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Abstract 

 
Five approximate models were developed for the mean intraparticle concentration during adsorption 
and/or diffusion with negligible external resistance (𝐵𝐵𝐵𝐵 → ∞); all of them are more accurate that the 
reference model of Do and Mayfield (1987).  Their simplicity makes them applicable for the design 
of batch and fixed-bed adsorbers.  Three of the models are based on a n-order profile for the 
intraparticle concentration with a time-dependent exponent n. Other two new models were obtained 
by analysis and algebraic manipulation of the 𝐴𝐴(𝜏𝜏) data.  Graphical visualization and numerical 
optimization were used to develop the models and to assess their quality.  The selection of a particular 
model will depend of the required accuracy. The approach described in this work can be applied to 
more complex models, such as non-linear isotherms, multicomponent adsorption and branched pore 
structure. 

 
Resumen 

 
Se elaboraron cinco modelos aproximados para la concentración intrapartícula promedio durante la 
adsorción y/o difusión con resistencia externa despreciable (𝐵𝐵𝐵𝐵 →  ∞); todos ellos son más exactos 
que el modelo de referencia de Do & Mayfield (1987). Su simplicidad los hace aplicables para el 
diseño de adsorbedores por lotes y de lecho fijo. Tres de los modelos se basan en un perfil de orden n 
para la concentración intrapartícula con un exponente n dependiente del tiempo. Se obtuvieron otros 
dos nuevos modelos mediante el análisis y manipulación algebraica de los datos 𝐴𝐴(𝜏𝜏). Se utilizó la 
visualización gráfica y la optimización numérica para desarrollar los modelos y evaluar su calidad. La 
selección de un modelo particular dependerá de la precisión requerida. El enfoque descrito en este 
trabajo se puede aplicar a modelos más complejos, tales como isotermas no lineales, la adsorción 
multicomponente y estructuras de poro ramificado. 
 
 

Keywords: Linear Driving Force model, adsorption, concentration profile, modeling, graphical methods.  
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I. INTRODUCTION 

 
In order to study and design adsorption systems, the concentration inside the adsorbent particles 

must be predicted and a model must be assumed.  The exact model is an infinite series that is slowly 
convergent and computationally intensive; for that reason, approximate models have been proposed to 
reproduce the intraparticle concentration profile within a predefined error margin.   The approximate model 
mostly used is the Linear Driving Force (LDF) one, first formulated and recommended by Glueckauf 
(1955): 

 
𝜕𝜕𝑞𝑞�
𝜕𝜕𝜕𝜕

=
15𝐷𝐷𝑒𝑒
𝑅𝑅2

(𝑞𝑞 − 𝑞𝑞�) (1) 

 
Due to its simplicity, the LDF model has been used by many authors (Garg & Ruthven, 1975; Kim, 

1989; Do & Rice, 1990; Sircar & Hufton, 2000 and 2000a; Subramanian et al, 2001; Kim, 2009).  A 
problem this model has is that of predicting negative adsorption at certain values, as shown by Do & 
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Mayfield (1987) and Li & Yang (1999).  These authors proposed a generalized concentration profile to 
overcome these unrealistic results, as follows: 

𝐴𝐴(𝑥𝑥, 𝜏𝜏) = 𝑎𝑎0(𝜏𝜏) + 𝑎𝑎1(𝜏𝜏) ∙ 𝑥𝑥𝑛𝑛 (2) 
 
Li & Yang (1999) and Sircar & Hufton (2000) proposed integer n values.  Do & Mayfield (1987) 

proposed n to be a continuous function of time, showing several ways to define this function.  They obtained 
an improvement with one of their models, when compared to the parabolic profile one; however, their 
relative error is still 19% at x = 0.001 (an 86% for the later model). 

The purpose of this work is to make a critical review of the Do & Mayfield results, in order to 
propose three new functional forms for n which represent an improvement in the calculation of the mean 
internal concentration.  Other two new models are proposed by analysis and algebraic manipulation of the 
𝐴𝐴(𝜏𝜏) data.  Graphical visualization and numerical optimization will be used to develop the models and to 
assess their quality. 

