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Abstract: We solve the anharmonic potential with an approximate, non
perturbative method of B. Delamotte. The numerical problem is analyzed
and the analytical solution is obtained in Jacobi Elliptical functions. We
show, that the Fourier expansion of .S d(u||m) the Jacobi function is the
Delamotte approximation. We analyze the problems of the method when
there are several equilibrium points. As in Duffing equation. For the
limit cycles we use the simple nonlinear oscillation as a model to study
the convergency of the method. The problems about the uniqueness of
the approximation are studied. A theorem is proved that gives a practical
criteria when to use the method for Hamiltonian systems.

Subject headings: Anharmonic potential, Fourier expansion, Jacobi

function, limit cycles, Duffing equation

Resumen: Se resuelve el potencial anarménico con un método de
aproximacién no perturbativo. El problema numérico es analizado y la
solucién analitica se obtiene en funcién de funciones elipticas de Jacobi.
Mostramos que la expansién de Fourier de Sd(u||m) es la funcién de
Jacobi y a su vez es la aproximacién de Delamotte. Analizamos los
problemas del método cuando hay varios puntos de equilibrio, similar a los
de la ecuacién de Duffing. Para los ciclos limites usamos un modelo nolineal
de oscilacién para estudiar la convergencia del método. Los problemas de
unicidad de la aproximacién son también estudiados; Se prueba un teorema
que da un criterio prictico cuando se utiliza el método para sistemas
hamiltonianos.

Encabezados de materia: Potential anarménico, expansion de

Fourier, funcién de Jacobi, ciclo limite, ecuacién de Duffing
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1. Introducction

Dr. B. Delamotte of the Laboratory of High Energy Physics from Paris University,
published (Delamotte, 1993) what we call the Delamotte ansatz. The ansatz is a non
perturbative method for solving second order differential equations. The method is
specially good for periodic solutions with only one critical point and the solution
it’s obtained independent of the values of the ”perturbation parameter”, but our
work shows that when the differential eql_la':,tionA is studied as dependent of a second
parameter for tﬁe criticél points the same method that works for some values of
the parameter does not work for others. This essentially means that, as the Fourier
spectrum of the solution become broad the convergence of the method is slow. In
other words as the first Fourier coefficients are small, the slower the convergence is.
Limitations in our Mathematica (Wolfram Research) prevented us of studying the
convergence in further detail.

Delamotte ansatz is the following §. Let us call x(t) the solution of the second

order differential autonomous equation:
f(z(t),2'(1),2"(t)) = 0 (/1)
subject to the initial conditions
z(tg) = 20, z'(ty) = 16 (I -2)

The principle of the method is to replace eq.(I.1) and (1.2) by a linear differential

equation with a explicit time dependent right-hand side. In the language of classical

t The equations I.n are from Delamotte article, 1993,
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mechanics an external force, that forces the harmonic potential to follow the trajectory
x(t). This force always exists and is given by:

2”(t) + wiz(t) = F(t) | (I-3)

where w is a free parameter. Note that F depends on the particular differential

equation. The principle of the method is to make the ansatz:
Fans(t) = 22, + w?ans (1) (1.4)
if 62 1s the difference between ¢ and x4,
z(t) = zans(t) + 6z(t) (1.5)

and z;,, 1s close enough to x if:

£

bz] K |2zansl; 162 € |25n,l 162"] < lagn, . (1.6)

In practice, z,,, is expanded on a basis of functions, in our case as a Fourier sum:

N
Tanetl) = Z zisin(kwt) + y@cos(kwt). (1.7)
k=0

2. The anharmonic potential

Let us consider the anharmonic oscillator of equation:

2" = —wir — g2 (1.8)
ba" = ——wgéa) - (wg - w?)mans - 9(Zans + 6¢)3 —~ Fans (1.9)

using 1.6 we have:
(Wi ~ w?)Tans + 923, + Fans ~0 (1.10)

Let V(x) be the anharmonic potential:

1
Viz) = 51:2 + %z‘“ (1)
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Fig. 1 The anharmonic potential and total energy

the corresponding differential equation is:

