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Abstract

Using simple arguments, accessible to students of advanced calculus with an interest
in Mathematics, we show the equivalence of several criteria, scattered in the literature,
to classify the critical points of functions of two or three variables when restricted to
side conditions.

Resumen

Usando argumentos elementales, accesibles aiun para estudiantes de calculo avan-
zado con un cierto interés en Matematicas, mostramos la equivalencia de varios crite-
rios, esparcidos en la literatura, para clasificar los puntos criticos de funciones de dos
o tres variables cuando estdn sujetas a condiciones, o ligaduras.
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I. Introduction

One can hardly overestimate the usefulness of optimization in all subjects in which math-
ematics is applied. With this in mind, we feel that a proper understanding of methods to
classify the extrema of functions subject to side conditions should be included in any typical
calculus, or real analysis book. However, in most books the subject is completely left aside,
or briefly discussed with a barely convincing “hand waving” argument. A likely reason for
this is that some general criteria are a bit hard to apply, others are somewhat cumbersome
to state, and, worse, they seem unrelated at first sight. Thus, in this paper, we concentrate
on functions of two or three variables where matters can be clarified using simple arguments,
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with mathematics from the toolkit of an advanced calculus student. This, therefore, is an
expository paper wherein we focus on the ideas, rather than the technicalities necessary
to gain generality; we state several reformulations of Lagrange’s criterion to determine the
nature of extrema in the presence of side conditions, and prove that they are equivalent.

Even though the method of Lagrange multipliers to obtain the extrema of functions of
several variables, subject to some constraints, can be proved from geometrical considerations,
algebraic arguments, or analytic reasoning, for the sake of completeness, and to set our
notation, here we use linear algebra ideas, as found in classic texts such as [6, Section 3.61],
to establish Lagrange’s technique. In what follows, we assume that all functions belong to
C? in their domain, so all the partial derivatives up to order three exist and are continuous
in their domain.

Suppose that we seek the extreme points of the function w = f(z,y, ) on the curve given
by the equations

{¢‘(w,y,2) =0, 1)

¢*(z,y,2) =0.

For the Lagrange method to work, we need to assume that the functions ¢' and ¢* are inde-
pendent in some sense at a critical point Zy := (2o, Yo, 20) of f subject to these constraints.
One usually requires the vectors V¢'(Zy) and V¢?*(Zp) to be linearly independent. To be
concrete, we assume that, from the equations (1.1), we can solve, for instance, for z and y
in terms of z; according to the implicit function theorem, it is enough to assume that the
Jacobian ag;(s;;s; ) does not vanish in a neighborhood of #y. A necessary condition for Zy to
be an extremum of the problem is thus

B dw dx

. L\ dy .
0= ——(20) = fa@0) 7 (20) + fu(Z0) 7_(20) + f2(Zo)-

Differentiating (1.1) with respect to z yields
L. dx N -
0 = ¢L(&0) 7 (0) + ¢, (%) 72 (20) + 0.(%0),
L .dx N -
0 = ¢%(Zo) 7 (20) + ¢Qy($0)d—Z(ZO) + ¢ (Zo).
These three equations show that the linear system AZ = 0, where A is the matrix

fo(Zo)  fy(Zo)  fa(Zo)
A= | ¢L(Z0) ¢,(T0) ¢L(Z0o) | ,
¢%(Zo) ¢%,(Zo) ¢ (F0)

has a nontrivial solution, so that det A = 0. Since the linear system

fo(Zo) a + ¢ (Zo) b+ ¢%(Zo) c = 0
fy(Zo) a+ ¢, (Zo) b+ ¢, (Zo) c = 0 (1.2)
f:(Zo) a+ ¢°(Zo) b+ ¢°(Zo) c = 0
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has the form Bz = 0, with B = A? and so det B = det A = 0. In particular, the system (1.2)

has also non-trivial solutions (a,b,¢). Furthermore, since aéﬁ,j)ﬁ L(&) # 0 it follows that
a # 0. Thus, there exist real numbers A and « such that

[=(Zo) + A dL(Zo) +7 % (Z) =0
Fu(@o) + A ¢}, (To) + 7 ¢, (o) =0 (1.3)
f:(Zo) + A @ (Zo) + v ¢%(Zo) = 0.

