Selection criteria in tomato lines with determinate growth habit

Authors

  • Esteban Burbano-Erazo Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA https://orcid.org/0000-0001-5056-9893
  • Iván Javier Pastrana-Vargas Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
  • Julián Roberto Mejía-Salazar Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
  • Franco Alirio Vallejo-Cabrera Universidad Nacional de Colombia

DOI:

https://doi.org/10.15517/am.v31i1.37093

Keywords:

plant breeding, heritability, genetic parameters, Solanum lycopersicum

Abstract

Introduction. The selection of genotypes with a determined growth habit in tomato should contemplate adequate selection criteria to increase the efficiency of the plant breeding program. Objective. The objective of this research was to estimate selection criteria for “chonto” tomato lines with determined growth habit. Materials and methods. The research was developed in the Universidad Nacional de Colombia campus Palmira in 2016, using seven determinate habit growth lines (D) and a control with undetermined habit growth. The heritability in a broad sense (h2g), coefficient of environmental variation, coefficient of genetic variation, selection efficiency, and genetic gain was determined, in morphologic, phenological, quality fruit, fruit shape, and productions parameters using the RELM/BLUP process, from the SELEGEN software. Results. Three ranges of h2g were found, the first with values of h2g greater than 0.76, the second between 0.53 and 0.38, and the third with a value less than 0.38. The highest values of h2g were for final height plant with 0.92, height plant to harvest with 0.88, production per plant with 0.83, days to flowering with 0.83, fruit number with 0.82, and days to harvest with 0.82. For genetic gain it was found that the control presented the highest values within the main parameters for final height plant, plant height to harvest, internode length, days to harvest, crop duration, soluble solids content, number of fruits per plant, weight fruit, and plant production; however, in some parameters such as height and phenology for effects of selection by habit of determined growth lower values were better. Conclusion. Genetic parameters were evidenced that could be considered as selection criteria for “chonto” tomato lines with determined growth of habit.

Downloads

Download data is not yet available.

References

Ahmad, M., M. Iqbal, B.A. Khan, Z.U. Khan, K. Akbar, I. Ullah, S. Muhammad, and A. Rehman. 2017. Response to selection and decline in variability, heritabilty and genetic advance from F2 to F3 generation of tomato (Solanum lycopercicum). Int. J. Plant Res. 7:1-4. doi:10.5923/j.plant.20170701.01

Anjum, A., N. Raj, A. Nazeer, and S.H. Khan. 2009. Genetic variability and selection parameters for yield and quality attributes in tomato. Ind. J. Hortic. 66:73-78.

Baena, D., F.A. Cabrera, y E.I. Salazar. 2003. Avance generacional y selección de líneas promisorias de tomate (Lycopersicon esculentum Mill) tipos chonto y milano. Acta Agron. 52(1):1-9.

Burbano, E., y F.A. Vallejo. 2017. Producción de líneas de tomate “chonto”, Solanum lycopersicum Mill., con expresión del gen sp responsable del crecimiento determinado. Rev. Colomb. Cienc. Hort. 11:63-71. doi:10.17584/rcch.2017v11i1.5786

Carmel-Goren, L., Y.S. Liu, E. Lifschitz, and D. Zamir. 2003. The Self-Pruning gene family in tomato. Plant Mol. Biol. 52:1215-1222. doi:10.1023/B:PLAN.0000004333.96451.11

de-Castro, J.P.A., C. Nick, C.C. Milagres, A.P. Mattedi, B.G. Marim, and D.J.H. da-Silva. 2010. Genetic diversity among tomato’s subsamples for pre-breeding. Crop Breed. Appl. Biotechnol. 10:74-82. doi:10.12702/1984-7033.v10n01a10

De-Swaef, T., and K. Steppe. 2010. Linking stem diameter variations to sap flow, turgor and water potential in tomato. Funct. Plant Biol. 37:429-438. doi:10.1071/FP09233

dos-Santos, A., G. Ceccon, P.E. Teodoro, A.M. Correa, R.D.C.F. Álvarez, J.F. da-Silva, e V.B. Alves. 2016. Adaptabilidade e estabilidade de genótipos de feijão caupi ereto via REML/BLUP e GGE Biplot. Bragantia 75:299-306. doi:10.1590/1678-4499.280

Falconer, D.S., and F.C.T. Mackay. 1996. Introduction to quantitative genetic. 4th ed. Longman Group Limited, Harlow, Essex, GBR.

