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Abstract

A Quasi Steady State Simulator (QSSS) for long term voltage stability assessment has been
developed, tested and verified in Matlab. Theory and modelling assumptions behind QSSS
are explained, including many elements present in long term voltage stability scenarios. The
software was developed to perform large contingencies for N-bus systems with classical
representation of generators and motors in stability studies, including simple control
models of Automatic Voltage Regulators (AVR), Overexcitation Limiters (OEL) and Load
Tap Changer (LTC). The simulator was finally compared to full time domain simulations in
small power systems, showing good accuracy and low computational efforts. It was found
that QSSS is able to follow the long term evolution of voltages when the system is still short
term stable after each discrete change.

Resumen

Un simulador cuasi-estacionario se desarrollé (QSSS: Quasi Steady State Simulator, por sus
siglas en Inglés), prob6 y verificé en Matlab. La teoria y las suposiciones del modelaje detras
del QSSS se explicaron incluyendo la mayoria de elementos presentes en los escenarios de
estabilidad de tension de largo alcance. El software desarrollado para evaluar grandes
contingencias, para un sistema de N-barras con la representacion clasica de generadores y
motores en los estudios de estabilidad, incluyé modelos de control sencillos de reguladores
automaticos de tension (AVR: Automatic Voltage Regulators, por sus siglas en Inglés),
limitadores de sobrexcitacion (OEL: Overexcitation Limiters, por sus siglas en Inglés) e
intercambiadores en derivaciéon bajo carga (LTC: Load Tap Changer, por sus siglas en
Inglés). El simulador se compard con simulaciones detalladas, en pequefios sistemas de
potencia, mostrando una buena exactitud y bajo esfuerzo computacional. Se encontrd que el
QSSS es capaz de seguir la evolucion de las tensiones en el largo plazo, cuando el sistema
todavia permanece estable en el corto plazo, después de cada cambio discreto.
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L. INTRODUCTION

Incidents of power system blackouts have shown the vulnerability of economic societies to
failures [1], [2], [3]. As a consequence, plenty research has been carried out to find ways to reduce
major effects caused by power system disturbances.

Computer simulations are carried out to study how power systems behave under
contingency conditions. They are used to make decisions during the planning and operating state
[4], so they have to be accurate enough to describe the system, while maintaining computational
efficiency and speed.

Different simulations require large memory space and computational time to perform their
calculations, especially in long term dynamic studies. Because of this, many techniques have been
used to reduce computational steps based on matrix sparsity techniques, and modeling
simplifications [5].

This paper focuses on a simulation tool named Quasi Steady-State Simulation (QSSS) and it is
used for long term voltage stability assessment [6]. The main benefit of QSSS is the substantial
reduction of computational effort without compromising significant accuracy of long term
simulations. This paper presents the methodology of QSSS and the required equations to develop
the software in Matlab.

In the Quasi-Steady State approach, time domain simulations are simplified by replacing
the short term dynamics by their equilibrium points. In fact, the method concentrates on long term
instability mechanisms driven by long term equipment actions.

The first part of this paper provides an introduction to voltage stability including definition
and classification stated in the open literature. Then, long term voltage stability assessment is
briefly explained with an explanation of the quasi-steady state methodology. Assumptions and
simplifications for equipment such as generators, motors and loads are then presented including
control actions of Automatic Voltage Regulators (AVR), Overexcitation Limiters (OEL) and Load
Tap Changer (LTC) Transformers. Finally, the validation of the software is carried out for two
small power systems comparing the simulator results with full time simulations in IPSA+, a
commercial software package.

II. LITERATURE REVIEW
Voltage Stability

Power systems stability concerns with the ability of a power system to remain in
equilibrium operation when subjected to disturbances. To have a better understanding, system
stability was classified into three categories according to physical nature: rotor angle, frequency or
voltage stability [7]. This paper focuses on the latter one.