The conclusion is that the extrema of our problem are either critical points of the associated
Lagrange function

F(z,y,2;\,7) := f(z,y,2) + Ao (2,9, 2) + 76 (2,9, 2);

that is, points that satisfy (1.1) and (1.3), or points where ¢! and ¢* are not independent,
which are, then, singular points of the curve (1.1).

Similar considerations hold for a function of n variables when restricted to m conditions,
however to obtain a square matrix A we require m < n. This is certainly the case when
there is only one restriction, and the function is either of two or three variables, which,
together with the case treated above, are the usual cases considered in calculus courses. A
detailed analytical proof of Lagrange’s method to find the critical points of functions subject
to constraints can be found in any standard textbook such as [1] or [2].

I1 Classification of extrema of functions of two variables on a curve

Lagrange provided the following criterion to classify extrema of functions subject to side
conditions [9]:

Theorem 2.1. Let Zy € R™ be a critical point of a smooth function w = f(Z) subject to the
constraints

¢'(Z) =0,
: (2.1)
o™ (%) =0,
wherem < n and ¢',...,¢™ are also smooth. Assume that V¢'(Zy), ..., Vo™ (To) are linearly

independent vectors in R™, and that F is the associated Lagrange function.

i-)  If the Hessian HF (:i'o)(I_i) > 0, at those points h # 0 that satisfy the linear system of
equations

V(@) - h =0,
: (2.2)
V¢ (&) - h =0,

then f attains a minimum at Z.

ii-) If HF(Zo)(h) < 0, at those points h # 0 satisfying (2.2), then f attains a mazimum at
Z.
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iii-) If HF (%) takes strictly positive values at some points h satisfying (2.2) and strictly
negative values at other points of the same set, then f does not have an extremum
at .’i"o.

Thus, the crux of the matter is to determine the sign of the quadratic form HF(Zj) on
a certain subset of R™. As in the case with no constraints, the several reformulations of
Lagrange’s criterion are basically divided into two types: those that accomplish this task
using determinants, much in the style of using Sylvester’s criterion to determine when a
quadratic form is definite, and those that use other, somewhat less methodical, algebraic
manipulations, such as those that compress to the constrained manifold. It is likely that
these criteria are cast into oblivion, or simply ignored, because they are not easy to apply in
concrete examples, especially in four or higher dimensions. Furthermore, some reformulations
are cumbersome even to state, as one must keep track of several signs, depending on the
dimension, and the number of constraints.

To motivate the whole enterprise, we start by considering the simplest case, that is,
when Zy = (zo,y0) is a critical point of the Lagrange function associated with the function
w = f(x,y), restricted to a curve ¢(z,y) = 0. The first idea would be to use this equation to
solve one variable in terms of the other, to consider f as a function of just one variable, and
to use the test for such functions. In practice, however, this is usually difficult, as ¢(z,y) =0
might be a complicated equation. Lagrange proposed instead to use Taylor’s formula:

F(xo 4 h,yo + k; A) = F(20,90; \) + VF(20,Y0; A) - (h, k) + $HF (x0,90; A) (h, k), (2.3)

where the symbol ~ here means that one is assuming the error to be small enough to be
neglected, and HF denotes the Hessian, or second differential, of the associated Lagrange
function F. As 7 is an extremum, and both (z¢,yo) and (z¢ + h,yo + k) are points on the
curve, (2.3) becomes

f(xo+h,yo + k) — f(0,90) = 3HF (0, y0; \) (h, k)
1
= 5 (Fual@) B + Fy (@) B + 2P0 (8) hE).  (24)
Lagrange noticed that as one is interested only in those points (zg + h,yo + k) that lie on

the curve ¢(z,y) = 0, we should consider the condition
Vé(zo,y0) - (h,k) = 0. (2.5)

At first sight, it might seen unnatural to consider (2.5), even though it is the equation of
the tangent line of the curve at #,, and intuitively we should consider only such tangent
directions. The point is that Lagrange [9], to develop his method, applied Taylor’s theorem
to the side condition ¢(z¢ + h,yo + k) = 0 to obtain

0 = ¢z(w0,Y0) h + ¢y(0,%0) k + 12(h, k), (2.6)

in which v, denotes the terms of second and higher order. Furthermore, using the fact
that the curve ¢(z,y) = 0 is not singular at Zp, he assumed that ¢.(Zp) # 0, and used
equation (2.6) to write h as a function of k, to study the difference f(zo+h,yo+k)— f(zo, o)
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as a function of the variable k. In those days, to solve an equation, or a system of equations,
like (2.6), it was customary to start by setting the linear terms equal to zero; next, the
approximate solution so obtained was plugged into the remaining terms to consider again
linear terms of the new functions, and so on. Equation (2.5) is precisely the linear term
of (2.6). This result explains the appearance of the tangent directions (2.2) of the manifold
determined by (2.1) when deciding the nature of a critical point of a problem with constraints.

