Physiological characterization in medicinal Cannabis plants during different phenological stages under biotic stress


  • Gustavo Adolfo Rodriguez-Yzquierdo Corporacion Colombiana de Investigacion Agropecuaria (AGROSAVIA). Tibaitata Research Center. Mosquera, Cundinamarca, Colombia.
  • Manuel Alfonso Patiño-Moscoso Corporacion Colombiana de Investigacion Agropecuaria (AGROSAVIA). Tibaitata Research Center. Mosquera, Cundinamarca, Colombia.
  • Mónica Betancourt-Vásquez Corporacion Colombiana de Investigacion Agropecuaria (AGROSAVIA). Tibaitata Research Center. Mosquera, Cundinamarca, Colombia.



ecopgysiology, chlorophyll fluorescence, photosystem II, Sclerotinia sclerotiorum


Introduction. Plants exposed to stress conditions, alter their functioning and generate physiological responses that affect their agronomic performance. In the cultivation of medicinal Cannabis, research on plant physiology and its interaction with biotic factors is scarce. Objective. To determine physiological variables indicative of stress in different phenological stages of Cannabis plants in greenhouse and under contrasting phytosanitary conditions. Materials and methods. The study was carried out between November and December 2019, in the municipality of Rionegro, Antioquia, Colombia. Batches of Cannabis sativa L. plants coming from asexual multiplication were sown weekly. Between weeks six and twelve after transplanting, the chlorophyll index and fluorescence variables (basal=Fo, maximum=Fm and variable=Fv), ambient crop thermal differential, water stress index, and foliar nutrient concentration were evaluated from the beginning of its vegetative phase to the reproductive and productive phase, under two contrasting phytosanitary conditions, one with white rot caused by Sclerotinia sclerotiorum and the other without pests or pathogens. Results. The plants did not present abiotic stress affecting the photosynthetic apparatus at any stage. The values of each nutrient were within the optimal ranges and the edaphic factors did not represent a limitation for the development of the crop. Reference values of physiological variables were defined at different phenological stages under optimal development conditions. In diseased plants with S. sclerotiorum, the chlorophyll index, water stress index, and fluorescence, showed reference values that can be useful for the identification of detrimental effects in the photosystem II. Conclusions. In diseased plants the chlorophyll index and the parameters Fv/Fm and Fv/F0 constituted indicator variables to detect biotic stress in Cannabis plants. In healthy plants, Fv/Fm, Fv/Fo, CWSI, and chlorophyll index can be evaluated in agronomic crop management experiments.


Download data is not yet available.


Andre, C. M., Hausman, J. F., & Guerriero, G. (2016). Cannabis sativa: The plant of the thousand and one molecules. Frontiers in Plant Science, 7, Article 19.

Arru, L., Rognoni, S., Baroncini, M., Bonatti, P. M., & Perata, P. (2004). Copper localization in Cannabis sativa L. grown in a copper-rich solution. Euphytica, 140(1–2), 33–38.

Baron, E. P. (2018). Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache, 58(7), 1139–1186.

Basso, C., Rodríguez, G., Rivero, G., León, R., Barrios, M., & Díaz, G. (2019). Respuesta del cultivo de maracuyá (Passiflora edulis Sims) a condiciones de estrés por inundación. Bioagro, 31(3), 185-192.

Booth, J. K., & Bohlmann, J. (2019). Terpenes in Cannabis sativa – From plant genome to humans. Plant Science, 284, 67–72.

Breit, L., Leavitt, M., & Boyd, A. (2019). Understanding VPD and transpiration rates for cannabis cultivation operations. Cannabis Science and Technology, 2(2), 52–61.

Bryson, G., & Mills, H. A. (2014). Plant analysis handbook IV eedition. A guide to sampling, preparation, analysis, and interpretation for agronomic and horticultural crops. Micro-Macro Publishing.

Caplan, D., Dixon, M., & Zheng, Y. (2019). Increasing inflorescence dry weight and cannabinoid content in medical cannabis using controlled drought stress. HortScience, 54(5), 964–969.

Cockson, P., Landis, H., Smith, T., Hicks, K., & Whipker, B. E. (2019). Characterization of nutrient disorders of Cannabis sativa. Applied Sciences, 9(20), Article 4432.

De-Jonge, K. C., Taghvaeian, S., Trout, T. J., & Comas, L. H. (2015). Comparison of canopy temperature-based water stress indices for maize. Agricultural Water Management, 156, 51–62.

Delgadillo-Rodríguez, I. P., Montenegro Ruíz, L. C., Pinilla Agudelo, G. A., & Melgarejo, L. M. (2017). Measuring of the chlorophyll a fluorescence in calcium alginate-encapsulated algae. Acta Biológica Colombiana, 22(2), 199–208.

Fletcher, A. L., Sinclair, T. R., & Allen, L. H. (2007). Transpiration responses to vapor pressure deficit in well watered “slow-wilting” and commercial soybean. Environmental and Experimental Botany, 61(2), 145–151.

Giraldo, C. J., Cano, M. A. O., & Ribas, R. F. (2010). Respuesta fotosintética de diferentes ecotipos de fríjol a la radiación y la salinidad. Ciencia y Tecnología Agropecuaria, 10(2), 129-140.

Gonzalez-Dugo, V., Goldhamer, D., Zarco-Tejada, P. J., & Fereres, E. (2015). Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrigation Science, 33, 43–52.

Griffith, G. W., & Shaw, D. S. (1998). Polymorphisms in Phytophthora infestans: Four mitochondrial haplotypes are detected after PCR amplification of DNA from pure cultures or from host lesions. Applied and Environmental Microbiology, 64(10), 4007–4014.