A. Definition and Classification

There are multiple and similar definitions for voltage stability, but they usually refer to the
ability of a power system to maintain voltages within permissible values in all buses under normal
operating conditions or after being subjected to a disturbance. In other words, a post-disturbance
system is considered voltage stable if voltages near loads are similar to the initial
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conditions [1], [7].

Depending on the severity of the disturbance, voltage stability is classified into large-
disturbance and small-disturbance voltage stability [2]. The first one corresponds to circuit
outages, loss of generations or short circuits and the latter one is related to small perturbations in
the system such as incremental changes in system loads.

The absence of voltage stability is known as voltage instability, which occurs when load
restoration draws more power than the capability of the transmission and generation system [6]. It
is characterized as an aperiodic and progressive decrease (or rise) of voltages in a portion of the
system.

Several factors contribute to voltage instability including [1], [2]:

*  Large loading conditions of transmission systems

*  Low voltage profile

*  Voltage sources far from load centres

*  Insufficient reactive sources on load buses

Apart from these factors, extensive use of shunt capacitors to increase power transfer
makes the system to operate closer to the maximum deliverable power. As a consequence, the
stability margin is reduced in case of contingencies [1], [6].

Increase or loss of extensive loads, change of power transfers from/to other areas and
element tripping by protective devices are typical causes of voltage instability. However, there is
the possibility of having progressive voltage drops due to rotor angle instability.

The term voltage collapse is associated with voltage instability and is defined in [7] as the
“process by which the sequence of events accompanying voltage instability leads to a blackout or abnormally
low voltages in a significant part of the system.”

During a disturbance, the major problem faced by power system operators is the load
recovery (motors, LTCs and thermostatic actions), which increases power consumption during
emergency conditions, leading to reduced voltages in the transmission system. In fact, reference [1]
describes voltage stability as load stability to point out how load characteristics dominate on
system voltage behavior.

B. Time Frame Division

Voltage instability can last from few seconds to several minutes. Some devices respond
faster than others according to their time constants. Hence, a time frame division was established
for voltage stability assessment.

Different authors classified voltage stability into three scenarios short, mid and long term
stability. However, the tendency is now to combine mid and long term stability into one single
group.

Short term covers scenarios up to few seconds after a disturbance. At this stage, short term
dynamic load components restore their power in few seconds [6]. Here, modeling requirements
are similar to rotor angle stability since the time scale is the same for both of them. In fact, many
times instability mechanisms are combined between voltage and rotor angle phenomena [1], [7].
The set of equations which models this period can be grouped as [6], [8]:

0 =g(xy,zc, 2q) 1
X = f(X, V. Z., zd) (2)
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where (1) represents the network relationships (i.e. power flow equations) and (2) represents the
short term dynamics of AVRs, generators, SVCs, motors, HVDC components, etc.

Algebraic variables are grouped in vector y and state variables in vector x. In addition, z.
and zq4 correspond to state vectors of discrete and continuous long term dynamics, respectively.

Long term scenarios involve slower acting equipment actions such as LTCs,
thermostatically controlled loads and generator over-current limiters. This kind of controllers and
protective devices are designed to act when short-term actions have passed out. This is to avoid
unnecessary actions or interaction of many controllers that may lead to unstable operation of the
system [6].

In some cases, static analysis is enough to predict system stability. Other times, when
timing of equipment actions is a concern, time domain simulations have to be carried out.

Long term dynamics are represented by [6], [8]:

Z.C = hC(X, V. z Zd) (3)
zq(k +1) = hqa(x,y,2¢, 24 (k)) (4)

where the set of equations in (3) represent the behavior of equipment such as thermostatic and
recovery of aggregated load and (4) represent discrete transitions due to control, protecting and
limiting devices.

Long Term Voltage Stability Assessment

Long term voltage stability concerns with outages of equipment and not by the severity of
the initial disturbance [7]. This is, post-contingency analysis becomes critical to judge whether an
equilibrium condition is reached or not. The most common methods used for contingency analysis
are post-contingency load flow, P-V & V-Q curves, and time domain simulations.