A detailed modern proof of Lagrange’s criterion can be found, for instance, in [3]. But
for the reader’s convenience, we shall provide elementary proofs for the cases of functions of
two or three variables.

To reformulate Theorem 2.1, in the case under discussion, notice that if ¢, # 0 (to
lighten the notation, from now on, all partial derivatives are understood to be evaluated at
the critical point Zy), then (2.5) entails

Py
h=—"Yk
¢r

and, since HF(Zp) is homogeneous of degree two, the right hand side of (2.4) is
HF (%) (h,k) = k* (¢z) " HF (o) (— &y, ¢.)
= K (82) 7 [ Fax (94)° + Fiy (62)° = 2Fy 62, (2.7)
=~k ()% M,

in which M is the determinant

F, T F. Ty ¢z
M = \F,, Fy,, &, .
¢z Py 0

When ¢, = 0, (2.5) implies k& = 0, since V¢(Zy) # 0, and the right hand side of (2.4)
becomes
HF (z0,90)(h, k) = Fop h* = =% (¢,) > M.

The sign of HF(zg,yo)(h, k), on those points at which Vo (Zy) - (h, k) = 0, is thus deter-
mined by the Hessian determinant M, also called the bordered determinant. Note that
the tangent space, in the case under consideration, is one-dimensional, and M is precisely
the value of the Hessian HF(zo,y0) at the point (—¢y(Zo), ¢=(Zo)), which satisfies (2.5).
Unsurprisingly, then, Lagrange’s criterion, for the case at hand, is equivalent to a criterion
in terms of the bordered determinant M. In the following theorem we state this reformula-
tion and prove it using elementary arguments; indeed, based on the key observation (2.7),
we prove at the same time Lagrange’s criterion.

Theorem 2.2. If &y is a critical point of the Lagrange function associated to w = f(x,y)

and the side condition ¢(z,y) =0, and Vo(Zy) # 0, then
i-)  f attains a minimum at o when M < 0,

ii-)  f attains a mazimum at T, when M > 0,
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iii-) when M =0, further analysis is needed to classify the critical point Zy.

Proof. Without loss of generality we assume that ¢, # 0. By the implicit function theorem,
there exist a function z = g(y) satisfying d)(g(y), y) =0, in a neighborhood of 7y, then

d
O—d)I +¢y, ) d—z: zy
and d? d [d
g g 2 -1 —2
dy2 dy (d ) [ ¢yr¢y ¢yy¢z - d’zz (¢y) (¢z) ] (¢z)

To classify the critical point yq of the function w(y) = f(g(y),y), we need to compute its
second derivative

d*w d dw
— [fzr (¢y) - 2fy1‘¢y¢z + fyy (¢1‘) + 2£I ¢yz¢y¢z
fz _ ﬁ 2 -2
L 0 - Lo 07 007

Since Zj is a critical point of the associated Lagrange’s function, f.(Zp) + A¢.(Zp) = 0, in
particular A = — f(Zo) /¢.(Zo), therefore

d*w 2 2
d_yz - [(f:cz + Aaz) (By)” + (fuy + Adyy) (¢2)

— 2(fye + Adyz) ¢y¢z] (¢2)"

= [Faz (6,)" + Fuyy ($2)" — 2F a0, 62] (62)
= (¢<) " HF(Z0) (—=¢y, 6x) = — (¢2) " M,
upon using (2.7). Thus, the theorem follows from the second derivative test for the function

w(y) = f(9(y),y). 0

To illustrate the lack of a criterion when M = 0, we analyze the following examples.
Consider the function f(z,y) = (z + y)* on the circle 2% + y* = 2. The critical points are
the solutions to the system of equations

4(x+1y)* + 2\ =0,
4z +y)*+ 2y =0, (2.8)
2+ —2=0,

which, turn out to be (1,—1; A =0), (=1,1; A =0), (1,1) and (—1,—1). In this case,

M = —48(z — y)*(z + y)* — 8A(z* + ),
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so M vanishes at the first two points. Moreover,

f(lv_l) = f(_la 1) =0< f(Ivy);

therefore f attains a minimum at each of these points.