2

d:ﬂ 3
'2;; +z4 gz =0

(2)

where we did the mass m, the spring constant k and the frequency w? equal to |. The

energy conservation could be written as:

1o 1o 94 1,
5Y +2:c +4a:_2v0

The turning point has equation:

gzt +22z% - 203 =0

The solution of equation (4) is:

g

1/2
211/2 _
. o i{ [1+ 2¢v3] 1}

2.1. The First Integral

The energy or first integral of equation (2) is:

/" dz
o /207 — 222 — gz*

(3)

(5)

(6)
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Equation (6) could be integrated {Abramowitz and Stegun, 1972). In order to use

the formula we have to complete the square.

) on g 1 1, 2 11,
20~ 227 — gt =g {4/ =04 - (o) L+t (D)

This means that:
- uig+1 1
G e (8)
g- g
2
ey 200 (9)
g g

The solution which we call Se(t) is:

= : d t=(l = ———=== 10— A

X{t)
Analytical Solutiosn

-2 -1 0 : 2

Fig. 2 The solution of the anharmonic potential

This is the analytical solution of the z* potential for a particle with 2(0) = 0 and
v(0) = vp. Results are shown in the accompanying Mathematica Notebook for several

values of g and the initial condition vg.
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3. The Generalization to Duffing Equation

The equation for the anharmonic oscillator that we have analyzed could be
generalized by the introduction of a parameter A, the equation could be written as

(Hale and Kocak, 1991):
d?w
dt?

+Aw+guw?=0 (11)

— i
Se=xib

Difference: Exact-asgroximation

o.oooo4r‘\\ i /n\J/"\
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-0.00002 |— ; ?
-C.00004} \\A/\“/[ ; i\‘
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Fig. 3 Difference between analytical and Delamotte approximatic

VIxj
Duffing Potenzial

Fig. 4 Duffing potential
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where now X ¢ [—1,1] is a parameter for the sign of linear force, besides g, that is
the parameter of the strength of the perturbation.

For figures 4, 5 and 6 we have chosen:

for equation 11 A = —landg = 1.

for the inital conditions .2, 2y = 0 and vy = —0.0467.

The analytical solution of equation 11 is a modification of equation 10-A:

voAllé 2

[A + 2v3g]1/4

Se(t) = Sd ([)\(,\ " 2v§g)]1/4t||%(1 - 1

10- B
,\szz\/xmg;) {04

Equation 11 could be written as a linear system with the substitution:

dw

zT=w V=" (12)
Then
j—: =y = f(z,y)
% = -z — g2° = g(z,9) (13}

We now look for the equilibrium points given by the equations:

flz,y) =0  g(z,y) =0 | (14)
" with solutions:
00 (2-2.0 (15)

If A > 0 there is only 1 equilibrium point the origin (0,0), if A < 0 there are 3
equilibrium points given by equation 15. We need to relate the stability of the
equilibriurﬁ points with the application of the Delamotte ansatz, thus we study the

stability of the 3 equilibrium points through the linearization. Let’s write the Floguet

(a[gx;,go! 8“.;;,301)

Og!ago,go! 89(%0,¥0)
z Oy

matrix:
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Fig. 5 Duffing numerial solution

Using definition 13 for f and g we obtain:

0 1
m = ) - (16)
—A—-3g22 0 |

In order to study the stability of each equilibrium point we need the eigenvalues of m

in equation 16 for each point.

my = £/ =X — 3g2? ' (17)

now we have 3 cases to analyse:
1) (0,0) my = £vV/=Xif A < 0, my = £/])] then it has 2 eigenvalues different from
0 and opposite signs and (0,0) is a saddle. | |
2) In the case A < 0 and z = :i:\/-"-;—-’\ the eigenvalues are my = =%i\/2[A] the result
is a center we can not apply the theorem to the linearization but the potential
theory say it’s a minimum or stable equilibrium point {Hale and Kocak, 1991).
. For this case the Delamotte ansatz does not work, there are several real roots for

the values of w and 2, etc.
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Fig. 6 Order 2 Delamotte approximation to Duffing

4. Numerical Conclusions

- Our notebooks on Mathematica show (but nc;t prove):

1) Convergency of Delamotte ansatz to the Fourier coefficients in the anharmonic
potential.