 
II. THEORY AND FORMER MODELS 

 
The non-dimensional equation and boundary conditions for the intraparticle adsorption are: 
 

∂𝐴𝐴
∂𝜏𝜏

=
1
𝑥𝑥2

𝜕𝜕
𝜕𝜕𝜕𝜕

�𝑥𝑥2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 

𝜏𝜏 = 0;𝐴𝐴 = 0 
𝑥𝑥 = 0;  𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 0 
𝑥𝑥 = 1;  𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 = 𝐵𝐵𝐵𝐵(1 − 𝐴𝐴) 

(3) 

 𝐴𝐴 is the non-dimensional intraparticle concentration profile (𝐶𝐶/𝐶𝐶0  or 𝑞𝑞/𝐾𝐾𝐶𝐶0), x and 𝜏𝜏 are the non-
dimensional length and time respectively, and Bi is the Biot number (𝑘𝑘𝑚𝑚𝑅𝑅/𝐷𝐷𝑒𝑒 or 𝑘𝑘𝑚𝑚𝑅𝑅/𝜌𝜌𝑃𝑃𝐾𝐾𝐷𝐷𝑠𝑠) containing 
the mass transfer coefficient 𝑘𝑘𝑚𝑚.  Different definitions apply depending on whether the pore diffusion or the 
solid diffusion model is considered (Weber & Chakravorty, 1974; Do & Rice, 1986; Do & Mayfield, 1987).  
The interest for the present work lays in the solution when the external mass transfer resistance is negligible 
(Bi or 𝑘𝑘𝑚𝑚 infinite), it can be obtained by separation of variables (Li & Yang, 1999; Sircar & Hufton, 2000), 
where 𝐴𝐴 is the mean intraparticle solute concentration, as well as a measure of the fractional uptake (Do & 
Mayfield, 1987): 
 

𝐴𝐴 = 1 − 6�
𝑒𝑒−(𝜋𝜋𝜋𝜋)2𝜏𝜏

(𝜋𝜋𝜋𝜋)2

∞

𝑘𝑘=1

 (4) 

 
This formula is slowly convergent and requires 100 terms to reach a six-decimal place accuracy at 

low values of 𝜏𝜏, as shown in Table 1.  The LDF approximation assumes that the mean intraparticle 
concentration can be obtained from the following equation, which is equivalent to the one proposed by 
Glueckauf and whose solution is an exponential (Do & Mayfield, 1987): 

 
𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

=
15�1 − 𝐴𝐴�
(1 + 5/𝐵𝐵𝐵𝐵)

 (5) 

 
Liaw (1979) showed that this equation can be obtained if a parabolic intraparticle concentration 

profile is assumed.  Li & Yang (1999) demonstrated that the LDF formula can be obtained from a general n-
power particle profile, represented by Equation (2) where n is an integer.  The parabolic profile would be a 
special case of this model when n = 2. 
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Table 1.  Exact values of the intraparticle concentration and  

number of terms in the infinite series required to calculate them. 
τ  𝐴𝐴 # of terms 

0.0001 0.033551 100 
0.001 0.104047 100 
0.01 0.308514 84 
0.02 0.418731 59 
0.05 0.606940 37 
0.1 0.770479 26 
0.2 0.915496 18 
0.5 0.995628 11 
1 0.999969 8 
2 1.000000 5 
5 1.000000 3 
10 1.000000 2 
20 1.000000 1 

 
A problem of the LDF model is that of predicting negative adsorption at certain values with the 

parabolic profile, according to Do & Mayfield (1987) and Li & Yang (1999).  The later authors 
recommended n = 5 instead of n = 2 in order to avoid this situation.  This result was challenged by Sircar & 
Hufton (2000a), who demonstrated that n can take any positive integer value n ≥ 2 and found an error in one 
of the equations of Li & Yang.  Sircar & Hufton also showed that a general intraparticle profile is 
compatible with the LDF model: 

