Resistance of eggplant (Solanum melongena L.) cultivars to Tetranychus ludeni Zacher (Acari:Tetranychidae)
DOI:
https://doi.org/10.15517/am.v32i2.42079Keywords:
Colombian Carribbean, red mites, regional cultivars, field resistanceAbstract
Introduction. Eggplant (Solanum melongena L. (Solanales: Solanaceae), one of the major vegetable crops
in the Colombian Caribbean, is attacked by spider mites (Tetranychus ludeni (Acari: Tetranychidae) causing
notable reductions in yield. Besides the substancial economic losses related to yield reduction, its control provokes environmental contamination due to excessive use of acaricide affecting the health of farmers and their families. Objective. The purpose of this study is to assess the resistance of seven eggplant cultivars to T. ludeni on field and greenhouse assays. Materials and methods. Eggplant landraces (Buelvas and Gonzalez), cultivars (C029 and C015), and breeding lines (C036, C025, C049) were assessed for resistance to T. ludeni. Field and greenhouse resistance assays were conducted in a randomized complete block design on field and greenhouse conditions (four replications for each accession). Results. Field assays showed significant differences in mite population density between eggplant cultivars (F=4.42; p<0.0004). C025 presented the highest mite population density while Buelvas had the lowest density. In the greenhouse assays, Buelvas showed lower mite density in comparison with the density observed in cultivar C036. Conclusions. Buelvas and Gonzalez exhibited resistance against T. ludeni providing evidence of the
occurrence of field resistance in eggplant landraces from the Colombian Caribbean. The greenhouse assays, performed at high levels of mite density, offered greater discriminatory power and they are suitable for inclusion in the early phase of germplasm screening. We recommend the inclusion of cv. Buelvas as resistant reference genotype, and C036 as susceptible reference genotype in future screening trials. Cultivar Buelvas is recommended as reference genotype due to its reliable resistance level in field and greenhouse assays and its high yield.
Downloads
References
Adango, E., Onzo, A., Hanna, R., Atachi, P., & James, B. (2006). Comparative Demography of the Spider Mite, Tetranychus ludeni, on Two Host Plants in West Africa. Journal of Insect Science, 6(1), Article 49. https://doi.org/10.1673/031.006.4901
Alvarenga, M., Luan, S., Godano, M., Monteiro, B., Reis, T., Amato, R., & Monteiro, M. (2014). Injury of Tetranychus ludeni (Acari: Tetranychidae) on Physalis peruviana (Solanaceae) crops in Diamantina, Brazil. Revista Colombiana de Entomología, 40(2), 187–189. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-04882014000200010&lng=en&nrm=iso
Andreu, A. B., Caldiz, D. O., & Forbes, G. A. (2010). Phenotypic Expression of Resistance to Phytophthora infestans in Processing Potatoes in Argentina. American Journal of Potato Research, 87(2), 177–187. https://doi.org/10.1007/s12230-009-9121-z
Araméndiz, H. (2008). El cultivo de la berenjena (Solanum melongena L.). Universidad de Córdoba.
Arora, S., Bronkema, C., Porter, J. R., Mottrie, A., Dasgupta, P., Challacombe, B., Rha, K. H., Ahlawat, R. K., Capitanio, U., Yuvaraja, T. B., Rawal, S., Moon, D. A., Sivaraman, A., Maes, K. K., Porpiglia, F., Gautam, G., Turkeri, L., Bhandari, M., Jeong, W., … Abdollah, F. (2020). Omission of cortical renorrhaphy during robotic partial nephrectomy: a Vattikuti Collective Quality Initiative (VCQI) database analysis. Urology, 146, 125-132. https://doi.org/10.1016/j.urology.2020.09.003
Baker, E. W., & Tuttle, D. M. (1994). A guide to the spider mites (Tetranychidae) of the United States. Indira Publishing House.
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5, Article 180214. https://doi.org/10.1038/sdata.2018.214
Blaazer, C. J. H., Villacis-Perez, E. A., Chafi, R., Van Leeuwen, T., Kant, M. R., & Schimmel, B. C. J. (2018). Why do herbivorous mites suppress plant defenses? Frontiers in Plant Science, 9, Article 1057. https://doi.org/10.3389/fpls.2018.01057
Blum, A. (1969). Oviposition preference by the sorghum shoot fly (Atherigona varia soccata) in progenies of susceptible × resistant sorghum crosses. Crop Science, 9(6), 695–696. https://doi.org/10.2135/cropsci1969.0011183X000900060005x
Bolland, H. R. (1998). World catalogue of the spider mite family: (acari: Tetranychidae). Brill.
Burbano-Figueroa, O., Sierra-Monroy, J. A., & David Hinestroza, A. (2020). Simulación probabilística de ingresos monetarios obtenidos en cultivos del sistema irrigado de producción de hortalizas del Valle del Sinú Colombia. AgriXiv. https://doi.org/10.31220/osf.io/tc694
Cadena, J., Gomez, G., Martínez, F., Ibañez, K., Castillo, O., Correa, E. M., & Aramendiz, H. (2011). Selección de cultivares competitivos de berenjena para los mercados nacionales y de exportación, con adaptación a las condiciones del Caribe colombiano. Corporación Colombiana de Investigación Agropecuaria.