Guimarães, R. L., & Stotz, H. U. (2004). Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology, 136(3), 3703–3711.

Idso, S. B. (1982). Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agricultural Meteorology, 27(1–2), 59–70.

Idso, L. B., Jackson, R. D., Pinter, P. J., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural Meteorology, 24, 45–55.

Jiménez-Suancha, S. C., Álvarado, O. H., & Balaguera-López, H. E. (2015). Fluorescencia como indicador de estrés en Helianthus annuus L. Una revisión. Revista Colombiana de Ciencias Hortícolas, 9(1), 149-160.

Kacira, M., Ling, P. P., & Short, T. H. (2002). Establishing crop water stress index (CWSI) threshold values for early, non-contact detection of plant water stress. Transactions of the American Society of Agricultural Engineers, 45(3), 775–780.

Kumagai, E., Araki, T., & Kubota, F. (2009). Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. Plant Production Science, 12(1), 50–53.

Lafmejani, Z., Jafari, A., Moradi, P., & Moghadam, A. 2018. Impact of foliar application of copper sulphate and copper nanoparticles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). Herba Polonica, 64(2), 13-24.

Li, Y., Zhou, L., Wang, S., Chi, Y., & Chen, J. (2018). Leaf temperature and Vapour Pressure Deficit (VPD) driving stomatal conductance and biochemical processes of leaf photosynthetic rate in a subtropical evergreen coniferous plantation. Sustainability, 10(11), Article 4063.

Lobo, M., Lopes, C. A., & Silva, W. L. C. (2001). Sclerotinia rot losses in processing tomatoes grown under centre pivot irrigation in central Brazil. Plant Pathology, 49(1), 51–56.

López, R., Arteaga, R., Vázquez, M. a., López, I., & Sánchez, I. (2009). Índice de estrés hídrico como un indicador del momento de riego en cultivos agrícolas. Agricultura Técnica en México, 35(1), 97–111.

Mcpartland, J. M. (2019). A review of Cannabis diseases. Journal of the International Hemp Association, 3(1), 19–23.

Percival, G. C., Keary, I. P., & Noviss, K. (2008). The potential of a chlorophyll content SPAD meter to quantify nutrient stress in foliar tissue of sycamore (Acer pseudoplatanus), English oak (Quercus robur), and European beech (Fagus sylvatica). Arboriculture and Urban Forestry, 34(2), 89–100.

Potter, D. J. (2014). A review of the cultivation and processing of cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Testing and Analysis, 6(1–2), 31–38.

Punja, Z. K., Collyer, D., Scott, C., Lung, S., Holmes, J., & Sutton, D. (2019). Pathogens and molds affecting production and quality of Cannabis sativa L. Frontiers in Plant Science, 10, Article 1120.

Rodriguez-Yzquierdo, G. A., Basso-de-Figuera, C. A., Díaz-Reyes, G., & León-Pacheco, R. I. (2020). Riego deficitario controlado su efecto sobre la nutrición, productividad y calidad de fruta en maracuyá. Agronomía Mesoamericana, 31(2), 405–418.

Sánchez-De-Miguel, P., Junquera, P., Jiménez, L., & Lissarrague, J. R. (2009). Efectos de la temperatura foliar y de la humedad relativa en la respuesta fotosintética a la luz de las hojas de vid de los cvs. Cabernet Sauvignon y Tempranillo, en el período de maduración. Revista Enología, 1(6), 1–8.

Tambussi, E. A. (2011). Fotosíntesis, fotoprotección, productividad y estreses abióticos: casos de estudio [Tesis Doctoral, Universidad de Barcelona]. Depósito Digital de la Universidad de Barcelona.

Tang, K., Struik, P. C., Amaducci, S., Stomph, T. J., & Yin, X. (2017). Hemp (Cannabis sativa L.) leaf photosynthesis in relation to nitrogen content and temperature: implications for hemp as a bio-economically sustainable crop. GCB Bioenergy, 9(10), 1573–1587.

Tang, Y., Bao, Q., Tian, G., Fu, K., & Cheng, H. (2015). Heavy metal cadmium tolerance on the growth characteristics of industrial hemp (Cannabis sativa L.) in China. In S. Chen, & S. Zhou (Eds.), Proceedings of the International Conference on Advances in Energy, Environment and Chemical Engineering (pp. 289–295). Atlantis Press.

Tarqui Delgado, M., Mena Herrera, F. C., Quino Luna, J. J., Gutiérrez Villalobos, S., & Coela Poma, R. R. (2017). Leaflet temperature of lettuce (Lactuca sativa) and air influenced by the vapor pressure deficit. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 4(1), 60–66.

Vitorino, L. C., da Silva, F. O., Cruvinel, B. G., Bessa, L. A., Rosa, M., Souchie, E. L., & Silva, F. G. (2020). Biocontrol potential of Sclerotinia sclerotiorum and physiological changes in soybean in response to Butia archeri palm Rhizobacteria. Plants, 9, Article 64.

Yang, C., Zhang, Z., Gao, H., Liu, M., & Fan, X. (2014). Mechanisms by which the infection of Sclerotinia sclerotiorum (Lib.) de Bary affects the photosynthetic performance in tobacco leaves. BMC Plant Biology, 14, Article 240.



How to Cite

Rodriguez-Yzquierdo, G. A., Patiño-Moscoso, M. A., & Betancourt-Vásquez, M. (2021). Physiological characterization in medicinal Cannabis plants during different phenological stages under biotic stress. Agronomía Mesoamericana, 32(3), 823–840.

Most read articles by the same author(s)