 
𝐴𝐴(𝑥𝑥, 𝜏𝜏) = 𝑎𝑎(𝜏𝜏) + 𝑏𝑏(𝜏𝜏) ∗ 𝐹𝐹(𝑥𝑥) (6) 

 
A different approach was taken by Do & Mayfield (1987), who proposed n to be a continuous and 

decreasing function of time. The following results were obtained: 
 

𝑛𝑛 = 0.123𝜏𝜏−0.68 
𝜕𝜕𝐴𝐴
𝜕𝜕𝜕𝜕

=
3(𝑛𝑛 + 3)

�1 + (𝑛𝑛 + 3)
𝐵𝐵𝐵𝐵 �

(1 − 𝐴𝐴) 

𝐴𝐴 = 1 − exp[−9𝜏𝜏 − 1.153𝜏𝜏0.32] for 𝐵𝐵𝐵𝐵 →∞ 

(7) 
 

(8) 
 
 

(9) 

 
Equation (12) in Do & Mayfield article has the wrong exponent (0.638 instead of 0.68).  Note also 

that a value of 15 in the coefficient of Equation (8) is obtained if n = 2 only. Inspecting Figure 2 in Do & 
Mayfield (1987), the expression for n is valid in the interval 𝜏𝜏 = (0.002, 0.2) only and the points follow a 
curve instead of a straight line.   Thus there is room for improvement if a larger interval is taken or if the 
values of n are adjusted to a curve instead of a straight line. 

Another approach, not considered before, can be developed if the 𝐴𝐴(𝜏𝜏) curve is plotted on a log-log 
scale, as in Figure 1 below.  Notice that the curve follows a square-root law for small values of  𝜏𝜏 (we 
included a line representing it for comparison), while 𝐴𝐴  takes a constant value of unity for larger values of 
𝜏𝜏.  This information will be used to develop a new approximation for 𝐴𝐴(𝜏𝜏). 
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Figure 1.  Plot of 𝐴𝐴 as a function of 𝜏𝜏 on a log-log scale. 

 
III. DEVELOPMENT OF THE MODELS 
 
Model #1: 

Do & Mayfield (1987) defined an auxiliary variable 𝑛𝑛∗, related to the exponent of the intraparticle 
profile 𝑛𝑛 as follows: 

 

𝑛𝑛∗ =
1
𝜏𝜏
� 𝑛𝑛 𝑑𝑑𝑑𝑑
𝜏𝜏

0
= 0.385𝜏𝜏−0.68 (10) 

 
The constants were obtained by data regression in the interval 𝜏𝜏 = (0.002, 0.2) as it is shown by the 

red line in Figure 2.  The adjustment seems adequate for the selected interval, but it deviates from the data 
for smaller values of 𝑛𝑛∗.  𝐴𝐴 values show a deviation of +22% at x = 0.001 and of +77% at x = 0.0001.   The 
𝑛𝑛∗ values at smaller times are more critical because they represent the initial stages of adsorption and the 𝐴𝐴 
values are very small.  For x ≥ 0.2, 𝐴𝐴 values are almost unity and they become insensitive to the values of 𝑛𝑛 
or 𝑛𝑛∗. 

 

 
Figure 2.  Plot of 𝑛𝑛∗ as a function of τ, showing adjustment by 

Do & Mayfield (1987) and Model #1. 
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Taking a larger interval allows one to obtain a better agreement between model and data.  
Considering interval (0.0001, 0.5), the results of the adjustment to a potential model are as follows: 

 
𝑛𝑛∗ = 0.4728𝜏𝜏−0.6117 

𝑛𝑛 = 0.1836𝜏𝜏−0.6117 
𝐴𝐴 = 1 − exp[−9𝜏𝜏 − 1.4184𝜏𝜏0.3883] for 𝐵𝐵𝐵𝐵 →∞ 

(11) 
(12) 
(13) 

 
There is a significant improvement with the new model: the 𝐴𝐴 values show a deviation of   –3.3% at 

x = 0.001 and of +19% at x = 0.0001.  This model is represented by the black line in Figure 2 for 𝑛𝑛∗ values, 
and the 𝐴𝐴 curve is plotted in Figure 4 below. 