2) In the case A < 0, the method works for a big total energy E.

3) But as E — 0 or E < 0 there are inconsistencies not only related to Delamotte
ansatz but to the analytical method of solution. In the case of Delamotte ansatz
several real roots appear in (1.10), in the analytical case you have to choose a
proper analytical extension for equation (10-B). The real problem is near the
bifurcation £ — 0, because once you have chosen a specific ” vacuum” (minimum
of the potential) the solution could be found in the neighborhood. In the following
section we state some conclusions of our numerical work under the generic name

of Delamotte theorems.

5. Delamotte Theorems

As we have seen the Delamotte ansatz gives a very good approximation for some

kinds of differential equations. The big problems are to characterize the specific class
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of differential equations and to prove the convergency to the Fourier expansion of the
solution. We write some theorems, which give specifics implementations of Delamotte
ansatz. We divide the theorems in 2 cases:
case 1: the Hamiltonian systems with a uniqule minimum of the potential. As
we have seen these systems oscillate. a;lld the Fourier series expansion is natural (
Elsgoltz, 1975). |

case 2: dissipative systems with a unique limit cycle.

5.1. Hamiltonian Systems

A Hamiltonian system is one with a constant Hamiltonian, the energy, for this

system a potential V(x) exists and the force is written as:

_ V(@) |
F=- e (18)
then the equation 1.1 is written as:
dz 98V , _
ﬁ-*- - =0 z(0) = zy, z'(0) = vg (19)
and the energy E:
_ 1 dz, _

i1s a constant.
Theorem # 1

Let be V(2)eC?[a, b] and z(t)eC?[0,T] where T is the period of the solution and

the differential equation:

0 oV ' .
a—; + =0 x0)==z, 2'(0)=vo (19)
if V(z) = E has only two real roots a,b and only one local minimum of V(x),

e < Lmin < b; then, exist:
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A driving force; where w is a free parameter

Fans“) = -L'l:v:ng £ W‘za:ans(t) (1.4)
An expansion,
N
Zans(t) = Z 2 sin(kwt) + yi cos(kwt) (I.7)
k=1
And if z4,, is close enough,
b2| < |lzansl; 162" €l i 162" ) 2t (1.6)

I-7 is the Fourier series of the solution x(t).
Proof

Assume that equation 19 satisfy the conditions of the theorem of existence,
uniqueness and smoothness (Hale and Kocak, 1991) and that the interval {0,T]
is contained. on the maximal interval of existence of the equation. We define the

Delamotte topology in the sense that if g, feC%[0, T

llg}l = sup |g(t)]
te[0,7)

There is a technical term for Delamotte topology is called the C* topology (Hale and
Kocak, 1991):
|If = gll2 = sup ||D" f(x) - Di.‘](m)“ig_z

in other words Delamotte convergence:

He — fII < [L£1l

is convergence in the uniform norny:

sup flg(t) — f()|| < € sup |f(2)]

te[0,7) te[0,T)
as we know the uniform norm dominates the L* semi norm (Lang, 1975) and together
with the theorem (Lang, 1975) about the uniqueness of the Fourier expansion, the

Delamotte expansion is the Fourier expansion.
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See that the other conditions about the derivatives are necessary to obtain the
coefficients and the condition about the roots are in order to have a fast numerical
convergence. For example the second difference (the last term of equation I-6)
essentially say that the convergence is faster that HC; The hmitation in V(x) is

not essential for the convergence but gives to the method a practical condition when

the convergence is fast.