Fernández-Moreno, J.P., D. Levy-Samoha, S. Malitsky, A.J. Monforte, D. Orzaez, A. Aharoni, and A. Granell. 2017. Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population. J. Exp. Bot. 68:2703-2716. doi:10.1093/jxb/erx134

Filgueira, F.A.R. 2000. Novo manual de olericultura: Agrotecnologia moderna na produção e comercialização de hortaliças. Universidade Federal de Viçosa, Viçosa, BRA.

Finzi, R.R., G.M. Maciel, J.M.Q. Luz, A.A. Clemente, and A.C.S. Siquieroli. 2017. Growth habit in mini tomato hybrids from a dwarf line. Biosci. J. 33:52-56. doi:10.14393/BJ-v33n1a2017-35763

Haydar, A., M.A. Mandal, M.B. Ahmed, M.M. Hannan, R. Karim, M.A. Razvy, U.K. Roy, K. Akbar, I. Ullah, M. Shahid, A. Rehman, and M. Salahin. 2007. Studies on genetic variability and interrelationship among the different traits in tomato (Lycopersicon esculentum Mill.). Middle-East J. Sci. Res. 2(3-4):139-142.

Hefferon, K.L. 2016. Can biofortified crops help attain food security? Curr. Mol. Biol. Rep. 2:180-185. doi:10.1007/s40610-016-0048-0

Holland, J.B., W.E. Nyquist, and C.T. Cervantes-Martínez. 2003. Estimating and interpreting heritability for plant breeding: an update. In: J. Janick, editor, Plant breeding reviews. Vol 22. John Wiley and Sons Inc., Hoboken, NJ, USA. p. 9-112. doi:10.1002/9780470650202.ch2

Khan, B.A., S.F. Mehboob, M. Ahmad, M. Iqbal, I. Ullah, M. Saleem, A. Rehman, and M. Shaid. 2017. Genetic analysis of F2 population of tomato for studying quantitative traits in the cross between Coldera x KHT5. Int. J. Plant Res. 7(4):90-93. doi:10.5923/j.plant.20170704.02

Kolota, E., and K. Adamczewska-Sowinska. 2001. Evaluation of new leek cultivars for early growing. Veg. Crops Res. Bull. 54:29-34.

Kumar, D., R. Kumar, S. Kumar, M.L. Bhardwaj, M.C. Thakur, R. Kumar, M.L. Bhardwai, M.C. Thakur, and P. Kumar. 2013. Genetic variability, correlation and path coefficient analysis in tomato. Int. J. Veg. Sci. 19:313-323. doi:10.1080/19315260.2012.726701

López, E., J. Gabriel, A. Angulo, J. Magne, J. La Torre, y M. Crespo. 2015. Herencia y relación genética asociados al rendimiento, madurez en híbridos de tomate [Solanum lycopersicum L.(Mill.)]. Agron. Costarricense 39(1):107-109.

Martínez, V., M. Nieves-Cordones, M. Lopez-Delacalle, R. Rodenas, T.C. Mestre, F. Garcia-Sanchez, and R.M. Rivero. 2018. Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules 23(3):E535. doi:10.3390/molecules23030535

Mérida, C., M. Colque, y H. Mercado. 2017. Evaluación agronómica de 116 híbridos experimentales de tomate (F1) desarrollados por el INIAF, en el Instituto de Investigaciones Agrícolas El Vallecito, Santa Cruz. Rev. Invest. Agropecu. For. Bol. 1(3):16-24.