 
Model #2: 

A closer examination of Figure 2 allows one to conclude that the 𝑛𝑛∗ values follow a curve instead of 
a straight line in the interval (0.0001, 0.5). The point of inflexion around x = 0.5 will be ignored in order to 
obtain a simpler model, also because the 𝐴𝐴 values become insensitive to the n values for x > 0.2, as 
explained for the Model #1.  The 𝑛𝑛∗ values can be adjusted to the following expression for the selected 
interval; this is shown as the red curve in Figure 3: 

 
ln𝑛𝑛∗ = −1.06694 − 0.79410 ln 𝜏𝜏 − 0.018433(ln 𝜏𝜏)2 

𝑛𝑛∗ = 0.3441τ−0.79410−0.018433 ln𝜏𝜏 

 
(14) 

 

 
Figure 3.  Plot of n∗ as a function of 𝜏𝜏, showing Model #2. 

 
The A values can be calculated with an expression obtained by Do & Mayfield (1987): 
 

𝐴𝐴 = 1 − exp[−3(𝑛𝑛∗ + 3)𝜏𝜏] for 𝐵𝐵𝐵𝐵 →∞ 

𝐴𝐴 = 1 − exp�−9𝜏𝜏 − 1.0322𝜏𝜏0.2059−0.018433 ln𝜏𝜏� 

(15) 
(16) 

 
There is an additional improvement with this model, compared with Model #1: the A values show a 

deviation of +2.1% at x = 0.001 and of –2.3% at x = 0.0001.  The following figure compares the Do & 
Mayfield model and Models #1 and #2 with the exact values, on a ratio basis: 
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Figure 4.  Comparison of the discussed models, on a ratio basis. 

 
Models #3 and #4: 

It was shown in Figure 1 above that 𝐴𝐴(𝜏𝜏) has asymptotic behavior, going towards a function 𝐶𝐶√𝜏𝜏 
when 𝜏𝜏 → 0 and approaching unity for 𝜏𝜏 ≥ 1.  By algebraic modifications, a function  𝐺𝐺(𝜏𝜏) with exponential 
decay is obtained, as illustrated in Table 2 and Figure 5. 

 
Table 2. Modifications of function 𝐴𝐴(𝜏𝜏) and their asymptotic behavior 

Function 𝜏𝜏 → 0 𝜏𝜏 →∞ 

𝐴𝐴(𝜏𝜏) 𝐶𝐶√𝜏𝜏 1 

𝐴𝐴(𝜏𝜏)/√𝜏𝜏 𝐶𝐶 1/√𝜏𝜏 

√𝜏𝜏/𝐴𝐴(𝜏𝜏) 1/𝐶𝐶 √𝜏𝜏 

𝐺𝐺(𝜏𝜏) =
√𝜏𝜏
𝐴𝐴(𝜏𝜏)

− √𝜏𝜏 1/𝐶𝐶′ 0 

 
 

 
Figure 5.  Behavior of function 𝐺𝐺(𝜏𝜏). 

 
Further examination of the function G(τ) shows that it has the form 𝑃𝑃(√𝜏𝜏)𝑒𝑒−𝑘𝑘𝑘𝑘; thus the following 

expression is postulated: 
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𝐺𝐺(𝜏𝜏) = �𝐴𝐴 + 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�(𝐷𝐷 + 𝐸𝐸𝑒𝑒−𝑘𝑘𝑘𝑘) (17) 
 
The constants were found by use of an optimization program (Solver option in MS Excel), and it 

was determined that 𝐷𝐷 = 0.  The final form of the function is: 
 

𝐺𝐺(𝜏𝜏) = �0.29410 − 0.67553√𝜏𝜏 + 0.38392𝜏𝜏�𝑒𝑒−2.4214𝜏𝜏 (18) 
 