A. Post-Contingency Load Flow

Post-contingency load flow is the simplest and well known methodology to evaluate the
impact of contingencies in power systems [6], [9]. The method consists on performing power flow
simulations under certain outages due to a given disturbance. The goal is to find the post-
disturbance equilibrium points.

In the case that long term equilibrium condition is not reached, the numerical solver will
diverge implying the system is not stable for such outages. However, divergence can be reached
with the numerical method if the system is close to maximum power transfer (even when a stable
equilibrium point exists). Nowadays power flow programs are able to converge close to this
maximum operating point using “non divergence” techniques [10]. However, these methods do
not provide enough information about the nature and location of the problem. In fact, some
assumptions may not reflect the real conditions of the system.

B. P-V and V-Q Curves

These curves are based on power flow techniques and they are widely used because of
their simplicity and the relevant information they may provide.

The methodology to build P-V curves consists of increasing the power transfer from one
area to another while sensing the voltage at critical buses. The main information provided by this
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approach is the maximum transferable power before system collapses. However, the disadvantage
of P-V curves is the problem of divergence when maximum power transfer is close to occur. This
problem could be solved applying continuation power flow techniques.

In the case of V-Q curves, they are fast when processed automatically without problems of
convergence [10]. The method consists of installing a fictitious synchronous condenser at the
critical bus recording the reactive power produced as voltage changes. It means, voltage
magnitude at the new PV bus is the independent variable and the reactive power injection at the
same bus is the dependent variable.

V-Q curves provide information of the amount of shunt compensation needed at a specific
bus [6]. However, the allowable power loading is not directly given with V-Q curves and they do
not give information of the global optimal compensation needs. In addition, timing actions of
protective and control devices are not considered [10].

The disadvantages described before leads to the necessity of better techniques to assess
post-disturbance system behaviour.

C. Full Time Domain Simulations

The most accurate method to assess longer term voltage stability is full time domain
simulations. In fact, it is considered the benchmark to verify post contingency power flow based
simulations [10]. Here exists the possibility of studying other instability mechanisms not captured
by steady state methods.

Time domain simulations have the posibility to predict the time available for operator
actions. In addition, it is able to simulate LTC transformers, dynamic loads, over-
excitation/armature limiters and capacitor switching based on time delay settings. These
simulations require higher computational efforts due to more accurate model requirements and
the application of numerical integration for large set of differential-algebraic equations.

D. Quasi-Steady State Simulations

Since full time domain simulations are difficult to process, it is possible to simplify long
term instability analysis by replacing short term dynamics by their equilibrium points [6].

Quasi-steady state approach is based on the latter technique in which short term dynamics
are considered infinitely fast that can be represented by their equilibrium equations [3], [6],
[11], [12].

It means that the set of equations in (2), representing dynamics of generators, motors and
AVRs, are now equalized to zero. The new set of equations for QSSS is given by equations (1), (3),
(4) and now equation (5):

0= f(X, V. z zd) (5)

This technique has the advantage of having fast and good convergence performance. In
addition, it maintains the accuracy of full time domain simulation because it takes into account
limiters and control actions [11]. In fact, it has been used for security limit determination, real time
applications and training simulations [12].

A QSSS sketch is presented in Figure 1. After a disturbance, the new equilibrium point is
calculated based on the pre-disturbance condition. Transitions from A to A" (B to B") corresponds
to discrete equipment actions such as LTC or over-excitation limiters in generators.
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FIGURE 1. Steps involved in QSS method [6]

Evolution from A" to B (B" to C) is obtained integrating the long term dynamics equations
of loads. In case that loads are 100% static, transitions from A" to B are straight lines parallel to
axis x. The time step h is usually specified constant. The various discrete devices are checked on
each time step and then switched when their internal delays are reached [6].

