperature on second and third turning points. 

 
Note: The interaction potential in the region of the second (left panel) and third (right panel) turning points for the 
decay	!"!U →	!#Ne+!$%Pb at different temperatures. Left inset: 𝜆 values as a function of 𝑇. Right inset: Penetration 
probability as a function of 𝑇. 

 
Figure 3 
Logarithm of the cluster decay half-lives in seconds as a function of temperature. 

 
Note: Logarithm of the cluster decay half-lives in seconds as a function of temperature. The symbols correspond to 
double folding calculations and the lines correspond to the universal decay law fitted from it. 

In Fig. 2, the shifting of those turning points for the cluster decay	#$#U →	#"Ne+#%(Pb at different 
temperatures, namely 0, 0.5, and 1.0 MeV, is presented. The insets of Fig. 2 show the values of 𝜆 and the 
penetration probability 𝑃as a function of temperature. Even though the strength of the nuclear part is 
stronger when the temperature increases, the reduction in the width of the Coulomb barrier leads to an 
increase of the penetration probability. The shift in the turning points with temperature is not large, but the 
penetration probability being an exponential factor is sensitive to this change and grows rapidly with 
decreasing width of the barrier. Therefore, the cluster decay half-lives decrease with temperature. This 
effect is depicted in Fig. 3, which shows the reduction of the half-lives when the temperature increases. In 
Fig. 3, the temperature-dependent universal decay law (solid lines) of cluster decay fitted from the 
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temperature-dependent double folding potential (symbols) is also shown. The temperature dependence of 
the universal decay law, Eq. (2), is included in the parameters 𝑎, 𝑏, and 𝑐 as in Eq. (12). This constitutes an 
easy way to obtain the half-life at each temperature. We find that 𝑎(𝑇) and 𝑏(𝑇) are constant and the 
temperature dependence is all contained within 𝑐(𝑇). The values of the non-zero coefficients are 𝑎% =
	0.60995, 𝑏% =	−0.02942, 𝑐% =	−19.24970, 𝑐! =	−0.00365	𝑀𝑒𝑉&!, and 𝑐# =	−1.00106	𝑀𝑒𝑉&#. 
All information about the cluster decay is contained inside 𝜒+ and 𝜌+, but it is necessary to investigate how 
the coefficients 𝑎(𝑇), 𝑏(𝑇), and 𝑐(𝑇) depend on temperature in order to obtain the temperature dependent 
half-lives. This study allows us to understand the impact of temperature on the cluster decay in a range of 
temperatures relevant for astrophysical phenomena, providing us with the motivation to further investigate 
the temperature dependent decay with a more sophisticated framework. 
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