On the right commutativity of loop rings

W.B. Vasantha Kandasamy
Indian Institute of Technology
Dept. of Mathematics
Madras-600 036, India.
(recibido junio 1995, aceptado diciembre 1995)

Abstract: It is proved that extra loops and central loops are conjugated closed, consequently they are G-loops. It is also proved that extra loops and central loops are M-loops.

Subject headings: loops, G-loops, M-loops

Resumen: Se prueba que anillos extra y anillos centrales son conjugadamente cerrados, consecuentemente ellos son anillos G. También se prueba que anillos extra y anillos centrales son anillos M.

Encabezados de materia: anillos, anillos G, anillos M

1. Introduction

In this paper we introduce the notion of right commutativity in loop rings study and obtain some interesting results about them. For more about loops in general please refer [1].

Definition:

- ([1] Bruck) A non empty set L is called a loop if on L is defined a binary operation '.' satisfying the following conditions:
 - (i) For all $a, b \in L$, $a.b \in L$
 - (ii) For every pair $a, b \in L$ there exists a unique x in L such that ax = b and a unique y in L such that ya = b.
 - (iii) For every $a \in L$; a.e = e.a = a where e in L is called the identity with respect to '.'.

The operation '.' defined on L in general is not associative. For more about loops in general please refer [l].

Definition 1

Let L be a loop and R a commutative ring with unity. The loop ring; RL of the loop L over the ring R consists of all finite formal sums of the form $\sum \alpha(m_i) m_i$, $m_i \in L$ and $\alpha(m_i) \in R$ satisfying the following condition:

- (1) $\sum \alpha(m_i) m_i = \sum \beta(m_i) m_i \iff \alpha(m_i) = \beta(m_i) \ \forall \ m_i \in L$
- (2) $\sum \alpha(m) m + \sum \beta(m) m = \sum (\alpha(m) + \beta(m)) m \ \forall \ m \in L$
- (3) $(\sum \alpha(m) m) (\sum \beta(m) m) = \sum_{xy=n} \gamma(n) n$, where $\gamma(n) = \sum_{xy=n} \alpha(x)\beta(y)$
- (iv) Since $1 \in L$, we have $R \subset RL$ by the natural embedding $r \longrightarrow r.1$ where 1 is the identity of L.

As we take only finite formal sums without loss in generality we can assume $\sum_{m \in L} \alpha(m) m = \sum_{i=1}^{n} \alpha_i m_i$ where n is a finite positive number. Further as $l \in R$ we have $l.L \subseteq RL$. Clearly loop rings are non associative structures with respect to the operation of multiplication.

Definition 2

Let RL be the loop ring of the loop L over a commutative ring R with unity. If for every triple $\gamma, \alpha, \beta \in RL$ we have $(\alpha\beta)$ or $\alpha(\beta\gamma) = \alpha(\gamma\beta)$, or, $\alpha\gamma)\beta$ then we call the loop ring RL to be strongly right commutative; ie. for every triple $\gamma, \alpha, \beta \in RL$ we must have

- (i) $\alpha(\beta\gamma) = \alpha(\gamma\beta)$, or, $\alpha\gamma\beta$, or,
- (ii) $(\alpha\beta)\gamma = (\alpha\gamma)\beta$, or, $\alpha(\gamma\beta)$, or,

then we say RL is strongly right commutative. The term or in general is not used in the mutually exclusive sense.

Proposition 3

Every strongly right commutative loop ring RL is commutative.

Proof

Obvious from the fact for every triple γ , α , $\beta \epsilon RL$ we have $\alpha \beta = \beta \alpha$, $\alpha \gamma = \gamma \alpha$ and $\beta \gamma = \gamma \beta$ where one of α , or, β , or γ is assumed to be the unit of the loop ring RL. Hence every pair is commutative.

Proposition 4

Let RL be a strongly right commutative loop ring of the loop L over a ring R. Then the loop L is commutative.