Equilibrium points A’, B', C" at time n + 1 are calculated from initial guess of A, B, C at
time n. The solution is reached by applying the Newton method.

Mathematically,
(0)
xn+1 _ Xn
[ ©) ] = [yn] (6)
yn+1
(k+1) of af1™t NG
[Axn+1 ]_ _ ox 0dy [f(xn+1'yn+1 ] (7)
(k+1)| — dg 0 (k) _.(k)
AYpi1 2 |g(Xni1 Ynia

dx dy

The superscript denotes the k-th iterative step and the subscript indicates the variable value
at timen + 1. It is important to note that the Jacobian matrix in (7) is different from the Jacobian
used in the power flow calculation due to the addition of the short term equilibrium
equations [13].

In order to reduce computational effort, the “very dishonest” Newton method can be
deployed. Here, the Jacobian matrix is updated only for equipment outages, limiter actions or in
cases where slow convergence is detected. However, smooth changes of long term dynamic
equations, changes in transformer ratios or variations in susceptances do not trigger Jacobian
updates [14].

Since short term dynamics are assumed to be stable, the QSS methodology is not able to
follow the system evolution as soon as system loses stability. At this point there is no convergence
and the equilibrium condition is not found anymore. This becomes the main limitation of the
method. However, as soon as convergence is lost, it is concluded that an instability mechanism has
occurred.
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Figure 2 summarizes the QSSS procedure involving the disturbance, equilibrium points,
integration (if any) and discrete transitions.

initial equilibrium
conditionatt=0s
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disturbance
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4
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af of 1!

(k+1) - — Hx (k)
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period h [or advance in time]
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Y

stop

make discrete
change

FIGURE 2. Flow Chart for QSS Simulation

The simulator will not converge if no equilibrium point exists. Hence, an instability
condition is detected.

1. MODELLING REQUIREMENS FOR QSSS

Adequate modelling becomes essential for power flow, full time simulations and
simplifications such as QSSS. The following sections describe characteristics and modelling of
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system equipment and some control devices that participate on long term voltage stability.

A. Network Representation

For simplicity reasons, the equivalent 7t circuit represents passive elements such as
transmission lines, cables, power transformers and some other series elements.

By using the polar form of voltages and the corresponding conductance G and susceptance
B from the admittance matrix, it is possible to obtain the voltage (V) - currents (Ip, I) relationships
for bus i as:

IPi = ?’zl(GijVjCOS (91—9]) + Bl']'VjSil’l (91—9])) (8)
IQi = ;vzl(GUV] sin(@i—Bj) - Bl'jV]'COS (91—9])) (9)

where V; and 0; are the voltage magnitude and angle at bus i. Equations (8) and (9) are classified as
algebraic equations represented by the generic expression in equation (1).

B. Synchronous Generator

The synchronous machine is represented by three reactances (x; , x4, x;) and the open-
circuit transient time constant Ty, . In this simplified representation, only two differential equations
are used to model the dynamics of the synchronous machine:

ol 1 AN !
Eq = (Wrq — (xq — xgq)ia — Eg) (10)
Tgo
W =2 (P~ P.) (11)

Equation (10) corresponds to the dynamics of the field flux, expressed in terms of the emf
behind transient reactance E;. Here, vy, is the applied voltage in the field winding and i, is the d-
axis current, in p.u.

Equation (11) corresponds to the dynamics of the rotor speed w, expressed in terms of the
mechanical power P, and the electrical power P,, both in p.u. In addition, w, is the nominal
angular speed in rad/s and H is the inertial constant in s.

In this paper, a linear AVR model is used, represented by:

. 1
Vra = T (_vfd+K(Vref -V- xoel)) (12)

The field voltage is changed to maintain the machine terminal voltage V close to the set
point V¢, according to the gain value K. Signal x,¢; corresponds to the over excitation limiter
output that will be explained in the following sections.