6. Limit Cycles

" 6.1. Lienard differential equation

In this section we use the simple nonlinear oscillations ( Smith, 1961) in order to
study the value of Delamotte approximatidn to differential equations with a unique
limit cycle.(Hale and Kocak, 1991). The Smith equations are worth to mention
because they have a formal solution in terms of elementary functions, the associated
limit cycles are algebraic curves and for some values of the parameters the differential

equation is similar to Van der Pol equation. The Lienard differential equation is:
2(t) + 2’ (1) f(z) + g(z) = 0 (21)

It is know that equation 21 has a unique stable periodic solution if:
f(x) is continuous and even, and f(0) < 0
g(x) is continuous, satisfies the Lipschitz condition, and zg(z) > 0, for 2 #£ 0
F(z) — +o0 as  — +00, respectively, where F(z) = [ f(u)du, and F(z) has a
single positive zero at & = a, while for 2 > a, F(z) increases n10110tonicélly. We

make the Smith choice:
flz)=(n+2)bz" —2a  g(z) = z[c+ (bz" — a)?] (22)

and a,b,c = w? and n are constants. The general solution is:
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cos(p + wt) (23)

z(t) = ' ‘ i 1/n
{qe‘”‘" + nbe—nat [ enedcos™ (p + wﬂ)dﬂ}
We shall study the special case when a=2, b=1, ¢=1 and n=2, in this case equation

21 is similar to Van der Pol equation:
g 4+ 42’z - 1]+ 2z +2(2z-2)2=0 (25)

The general solution to this equation is:
cos(p+1)
{ge=% + § + f5[2cos(2(p + 1)) + sin(2(p + 1))]}

where p and q are arbitrary constants. When q=0 the solution is periodic, and is

z(t) = (26)

172

easy to see that the period is T = 27 in this case we wrote equation 26 as:

f= cos(p+1)
\/%—+ 152 cos(2(p + t)) + sin(2(p + 1))]

from equation 27 we obtain the special initial conditions for the limit cycle in the

(27)

2(

case p = % .This is the case when initially the particle is in the origin and has an
initial velocity vy, since q and p are fixed vy = F2v/5 in other words the special initial

conditions for the limit cycle we choose are:
r(0)=20=0 z'(0) = vo = F2V5 (28)

this solution has period T = 27 and amplitude 2,,,, = 2.0 .
The graphic of equation 27 could be seen in the corresponding notebook. In this case

the corresponding Fourier coefficients are ¢,;:

where:
. ‘ 2 x 7
By, 2= —/ dtz(t)sin(nt) (29)
T Jo
we see that the convergency is rather slow, using the relation for the velocity implied

in the Fourier expansion:

Un ='Zn¢n (30)
1
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x(t)
Formal Solution

Fig. 7 Solution to Smith equation

since the sum of the first 11 terms give 7.4907 instead of 4.4721 and the first negative

term appears for n=9.

6.2. Delamotte method to Smith equations

Applying the external force equation 1.3 to Smith equation 21 we obtain:

sz = —-:L':;nsf(i'ans + 51‘) - g(tana + 61") +w23"“"‘ T fans (31)

_ x{t)
Delamozte aproximation
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Fig. 8 Order 4 Delamotte approximation to Smith equation
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which gives the correct answer for the Van der Pol equation and in our case:
'_41::1115(13713 - 1_) s (W2 - l)xans - xans(_xzn, = 2)2 — Fans ~0 (32)

The class of systems to which we have consider the Delamotte method is called
dissipative systems. A system olf differential equations is dissipati‘ve if whatever the
initial condition, there exist some to that for t > ¢y, x(t) the solution is éohtained
in a bounded subset. The characteristic of dissipative systems.with é unique cycle
limit is that for a speéial sét of initial conditions there is a periodic of-l)it.. this has as
a consequence that the numerical solution could becomme illstal)le, on the other hand
from equation 1.7 and the fact that Delamotte expansioln gives the limit cycle, we
can choose the a, (Delamotte, 1993) we éertainly see that in this case ﬁhe Delamotte
expansion could not be the Fourier expansion, which is unique. The problem is, what
happens when your choice of a is a number different from the Fourier coefficient, does
the expansion converge, gives the right velocity? Does the choice of a equal to the
Fourier coefficient generate a super convergent sequence?

For a dissipative differential equation system 2’ = f(z) with a unique limit cycle,
there is one Delamotte approximation which is the Fourier expansion of the periodic

orbit. All Delamotte solutions are structurally stable in relation to the limit cycle.