This function is represented by the red squares in Figure 5 above.  Model #3 was obtained by going 

from 𝐺𝐺(𝜏𝜏) to 𝐴𝐴(𝜏𝜏) by algebraic manipulations: 
 

𝐺𝐺(𝜏𝜏) = �𝐴𝐴 − 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�𝑒𝑒−𝑘𝑘𝑘𝑘 
√𝜏𝜏
𝐴𝐴(𝜏𝜏)

− √𝜏𝜏 = �𝐴𝐴 − 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�𝑒𝑒−𝑘𝑘𝑘𝑘 

1
𝐴𝐴(𝜏𝜏)

= 1 +
�𝐴𝐴 − 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�𝑒𝑒−𝑘𝑘𝑘𝑘

√𝜏𝜏
 

𝐴𝐴(𝜏𝜏) =
√𝜏𝜏

√𝜏𝜏 + �𝐴𝐴 − 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�𝑒𝑒−𝑘𝑘𝑘𝑘
 

 
 
 
 

(19) 

 
In the above equations, constant E was absorbed into the other constants, and the negative sign of B 

was incorporated into the formula.  This model was adjusted against the exact model of 𝐴𝐴(𝜏𝜏) (using the 
Solver option) and the values of the constants changed slightly as follows: 

 

𝐴𝐴(𝜏𝜏) =
√𝜏𝜏

√𝜏𝜏 + �0.29072 − 0.61963√𝜏𝜏 + 0.31866𝜏𝜏�𝑒𝑒−3.0390𝜏𝜏
 (20) 

 
Model #3 shows a remarkable agreement against the exact values, showing a deviation of +0.6% at  

x = 0.001 and of +1.2% at x = 0.0001. 
Although Model #3 does not have negative values in the interval (0.0001, 100), it would be 

desirable to have positive coefficients only in the model.  Based on the approximation (1 − 𝑥𝑥)−1 ≈ 1 + 𝑥𝑥, 
another model is generated by assuming a positive sign before B and putting the quadratic polynomial in the 
denominator of 𝐺𝐺(𝜏𝜏), as follows: 

 

𝐺𝐺(𝜏𝜏) =
𝐸𝐸𝑒𝑒−𝑘𝑘𝑘𝑘

�𝐴𝐴 + 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�
 

√𝜏𝜏
𝐴𝐴(𝜏𝜏)

− √𝜏𝜏 =
𝐸𝐸𝑒𝑒−𝑘𝑘𝑘𝑘

�𝐴𝐴 + 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�
 

1
𝐴𝐴(𝜏𝜏)

= 1 +
𝐸𝐸𝑒𝑒−𝑘𝑘𝑘𝑘

�𝐴𝐴 + 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�√𝜏𝜏
 

 

𝐴𝐴(𝜏𝜏) =
�𝐴𝐴 + 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�√𝜏𝜏

�𝐴𝐴 + 𝐵𝐵√𝜏𝜏 + 𝐶𝐶𝐶𝐶�√𝜏𝜏 + 𝐸𝐸𝑒𝑒−𝑘𝑘𝑘𝑘
 (21) 

 
This Model #4 was adjusted against the exact model of 𝐴𝐴 (using the Solver option) and there were 

some changes in the values of the constants as follows: 
 

𝐴𝐴(𝜏𝜏) =
�0.29410 + 0.64595√𝜏𝜏 − 0.61278𝜏𝜏�√𝜏𝜏

�0.29410 + 0.64595√𝜏𝜏 − 0.61278𝜏𝜏�√𝜏𝜏 + 0.085439𝑒𝑒−7.4056𝜏𝜏
 (22) 
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Notice that coefficient k shows the greatest variation (from –3.039 to –7.406), and that a negative 
coefficient was unavoidable, in this case constant C.  Model #4 also shows a remarkable agreement against 
exact values, with a deviation of +0.7% at x = 0.001 and of +1.3% at x = 0.0001.  Figure 6 below compares 
the four models developed here with the exact values on a ratio basis: 

 

 
Figure 6.  Comparison of the four models on a ratio basis. 