Equations (10)-(12) correspond to the short term differential equations of the synchronous
machine that are going to be equalized to zero in QSSS [6], [12]. If saturation is considered, it is
necessary to include another algebraic equation to model its effect.

If saturation is included, each generator will have three equilibrium equations in the form
of equation (5) with three state variables: E,; the machine internal voltage, E; the saturated internal
voltage and the power angle d . Thus, for a given generator with terminal voltage V under no OEL
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action, the corresponding equilibrium equations are:
0=Ey—KVyes — V) (13)
0=Py—P=Py—VIp =0 (14)

Note that vf; has been replaced by E; (this is true in p.u. in exciter base [6]). Hence, equation (13)
corresponds to the AVR equilibrium and equation (14) corresponds to the equilibrium of the rotor
speed.

The remaining equation must provide a relationship of saturation between E, and Ej.
Using modelling assumptions provided in [6], it is possible to obtain:

0=E,— (L +m[(V+ xZIQg)2 + (x,IPg)Z)]n/Z)Eg (15)

where x; is the stator leakage reactance and constants m and n are used to model the machine
saturation.
Generator currents Ip, and Io, in equations (14) and (15) must be in terms of algebraic and

state variables:

S
EgEq

VEq
xlEq+(xd—xl)Eé

- ( ! ! )sin 2(6 — ) (16)

X1Eq+(xq—xDE]  x1Eq+(xq—x1)E§

sin (6§ — 0) +

ng =

s
o EqEq
Qg xlEq+(xd—xl)E3

in2 _ 2 -
C05(5—9)—VEq( sin? (6—-6) cos? (6—6) )

X1Eq+(xq—x)E]  x1Eq+(xq—x1)E§

(17)

where 0 is the terminal voltage angle with respect to the system reference.

C. Static Loads

Aggregated loads are classified as static loads when their response to changes in voltage or
frequency is so fast that a new steady state is reached very quickly [2]. In fact, most aggregated
loads are considered static loads.

The most common model for static loads as a function of voltage is the exponential model.
Another widely used representation of loads is the ZIP or polynomial model where loads are
represented by a composition of constant power, impedance and current loads.

In terms of network representation, static loads are handled as negative injected currents in
equations (8) and (9), using the exponential modelling:

Ip, = —Po iz (18)
vA-1
IQL =—0Qp VB (19)

where Py and @, are the pre-disturbance active and reactive power demand. In addition,
parameters a and f§ characterize the voltage dependency of loads. More detailed static load models
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integrate the effect of frequency but in this QSSS these models are not considered since frequency
is assumed constant during the simulation period.

D. Induction Motors
The main assumption for motor modelling is that stator and rotor transients are neglected.
In fact, the rotor acceleration equation is the only dynamic representation of the machine:

§ == (Te(V,5) = Tn(s)) (20)

where s is the rotor slip, T, and T, are the electrical and mechanical torque respectively, whereas
H is the machine inertia in seconds. The mechanical torque could be represented with a constant,
quadratic or higher order model.

Induction motors are considered short-term dynamic loads and they are replaced by their
equilibrium equations in QSSS. So, the equilibrium equation for an induction motor is:
szrzn%r

((r1 +T?r)2 +(xq +xr)2) (r2+(xs+x)?)

0="T,(s)— (21)

where x;, x,,, and x, are the stator, magnetizing and rotor reactance referred to the stator. In
addition, r; and 7. are the stator and rotor resistance referred to the stator. If core losses are
neglected:
. Jxm(rs+jxs)
=S5 22
" + JX1 Ts+j(Xs+xXm) ( )
Equation (21) belongs to the group of equations of the form equation (5). Here the short
term state variable in equations (1) — (5) is the rotor slip s.
Finally, the expressions of injected currents to be included in (8) and (9) are:

_ (rs+7e)V
IPm N (rs+7e)2+(xs+x,)? (23)
_ (xs+x0)V
IQm N (rs+7e)2+(xs+x,)? (24)
i _ ]'xm(r?r"‘jxr)
Te ¥ J¥e = T o) 25)

E. Over-Excitation Limiters

Under normal conditions, the OEL is not activated. However, when the field current isq
exceeds i}Z” after some delay, the output x,,; will introduce a signal in the AVR to reduce the field
voltage (and the field current), as shown in equation (12).