By contrast, if f(z,y) = (z + y)?, the critical points of f, when restricted to the same
circle, are obtained by replacing 4(z + y)* by 3(z + y)? in (2.8), therefore the solutions are
exactly the same as before. Moreover,

M = —24(z — y)*(xz +y) — 8\ (2% + o),

so, again, M(1,—1;A =0) =0 = M(-1,1;A = 0). Once more, f(1,—-1) = f(—1,1) = 0.
Nevertheless, f is positive on the half plane to the right of the line y = —z, and negative on
the left half plane. Thus, f attains neither a maximum nor a minimum at these two points.

III. Classification of extrema of functions of three variables on a surface

Assume now that Zy := (xg, yo, 20) is a critical point of the function w = f(z,y, 2) on the
surface ¢(z,y,2) = 0. On account of Lagrange’s criterion, to ascertain the nature of Zj
we need to determine the sign of HF(z,yo, 20; A)(h, k,1), at those points (h, k,[) such that
Vo(Zy) - (h,k,1) = 0. As we are assuming that V¢(Zy) # 0, we may suppose, for instance,
that ¢.(Zp) # 0. Then

h = % k— % L
Gz Gz
and it is easy to verify that
HF(ﬂUo’ Yo, Zo)(h, k, l) = (¢z)_2 [M2 k* + N, ?+ 2L, kl], (3-1)

where

M = 2F3y 20y — Fiz (¢y)2 — Fyy (¢x)2 )
Ny :=2F,. 0,0, — Fy (¢z)2 — Fe. (¢I)2 ) (3-2)
L2 = Fzy¢z¢z + F:rz¢:c¢y - Fyz (¢z)2 - Fzz¢y¢z .

In particular, notice that

is the same determinant that we found in section 2, but now the function F' also depends on
the variable z. Moreover, N> is also the same determinant but with the partial derivatives
with respect to y replaced by those with respect to z.

The sign of the quadratic form q(k,l) := My k* + N21? + 2Ly kl is determined by the
signs of M, and MyN, — L2. Indeed, on completing the squares, we obtain

q(k,1) = M ((M2 k+ Lyl)? + (My No — L2) 12). (3.3)
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Thus, ¢(k,1) has a definite sign when MyN, — L% > 0. For this to happen M, and N, must

have the same sign.
When M, =0,

alk, 1) = Ny ((No U+ Ly k) = (L2 K)?)),
or q(k,l) = 2Ly kl if N, also vanishes. Clearly, g(k,!) now takes both positive and negative

values whenever MyN, — L2 < 0.
Now, a simple computation gives

MyN; — L = — (¢:)" Ms, (34)
where Mj; is again the Hessian determinant

FII F.’L'y FCEZ ¢I
Fyy F,, F. ¢
M — Ty yy yz y .
3 F.’L‘Z Fyz FZZ ¢Z
¢z Wy @2 O

The equivalent of (2.7) thus takes the form

(Myl+ Lo k)? My

HF h,k.l)=—
(1'0,310,20)( y vy ) (¢x)2 M2 + M2

(3.5)

It is therefore clear that, in the problem under consideration, Lagrange’s criterion is
equivalent to a criterion in terms of the bordered determinants M, and M. The precise
reformulation is the content of the next theorem, in which we also prove, using the simple
computations leading to (3.5), that Lagrange’s criterion does hold for this particular case
too.

Similar considerations apply when ¢, = 0, by changing the role of the variables. It is
important to keep in mind that the Hessian determines the sign of the left hand side of the
equivalent of (2.4) only when the quadratic form ¢ is definite, otherwise, as in the problems
without constraints, higher derivatives must be considered. For a complete discussion on
this point, see the classic book by Hancock [7].