 
IV. DISCUSSION 
 

Many years ago, before the construction and use of the first electronic computers, researchers had to 
be very creative analyzing data and extracting useful information to develop correlations or test theoretical 
models.  They relayed on graphical methods to visualize trends and find the constants of their models: these 
visualization techniques remain valid and relevant today, since they can be used to better understand the 
behavior of process variables, as well as to discriminate between different models or explanations for this 
behavior.  The power of computers and numerical methods included in electronic software (such as 
MathCAD or the Solver option in MS Excel) allows the researcher to optimize his/her models, so the 
existing models can be improved and new ones can be developed.  Considering that some of the models 
used in Chemical Engineering today are fifty years old or older, it is possible to affirm that every existing 
model can be improved: an example is the intensive work in the field of equations of state. 

By looking at the Figure 6 above, one could conclude that Models #3 and #4, Equations (20) and 
(22), are the best ones to approximate the infinite series, but this statement can be refined in further analysis. 
At the current times of complex models with hundreds of constants, some of the characteristics of a good 
model –from the own point of view– consist of having a simple formula, a few number of constants, some 
physical sense or insight and to be easily programmable on a calculator or an electronic worksheet.  In that 
case Model #1, represented by Equation (13), would be the best one because of having four constants, two 
of them being easy to remember (1 and 9), and by having a simple expression that hints to the physical 
behavior.  These are also the characteristics of the Do & Mayfield model which motivated the present study. 

Model #2, represented by Equation (16), introduces one more constant and a higher level of 
complexity (a logarithm in the exponent), but it is still manageable and maintains physical sense.  Model #3 
would represent the best model overall since it is better than the two previous ones, due to its five constants; 
this is the same number as Model #2, but with a simpler formula (√𝜏𝜏 simpler than ln 𝜏𝜏). It is not difficult to 
enter this model into a worksheet and it has physical insight of a different type (a quotient going to 1, 
instead of a difference going to 1 in the former models). Model #4 does not represent an improvement over 
Model #3 because it has one more constant, a more complex formula and, as it will be further discussed, 
Model #3 follows more closely the exact function. 

Notice that the ratio between the approximate and the exact models has an oscillating nature, which 
also decreases with time.  If the agreement between model and data were total their ratio would be always 
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unity but, with approximate models, the ratio is above unity at some intervals and below unity at others.  
Table 3 below compares the different models based on this ratio R.   

The number of oscillations increases with the complexity of the model: the reference model and 
Model #1 have only one valley, while Models #3 and 4 have two valleys and one peak.  The changing 
oscillation could be modeled, but this would add unnecessary complexity to the approximate model for 
practical purposes.  By looking at Table 3 below, one can notice that Model #3 is better than Model #4 
because the later raises more slowly from the valley at x = 0.5, so the ratio with the exact value reaches 
unity until x = 2, while Model #3 reaches that value at x = 0.5.   The described behaviour can be seen 
graphically in Figure 7 below. 

 
Table 3.  Comparison of the discussed models (ratio basis). 

Model Behavior (peaks and valleys) 
Reference model 
(Do & Mayfield, 1987) 

Ratio R = 1.77 at x = 0.0001. 
R = 0.95 at x = 0.02. 
R = 1 for x ≥ 0.5. 
Error: +77% to –5%. 

Model #1 Ratio R = 1.19 at x = 0.0001. 
R = 0.90 at x = 0.005. 
R = 1 for x ≥ 0.5. 
Error: +19% to –10%. 

Model #2 Ratio R = 0.977 at x = 0.0001. 
R = 1.023 at x = 0.0005. 
R = 0.98 at x = 0.02. 
R = 1 for x ≥ 0.5. 
Error: +2.3% to –2.3%. 

Model #3 Ratio R = 1.012 at x = 0.0001. 
R = 0.997 at x = 0.01. 
R = 1.002 at x = 0.1. 
R = 0.998 at x = 0.2. 
R = 1 for x ≥ 0.5. 
Error: +1.2% to –0.3%. 