Dynamics of OEL are actually not seen in QSSS but its effect is considered in the simulation
as a discrete event. However, the timer must be included in the QSS formulation to know the

moment at which the OEL will operate. If the OEL is considered to have an integral control:
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0=E,—if] (26)

At this point, expression in equation (13) no longer holds and it has to be replaced by
equation (26).

F. Armature Current Limiters

The armature current limiter is used to protect the stator windings. It commonly operates
when the OEL actions lead to high armature currents in generators under large loading
conditions [13]. As a result, the reactive power support of the generator is reduced even more.
After some time delay, the armature current limiter ensures that:

IQg < /Irznax - 11%9 (27)

Under armature current limiter actions, equation (17) representing the generator reactive
current is thus replaced by equation (27). This action is considered again as a discrete event for
QSSS purposes.

G. Load Tap Changer Transformers

Transformers with the ability of voltage regulation dominate long term voltage instability.
An LTC is a slowly acting device that controls the distribution side voltage of the transformer. The
LTC performs a tap change if the controlled voltage remains outside of a dead-band for longer
than a predefined delay.

In terms of modelling, the equivalent 7 representation of Figure 3 is used.

Y.
y

FIGURE 3. m representation for transformer modelling

For a turn ratio r and equivalent impedance Z [2]:

Y=o 28)
1 1

Yoy =(3-1)5 (29)
1\ 1

Ygji = (1 - ;)Z (30)

Under large disturbances, LTC transformers start to change the tap positions to maintain
load voltages. An important effect of LTC actions is the inclusion of an indirect load recovery
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mechanism, which reduces the possibility of long term equilibrium.

IV. RESULTS AND DISCUSSION

The QSS simulator developed in Matlab is now used to assess the long term stability of two
small power systems. The first system studied was introduced in [6] and the second system is
described in [1] and [2]. These small systems are suitable for the validation of the simulator since
they provide most components involved in long term voltage stability.

Even when some load and control models were changed according to the interest of this
paper, the topology of the systems remain the same.

Full time domain simulations (FTDS) were carried out with the software IPSA+ to compare
the results of the QSSS in Matlab.

A. Test System 1

The system presented in Figure 4 is assessed for the outage of one line between buses 1 and
4. The equivalent system is modelled as an infinite bus and it is used as the system reference. The
generator at bus 2 is controlled with an AVR and its field current winding is limited by an OEL.

The system parameters and all other data necessary to perform the studies are presented in
[6]. The only difference is that load at bus 3 is composed by an equivalent induction motor
drawing 550 MW (constant torque model) and an aggregated static load consuming 900 MW and
450 MVar with a constant impedance characteristic. Additionally, the capacitor connected at bus 3
is rated at 6.586 p.u.

Bus 1 Bus 4 Bus 3

Vth r 1

>
Equivalent )@D’ @
System

T2

Bus 2

D~

n
Gen 1 T1

Cc

FIGURE 4. Test System 1

When the contingency is applied (outage of line 1-4), the voltage in the system drops
instantaneously. Then, after some time delay the LTC tries to recover the voltage at bus 3. By doing
so, there is a load recovery and a reduction in the transmission side voltage, as more reactive
power is needed at bus 4. Figures 5 and 6 show the effect of the LTC in the distribution and
transmission side during the first seconds of simulation.
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FIGURE 5. Voltage at bus 3.
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FIGURE 6. Voltage at bus 4.

Generator 1 mainly gives the reactive power needed at bus 4. However, as soon as the OEL
is activated at about 61 seconds, the system loses reactive power support and all voltages start to
decrease at each tap change. This behaviour continues until equilibrium is lost and the system
finally collapses.