Theorem 3.1. Assume that ¥y is a critical point of the associated Lagrange function of
w = f(z,y, 2) subject to the constraint ¢(z,y,z) =0, and that V@(Zo) # 0. Then

i-)  if Mo <0 and M3 <0, f attains a minimum at o,
ii-) if My >0 and M3 <0, f attains a marimum at T,
iii-) if M3 > 0, f does not attain either a marimum or a minimum at T,

iv-) if M3 =0, further analysis is necessary to determine the nature of Zy.
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Proof. The idea is to deduce this theorem from the usual criteria in which there is no
constraint for a function of two variables. We may assume that ¢, (%) # 0. By the implicit
function theorem, there exists a function z = g(y, z) satisfying gb(g(y,z),y,z) =0in a
neighborhood of the point (yo, 2o), then

by

0=0¢z9, +90y, and 0= ¢.g.+¢., so0 gy:_¢_ and g, =

6.

5 (3.6)

Moreover,

Gy = (9y), = (2042048 — by (62)° — daz (4)7] ()2,
02 = (9.), = [20.20:00 — 0. (02)° — b2 (0.)°] (02) 2, (3.7)
gzy - (gy)z = [¢yz¢z¢z - ¢zy (¢1‘)2 - ¢Iz¢y¢z + ¢z1¢y¢z] (¢z)_3 .

It is clear that Z; is a critical point for the problem if (yg, 2p) is a critical point for the function
w(y,2) = f(9(y,2),y,2). Thus, according to the theory of extrema without constraints, we
must compute its second order partial derivatives. At first order, we get

wy = fz9,+f, and w,= f.g.+ f..
Hence
A= wyy (Yo, 20) = frx (94)? + 2fyaly + F29yy + Fus
B = w.y (Y0, 20) = freGy9: t foxGy + f2Gey + fye: + fov,
C = w.. (Yo, 20) = faz (9:)° + 2fea0s + feGez + fo-
Using (3.6) and (3.7)

A= [fm (60)° — 26,0 (8)? — 2 (fyz¢y¢z - £¢yz¢y¢x)
T f (60) — q{—sb (%)ﬂ (62)2.

As T is a critical point of the associated Lagrange function, i.e., it satisfies the equivalent
of (1.3), fz(Zo) + Ap(Zo) = 0, we see that A = — f.(Zo)/¢=(Zo). In particular, we find

A= |(Fex + 2022) (80)° + (fuy + M) (82)" = 2 (fur + Ad4e) 99| (6)
= [Faz (0)° + Foy (92)" = 2Fyey@x] (62) " = —Ma (¢) "
(Have a look at (3.1) and (3.2).) Identical computations give
C — [Fzr (¢z)2 + Fzz (¢z)2 - 2Fzz¢z¢z] (¢z)_2 - _N2 (¢1:)_2 )
B = [Fru:y + Fay (62)” = Fuaybs — Fyu6:0s] (6) " = —La (62) "
Thus, by (3.4)
A:=AC — B? = (MyNy — L2) (¢.) " = —M3 (62) 2.

As the sign of A is the opposite to that of M,, and that of A is opposite to that of Mj,
the theorem clearly follows from the standard second-order derivative test for the function

w(y,2) = f(9(y,2),9,2). 0

Ciencia y Ciencia y Tecnologia, 26(1 y 2): 87-100, 2010 — ISSN: 0378-0524 95



FIGUEROA Y PROTTI: On the classification of constrained extrema.

The attentive reader would have noticed that the proofs of theorems 2.2 and 3.1 are
identical.

We point out that, when M3 < 0 the three principal subdeterminants: M,, N; and P,
obtained from M3 on eliminating, respectively, the third, the second and the first row and
column, all have the same sign, so we can use any of them in the criteria above. Indeed, we
saw already that M, and N, have the same sign, and, had we chosen to use the condition
V(%) - (hyk,1) = 0 to solve, say, k instead of h, we would obtain that also M, and P,
have the same sign. This conclusion can alternatively be obtained from the general theory
of quadratic forms. It so happens that a quadratic form is positive definite if, and only if,
all principal subdeterminants are strictly positive; for a simple proof of this fact, sometimes
known as Sylvester’s criterion, see, for instance, [3], or any linear algebra textbook such
as [4] or [8]. In [5] there is a very complete discussion of this point. In particular, based on
Gaussian elimination, Sylvester’s criterion is improved by showing that if all leading principal
subdeterminants of a n X n matrix A (i.e., those obtained by eliminating the last r rows and
columns of A for r = 1,...,n) are positive, then all principal subdeterminants of A are also
positive.