Model #4 Ratio R = 1.013 at x = 0.0001. 
R = 0.997 at x = 0.02. 
R = 1.002 at x = 0.1. 
R = 0.998 at x = 0.5. 
R = 1 for x ≥ 2. 
Error: +1.3% to –0.3%. 
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Figure 7.  Comparison between Model #3 and Model #4 (ratio basis). 

 

Regarding Models #1 and #2, their expressions for 𝑛𝑛∗ can be seen as representative of the following 
class of functions: 

 
𝑛𝑛∗ = 𝐾𝐾𝜏𝜏𝑎𝑎+𝑏𝑏𝑏𝑏(𝜏𝜏) (23) 

 
Equation (11) is obtained if 𝑓𝑓(𝜏𝜏) = 0, and Equation (14) is obtained if 𝑓𝑓(𝜏𝜏) = ln 𝜏𝜏.  A simpler 

model can be obtained if the choice 𝑓𝑓(𝜏𝜏) = 𝜏𝜏 is made, it can be called Model #2B: 
 

𝑛𝑛∗ = 𝐾𝐾𝜏𝜏𝑎𝑎+𝑏𝑏𝑏𝑏 
𝑛𝑛∗ = 0.996078τ−0.511855+2.45184𝜏𝜏 
𝐴𝐴 = 1 − exp[−9𝜏𝜏 − 2.988234𝜏𝜏0.488145+2.45184𝜏𝜏] 

(24) 
(25) 
(26) 

 
Model #2B has a similar form than Model #2, with one valley and one peak.  Its values tend to be 

greater than the exact values, but the error is always less than 2% and the error range is better than Model #2 
(it is +1.8% to –0.4%, compared to +2.3% to –2.3% for Model #2).   The behavior of Model #2B can be 
seen in the following figure, where it is compared with both Model #2 and Model #3, the best model found 
in the present work. 

 

 
Figure 8 – Behavior of Model #2B and comparison with Models #2 and 3 (ratio basis). 
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There was still another expression for 𝑛𝑛 proposed by Do & Mayfield (1987), with the form: 
 

𝑛𝑛 = 𝑛𝑛0
1 − 𝐴𝐴
𝐴𝐴

 (27) 

 
If we plot 𝑛𝑛 against �1 − A� A⁄ , a curve instead of a straight line is found, so this is really a 

“linearization” approach, a fact that Do & Mayfield acknowledge when they looked for an optimal value of 
𝑛𝑛0.  The linearization approach is used frequently in adsorption studies, for example, when a linear 
adsorption isotherm is used instead of a non–linear one (Weber & Chakravorty, 1974; Rice, 1982; Raghavan 
& Ruthven, 1983; Mees et al, 1989; Lai & Tan, 1991). 

The approach described in this work, i.e. graphical visualization combined with numerical 
optimization, can be applied to more complex models; for example, models with non-linear isotherms, 
multicomponent adsorption and branched pore structure.   Some of the possibilities will be commented at 
the Conclusions. 

 
V. CONCLUSIONS AND RECOMMENDATIONS 
 

Five approximate models were developed for the mean intraparticle concentration during adsorption 
and/or diffusion with negligible external resistance (𝐵𝐵𝐵𝐵 → ∞); all of them are more accurate that the 
reference model of Do & Mayfield (1987).  Their simplicity makes them applicable for the design of batch 
and fixed-bed adsorbers.  Three of the models (#1, #2, #2B) are based on a n-order profile for the 
intraparticle concentration, Equation (2), with a time-dependent exponent n. 

While Model #1, represented by Equation (13), is the simplest model replacing the reference one, 
the most accurate model is Model #3, represented by Equation (20).  Models #2 and #2B, represented by 
Equations (16) and (26), fall between Models #1 and 3 and they are applicable if a relative accuracy of 
about +2% is accepted.  A general expression for n* was found that includes Models #1, 2 and #2B, it can 
be used to generate more models. 