A short term instability condition is presented in the long term as the reduction of voltages
makes the motor to lose equilibrium. In fact, the motor ends standstill as the system collapse. This
is presented in Figure 7. Here, the QSSS shows a good approximation of the motor slip as long as

the system remains in equilibrium.
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FIGURE 7. Motor Slip evolution.

In terms of QSSS, the method is not able to follow the instability condition. Instead of that,
the QSS method detects a singularity in the Jacobian matrix confirming that the system is no longer
stable.

As a consequence, the QSSS stops at 170 seconds of simulations and can not continue any
longer. It is important to note that the QSSS loses some accuracy, as the instability condition is
about to happen.

However up to this point, the QSSS already predicted the unstable condition and provided
some information that a short term instability mechanism occurred. In addition, considering the
fact that the time step used in QSSS was one second, and the computational time to obtain such
plots was significantly lower compared to FTDS, it is concluded that QSSS is an accurate
approximation even when dynamic loads are included in the study.

B. Test System 2
The 10-bus system in Figure 8 is also considered to validate the program. The outage of two
transmission lines is going to be simulated by using QSSS and FTDS.
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FIGURE 8. Test System 2
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As the previous system, there is an equivalent system modelled as an infinite bus, which is
used as the system reference. In addition, there are 2 generators, controlled by AVR and OEL,
supplying part of the loads.

The system parameters and all other data necessary to perform the studies are presented in
[2]. The main difference deals on the model of the AVR and OEL. These models were the same as
system 1, detailed in [6].

There is an equivalent induction motor drawing 771 MW at bus 7. This motor is connected
with a constant impedance load of 2500 MW and 544 MVAr. Transformers T4 and T6 are able to
control the load voltage by changing their tap positions with different time delays.

The outage of a double circuit between buses 5 and 6 makes the LTC at T4 and T6 to
operate after some time delay. However, the disturbance is so severe that T6 reaches its minimum
limit in less than 100 seconds without recovering the voltage at bus 10, as shown in Figure 9.
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FIGURE 9. Voltage at bus 10.
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FIGURE 10. Voltage at bus 7.

Figure 10 shows the voltage recovery at bus 7. The voltage is recovered even after the OEL
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of generator 2 limited the field current (at about 160 seconds). Moreover, the actions performed by
the LTC of T4 affected negatively the voltage at the distribution branch feeding load L2 as
presented in Figure 9.

This case is a typical long term phenomenon where the actions of tap changers and
generators limiters lead to unacceptable voltages in parts of the network. Figure 11 presents the

voltage evolution in the transmission side.
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FIGURE 11. Voltage at bus 9. Transmission side.

After the entire tap changes and the OEL actions, the system ends up in unacceptable
conditions (unstable) as transmission system operates at voltages below 0.9 p.u. In real cases, this
situation could lead to outages of further elements due to under voltage limiters. As a
consequence, a total black out may occur.

It is confirmed that the QSS simulator is able to represent the interaction of LTC actions
with an excellent accuracy and low computational time.

Another factor to be considered is the computational time required on each simulator. For
about 600 seconds of simulation in the 10-bus system, FTDS takes more than 20 seconds whereas
the QQSSS takes less than one second.

V. CONCLUSION

Quasi-Steady State simulation resulted in a good balance between simplification, efficiency
and accuracy. Different comparisons verified the excellent approximation of the method. The full
time domain and the QSS simulation results were almost the same.

QSSS was found to have a great performance to analyse long term voltage stability
scenarios. In fact, at scenarios considering 500 seconds or more, the simulator kept the accuracy
even when the time step was one second (or larger). However, when the system was close to
become unstable, the method was not able to follow the full time domain simulation as
convergence problems were faced at this point.

The accuracy and fast performance of this methodology can be successfully applied in real-
time simulations or during planning stages for large power systems.
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