The examples at the end of the previous section can be slightly modified to provide an
illustration of the lack of criteria when M3 = 0. Consider, indeed, the function f(z,y,z2) =
(x +y+ 2)", where n > 3 is an integer, subject to the condition z% + y? + 22 = 3. It is easy
to check that the critical points are (1,1,1), (—1,—1,—1), together with all the points of

z+y+2=0
?+y +22=3
Lagrange multiplier is A = 0, and one readily sees that M3 vanishes at these points. When
n is even, we know that

the great circle C : { } Furthermore, for all points on C the corresponding

f(x0,90,20) =0 < f(z,y,2),

for any (z,y, z) and any (zo, Yo, 20) in C, therefore f attains a minimum at each point of C.
On the other hand, when n is odd, f(z,y,2) > 0 on the open half space above the plane
x+y+ 2z =0, whereas f(z,y,z) < 0 on the open half space below it, therefore f attains
neither a maximum nor a minimum at the points of C.

IV. Classification of extrema of functions of three variables on a curve

Let Zy := (%o, Yo, 20) be a critical point of the function w = f(z,y,z) on the curve (1.1),
and assume that V¢'(Zy) and V¢*(Zy) are linearly independent. The classification of Z,
depends on the sign of HF(xzq,yo, 20)(h, k,1), subject to the linear conditions

(4.1)

v¢l(x0’ Yo, 20) . (h’7 k) l) = O,
V¢Q(ZE0, Yo, ZO) : (h7 ka l) =0.
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If ag;(sl,;s ) £ 0, say, then, by Cramer’s rule, the solution of (4.1) is
P, &y 9(¢', ) o, 0 9(¢', )
_ 19 i, 0(zy) __ 9% ¢ __0(z,2)
S P ' I RO I v ) I X
% 9y 9(z,y) % 9 9(z,y)

Using that HF () is homogeneous of degree two, one arrives, after a rather long but easy
computation, at the fundamental result:

_ (NG P\ (A A O
Fl@o)(h, k1) =1 (a(x,w) HE(@) (‘ 0y 0@2) a(x,w)

= (%) N M, (4.2)

in which M is now the Hessian determinant

Fa::z: Fa:y Fa:z ; ¢i;:

Fzy Fyy Fyz ;/ i;/
M = Fzz Fyz Fzz {z 2:’: :

¢ ¢, ¢. 0 0
oz ¢y, ¢. 0 0

In other words, the sign of the quadratic form H F(zo, Yo, 20)(h, k, ), on those points satisfy-
ing (4.1), is the same as the sign of M, The equivalent reformulation of Lagrange’s criterion
so obtained. is given in the next theorem. When 8’(9‘;(5;4’ ) =0 instead, one clearly obtains
the same result by changing the roles of the variables, since one of the three Jacobians of ¢’

and ¢? does not vanish.

Theorem 4.1. Suppose that Ty is a critical point of the Lagrange function associated with
w = f(z,y,z) with the side conditions ¢'(x,y,2) = 0 and ¢*(z,y,z) = 0, and that V¢'(Zp)
and V¢*(Zy) are linearly independent. Then

i-)  if M >0, f attains a minimum at Ty,
ii-) if M <0, f attains a mazimum at %,

iii-) when M =0, further considerations are required to classify the critical point Zy.

Proof. This theorem follows from the second derivative test for a function of one variable,
upon using the same argument as in the proof of theorem 2.2, or theorem 3.1, and taking
into consideration the key result (4.2). Thus, we focus on the third assertion of the theorem.
Let f(z,y,2) = (z —y + 2)", ¢'(2,y,2) = 22 + y*> + 22 — 2 and ¢*(z,9,2) = —x + ¥y + 2.
The conditions determlne a great circle C. The critical points of this particular problem are
(L, -8 28y (B 523y (11,0) and (—1,-1,0). We find that M(1,1,0) = 0 and
M(—1,-1,0) =0. Now, f Vanishes at (1,1,0) and (—1,—1,0), and since f is positive when
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n is even, it follows that f attains minima at (1,1,0) and (—1, —1,0), in those cases. On the
other hand, when n is odd, notice that in the half circle of C from (1,1,0) to (—1,—1,0),
when one goes through C clockwise if regarded from the point (—9,9,9), f is positive because
both z > 0 and  — y > 0 on those points, whereas on the arc from (—1,—1,0) to (1,1,0),
z < 0and x—y < 0, so f is negative. Therefore f attains neither a maximum nor a minimum
at (1,1,0), and likewise at (—1,—1,0). O