Proof

Obvious from the fact RL is commutative so L RL must also be commutative.

Remark

On similar lines one can define strongly left commutative loop rings as $(\alpha\beta)\gamma = (\beta\alpha)\gamma$, or, $\beta(\alpha\gamma)$ for every triple γ , alpha, beta ϵ L.

Definition 5

Let RL be the loop ring of the loop L over the ring R. If for every pair of elements $\alpha, \beta \in R$ there exists an element $\gamma \in R$ 0, 1 such that $\gamma(\alpha\beta)$, or, $(\gamma\alpha)\beta = (\gamma\beta)\alpha$, or, $\gamma(\beta\alpha)$ then the loop ring RL is said to be right commutative.

Remark

- (i) $\gamma(\alpha\beta) = \gamma(\beta\alpha)$, or, $(\gamma\beta)\alpha$ or
- (ii) $(\gamma \alpha)\beta$ = $\gamma(\beta \alpha)$, or, $(\gamma \beta)\alpha$. Similarly one can define left commutative loop rings.

Proposition 6

Let R be a commutative ring with unity and L a non commutative loop. If the loop ring RL is a right commutative loop ring then RL has non trivial divisor of zero.

Proof

Clearly since RL is a non commutative loop ring we have $\alpha\beta = \beta\alpha$ for some pair of elements $\alpha, \beta \in L$. If in addition RL is right commutative we have $\alpha\gamma \in RL$ ($\gamma \neq 0$, and $\gamma \neq 1$) such that $\gamma(\alpha\beta) = \gamma(\beta\alpha)$ so that $\gamma(\alpha\beta - \beta\alpha) = 0$. Hence the claim.

Proposition 7

Let RL be the loop ring of the loop L over the ring R. If L is a strongly right commutative ring then RL is a right commutative ring.

Proof

Obvious from the definition; if RL is strongly right commutative then it is right commutative.

Theorem 8

Let RL be a right commutative loop ring having no zero divisor. Then RL is commutative.

Proof

If Rl is right commutative loop ring then $\gamma(\alpha\beta - \beta\alpha) = 0$, $\gamma \neq 0$, or, 1 have $\alpha\beta = \beta\alpha$ if RL has no divisor of zero. Hence RL must be commutative.

Definition 9

Let RL be the loop ring. RL is said to be weakly right commutative if for every pair of elements α , $\beta \epsilon RL$ there exists $a\gamma \epsilon RL$ such that

(i)
$$\gamma(\alpha\beta) = (\gamma\beta)\alpha$$
, or, $\gamma(\beta\alpha)$

(ii)
$$(\gamma \alpha)\beta = \gamma(\beta \alpha)$$
, or, $(\gamma \beta)\alpha$).

Theorem 10

Let RL be a right commutative loop ring then RL is weakly right commutative.

Proof

Obvious from the definition.

Remark

Converse is not true in general.

Theorem 11

Every loop ring RL is weakly right commutative.

Proof

Clearly for every pair α , $\beta \in RL$ one can choose $\gamma = 0$ in RL so that $\gamma \cdot \alpha \beta = \gamma \beta \alpha = 0$. Hence the claim.

Definition 12

Let RL be the loop ring of the loop L over R. RL is said to be strictly right commutative if for every pair of elements α , $\beta \in RL$ we have $\alpha \gamma \in RL \setminus 0$, 1 such that $\gamma(\alpha \beta) = \gamma(\beta \alpha)$, or, $(\gamma \alpha)\beta = (\gamma \beta)\alpha$.

Theorem 13

Every strictly right commutative loop ring is right commutative.

Proof

Obvious.

Theorem 14

Every strongly right commutative loop ring need not be strictly right commutative ring.

Proof

By the very definition of both notions the result is obvious.

Problem

Characterize those loop rings which are

- (i) strictly right commutative;
- (ii) right commutative;
- (iii) strongly right commutative.

2. References

[1]) R.H. Bruck, A survey of Binary systems, Springer Verlag, 1968.