Mohamed, S.M., E.E. Ali, and T.Y. Mohamed. 2012. Study of heritability and genetic variability among different plant and fruit characters of tomato (Solanum lycopersicum L.). Int. J. Sci. Technol. Res. 1(2):55-58.

Nuez, V.F. 1995. El Cultivo del tomate. Mundi- Prensa, Madrid, ESP.

Peralta, G., J.C. Carrillo-Rodríguez, J.L. Chávez-Servia, A.M. Vera-Guzmán, e I. Pérez-León. 2012. Variación de caracteres agronómicos y licopeno en líneas avanzadas de tomate (Solanum lycopersicum L.). Phyton 81(1):15-22.

Pnueli, L., L. Carmel-Goren, D. Hareven, T. Gutfinger, J. Alvarez, M. Ganal, D. Zamir, and E. Lifschitz. 1998. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979-1989.

Ramzan, A., T.N. Khan, N.N. Nawab, A. Hina, T. Noor, and G. Jillani. 2014. Estimation of genetic components in f 1 hybrids and their parents in determinate tomato (Solanum lycopersicum L.). J. Agric. Res. 52:65-75.

Resende, M.D.V. 2002. Genética biométrica e estatística no melhoramento de plantas perenes. Embrapa Florestas, Brasilia, BRA.

Resende, M.D.V. 2007. SELEGEN REML/BLUP: sistema estatístico e seleção genética computadorizada via modelos lineares mistos. Embrapa Florestas, Brasilia, BRA.

Resende, M.D.V. 2016. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breed. Appl. Biotechnol. 16:330-339. doi:10.1590/1984-70332016v16n4a49

Saleem, M.Y., K.P. Akhtar, Q. Iqbal, M. Asghar, A. Hameed, and M. Shoaib. 2016. Development of tomato hybrids with multiple disease tolerance. Pak. J. Bot. 48:771-778.

Sharanappa, K.P., and S.C. Mogali. 2014. Studies on genetic variability, heritability and genetic advance for yield and yield components in F2 segregating population of tomato (Solanum lycopersicum L.). Karnataka J. Agric. Sci. 27:524-525. doi:10.18782/2320-7051.6097

Shokat, S., F.M. Azhar, G. Nabi, and Q. Iqbal. 2015. Estimation of heritability and genetic advance for some characters related to earliness in tomato (Solanum lycopersicum L.). J. Agric. Res. 53:351-356.

Vallejo, F.A. 1994. Estudios genéticos básicos para la creación de nuevos cultivares de tomate Lycopersicon esculentum Mill, adaptados a las condiciones de Colombia. Acta Agron. 44(1-4):9-168.

Vallejo, F.A. 1999. Mejoramiento genético y producción de tomate en Colombia. Universidad Nacional de Colombia, Cali, COL.

Vallejo, F.A., y M. Lobo. 1994. Heredabilidad del rendimiento y sus componentes en tomate, Lycopersicon esculentum, Mill; correlaciones genéticas y ambientales. Acta Agron. 44(1-4):85-94.

Wray, N., and P. Visscher. 2008. Estimating trait heritability. Nature Educ. 1(1):29.

Yelle, S., R.T. Chetelat, M. Dorais, J.W. Deverna, and A.B. Bennett. 1991. Sink metabolism in tomato fruit: IV. Genetic and biochemical analysis of sucrose accumulation. Plant Physiol. 95:1026-1035. doi:10.1104/pp.95.4.1026

Published

2020-01-01

How to Cite

Burbano-Erazo, E., Pastrana-Vargas, I. J., Mejía-Salazar, J. R., & Vallejo-Cabrera, F. A. (2020). Selection criteria in tomato lines with determinate growth habit. Agronomía Mesoamericana, 31(1), 1–11. https://doi.org/10.15517/am.v31i1.37093