Naturally, theorems 2.2, 3.1 and 4.1 can be generalized to classify the critical points of
functions of n variables subject to m conditions, provided m < n. All that is required is a
careful study of the sign of the quadratic forms under the presence of homogeneous linear
conditions; which turns out to depend only on the dimension, and the sign of several Hessian
determinants, similar to those considered above. As far as we know, the first criterion related
to Hessian determinants was given by Hancock in 1917 [7, section 89]. Hancock, however,
did not write explicitly the Hessian determinants, but rather gave his criterion in terms of
the signs of the coefficients of certain polynomials of a variable e:

Theorem 4.2 (Hancock). Under the same hypothesis of theorem 2.1, consider the polyno-
mial of degree n —m given by

1 m

FIIII —€ FIIIQ e lezn 0 T1
1 m

FIQII FIQ-"-‘Q —€ - FIQIn. 9 e o)
D — ... — 1 .. m

Pn,m(e) T FInIl FInIQ FI'nI'n € ¢In ¢ Tnl| "
1 1 1

- - e e 0 e 0
ml‘l mIQ v '"In 0 e 0

i-)  If the coefficients of P, (e) alternate signs, f attains a minimum at Z.
ii-)  If the coefficients of P, ,,(e) have all the same sign, f attains a marimum at Z.

One can easily verify that

Poi(e) = [(%)2 + (¢y)2] e+ M,

Pra(e) = = [(¢:)" + (93)" + (6.)°] € = (Ma+ Ny + Py) e+ My,
A9 ¢\, (98¢0, (9@ ¢Y)\*
P. =—||— —_ —_ .
sale) [( oy ) T owa ) T oma ) | M
Thus, a careful bookkeeping shows that Hancock’s criterion and the criterion in terms of
the Hessian determinants are equivalent, at least for the cases considered above; the main
difference being that Hancock emphasized the symmetry of the variables, as each plays the
same role in all coefficients of the polynomials F, ,,. For instance, bearing in mind that M,,

N, and P, have the same sign when the quadratic form ¢ in (3.3) (or one of its equivalent
forms) is definite, we see that Hancock’s criterion entails that f attains a minimum at
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To when M, < 0 and M3 < 0, and a maximum if My > 0 and M3 < 0, in agreement with
theorem 3.1. It is interesting to point out that Caratheodory, in 1935 [3], gave a rigorous proof
of Lagrange’s criterion using the polynomials P, ,,, but did not write an explicit criterion,
such as Hancock’s or the one in terms of bordered determinants.

There are several ways to implement Lagrange’s criterion directly. When there are m

constraints, the linear independence of the vectors V¢'(Zy), ..., V¢™(Z;) means that the
solution space of (2.2) has dimension n —m. If ¥y, ...,7,_,, is a basis of such vector space,
and

F:rla:l et F:rla:n

Frzy -+ Frna,

so that HF(Zo)(h) = h - Nh, then
HF(fo)(hlﬁl + -+ h’n—mll_;n—m) e _'.,; ‘ N’l_)'] hzh,

in other words, HF(Zy)(h1v1 + - -+ + hy—mUpn—m) may be regarded as the quadratic form in
R™™™ associated with the symmetric matrix

U1 - N v1-Nvg --+ 0Nt

K — . . :
Upom - NUy Uppn - NUy -+ Uppn NUpn

There are at least two possible ways to determine the sign of this new quadratic form: one

can use Sylvester criteria in terms of the principal minors of K, see [4] or [5], or one can look

at the signs of the eigenvalues of K [1].

However, quite often in practice, especially in lower dimensions, it is easier to use the
system (2.2) to solve n — m of the h; in terms of the remaining h;; to plug these relations
into H F(a‘:’o)(l_i), which amounts to obtaining the quadratic form associated to K; and to
perform simple algebraic manipulations on this new quadratic form, such as completing the
squares, to analyze directly the sign of this quadratic form, much in the spirit of reducing
a quadratic form to its canonical form, which is what is behind all these criteria and, in a
way, was Lagrange’s original idea.
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