Any of the five models developed in this work represent an improvement with respect to the 
reference model of Do & Mayfield.  The selection of a particular model will depend of the required 
accuracy: if a simple model is required, then Model #1 can be used; if a more accurate model is required, 
then Model #3 is recommended.  Models #2 and 2B can be used if a relative error of around 2% is 
acceptable.  Model #4 is not recommended as there is not any advantage in using it, when compared with 
Model #3.  Notice that the error limit is associated to very small numbers at the initial adsorption times: 𝐴𝐴 
has a value of 0.0336 for x = 0.0001 and a 2% error would be equal of 0.0007.  The following 
recommendations are made to continue this research: 

1) To develop expressions for the mean intraparticle concentration 𝐴𝐴 when the mass transfer 
resistance at the boundary cannot be neglected, i. e. when the Biot number is finite. 

2) To apply these models to the design of batch and fixed-bed adsorbers, which have already been 
done for the parabolic profile (Liaw, 1979; Rice, 1982; Do & Rice, 1986). 

The validity and usefulness of the LDF model and the models developed here are well established; 
however, there are applications where the underlying assumptions for these models are not valid; for 
example, when the adsorbent is activated carbon (non-linear isotherm, branched pore structure).  Some of 
these assumptions are: 

a) linear adsorption isotherm vs. non-linear isotherm (Langmuir, Freundlich, others); 
b) linear driving force vs. quadratic driving force; 
c) first order kinetics vs. second order kinetics (Thomas or Hiester-Vermeulen models); 
d) one-component adsorption vs. multicomponent adsorption; 
e) one type of pore vs. several types of pores (branched, two or more diameters, etc.). 
Including the more complex assumptions would add flexibility and applicability to the models 

developed here, a situation which represents an opportunity of improvement. 
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VI. NOTATION 
 
A constant in Equations (17), (19) and (21) 
𝐴𝐴 non-dimensional intraparticle solute concentration 
𝐴𝐴 mean intraparticle adsorbate concentration; fractional uptake 
Bi Biot number 
B constant in Equations (17), (19) and (21) 
C concentration of adsorbate in fluid phase, kg/m3 
C constant in Table 2 
C constant in Equations (17), (19) and (21) 
C’ constant in Table 2 
𝐶𝐶0 initial concentration of adsorbate in fluid phase, kg/m3 
D constant in Equations (17) 
𝐷𝐷𝑒𝑒 effective difussivity, kg/m2s 
𝐷𝐷𝑠𝑠 surface difussivity, kg/m2s 
E constant in Equations (17), (19) and (21) 
𝐹𝐹(𝑥𝑥) function in Equation (6) 
𝐺𝐺(𝜏𝜏) function defined in Table 2 
K adsorption equilibrium constant 
K constant in Equations (23) and (24) 
𝑃𝑃(√𝜏𝜏) polynomial function related to 𝐺𝐺(𝜏𝜏) 
R particle radius, m 
R ratio of calculated value versus exact value in Table 3 
a coefficient in Equation (6) 
a constant in Equations (23) and (24) 
𝑎𝑎0 coefficient in Equation (2) 
𝑎𝑎1 coefficient in Equation (2) 
b coefficient in Equation (6) 
b constant in Equations (23) and (24) 
𝑓𝑓(𝜏𝜏) function in Equations (23) and (24) 
k integer number in Equation (4) 
k exponent in Equations (17), (19) and (21) 
𝑘𝑘𝑚𝑚 external mass transfer coefficient, kg/m2s 
n exponent in Equation (2) 
𝑛𝑛∗ auxiliary variable defined in Equation (10) 
𝑛𝑛0 constant in Equation (27) 
𝑞𝑞 concentration of adsorbate in particle, kg/m3 
𝑞𝑞 mean concentration of adsorbate in particle, kg/m3 
t time, s 
x non-dimensional length inside particle 
𝜌𝜌𝑃𝑃 particle density, kg/m3 
𝜏𝜏 non-dimensional time 
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