Casañas, F., Simó, J., Casals, J., & Prohens, J. (2017). Toward an evolved concept of landrace. Frontiers in Plant Science, 8, Article 145. https://doi.org/10.3389/fpls.2017.00145
Cook, S. M., Smart, L. E., Martin, J. L., Murray, D. A., Watts, N. P., & Williams, I. H. (2006). Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus). Entomologia Experimentalis et Applicata, 119(3), 221–229. https://doi.org/10.1111/j.1570-7458.2006.00419.x
Di-Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2017). InfoStat versión 2017 (Version 2017) [Computer software]. Infostat Group, Universidad Nacional de Cordoba.
Food and Agriculture Organization. (2021). Producción/Rendimiento de Berenjenas en Mundo + (Total) 2019. http://www.fao.org/faostat/es/#data/QC/visualize
Gore, J., Cook, D., Catchot, A., Musser, F., Stewart, S., Leonard, R., Lorenz, G., Studebaker, G., Akin, D., Tindall, K., &
Jackson, R. (2013). Impact of twospotted spider mite (Acari: Tetranychidae) infestation timing on cotton yields. The Journal of Cotton Science, 17, 34–39.
Holdsworth, W. L., Summers, C. F., Glos, M., Smart, C. D., & Mazourek, M. (2014). Development of downy mildew-resistant cucumbers for late-season production in the northeastern United States. HortScience, 49(1), 10–17. https://doi.org/10.21273/HORTSCI.49.1.10
Instituto de Hidrología, Meteorología y Estudios Ambientales (n.d). Tiempo y clima: Promedios climatológicos 1981-2010 [Grupo de datos]. Recuperado 2020 de http://www.ideam.gov.co/web/tiempo-y-clima/clima
Jin, G., Gong, Y., ZongWei, Q., Zhu, L., Wang, Z., Chen, J., & Wei, S. (2016). Selectivity and fitness of the two-spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae) to different varieties of eggplant. Acta Entomologica Sinica, 59(3), 328–336. https://doi.org/10.16380/j.kcxb.2016.03.010
Khanamani, M., Fathipour, Y., Hajiqanbar, H., & Sedaratian, A. (2012). Reproductive performance and life expectancy of Tetranychus urticae (Acari:Tetranychidae) on seven eggplant cultivars. Journal of Crop Protection, 46(8), 971-979. https://doi.org/10.1080/03235408.2012.755823
Khanamani, M., Fathipour, Y., Hajiqanbar, H., & Sedaratian, A. (2014). Two-spotted spider mite reared on resistant eggplant affects consumption rate and life table parameters of its predator, Typhlodromus bagdasarjani (Acari: Phytoseiidae). Experimental & Applied Acarology, 63(2), 241–252. https://doi.org/10.1007/s10493-014-9785-z
Kos, S. P., Klinkhamer, P. G. L., & Leiss, K. A. (2014). Cross-resistance of chrysanthemum to western flower thrips, celery leafminer, and two-spotted spider mite. Entomologia Experimentalis et Applicata, 151(3), 198–208. https://doi.org/10.1111/eea.12185
Kumar, D., Raghuraman, M., & Singh, J. (2014). Impact of abiotic factors on population dynamics of Phytophagous mite (Tetranychus ludeni Zacher) on cowpea in eastern Uttar Pradesh. The Ecoscan, 8 (1&2), 7–9. http://theecoscan.in/JournalPDF/81&202%20Dharmendra%20Kumar_2701.pdf
Leimu, R., & Koricheva, J. (2006). A meta-analysis of genetic correlations between plant resistances to multiple enemies. The American Naturalist, 168(1), E15-E37. https://doi.org/10.1086/505766
Lugo-Sánchez, M. Á., Flores-Canales, R. J., Isiordia-Aquino, N., Lugo-García, G. A., & Reyes-Olivas, Á. (2019). Ácaros
fitófagos asociados a jitomate en el norte de Sinaloa, México. Revista Mexicana de Ciencias Agrícolas, 10(7), 1541–1550. https://doi.org/10.29312/remexca.v10i7.1756
Martínez-Reina, A. M., Tordecilla-Zumaqué, L., Cordero-Cordero, C., & Grandett-Martínez, L. (2019a). Entorno tecnológico y socioeconómico de la habichuela larga en el Caribe húmedo de Colombia. Ciencia y Agricultura, 16(2), 7–24. https://doi.org/10.19053/01228420.v16.n2.2019.9114
Martínez-Reina, A. M., Tordecilla Zumaqué, L., Grandett, L., Rodríguez Pinto, M. del V., Cordero, C. C., Orozco Guerrero, A. R., Silva Acosta, G. E., Romero Ferrer, J. L., & Correa, E. (2019b). Análisis económico de la producción de berenjena (Solanum melongena L.) en dos zonas productoras del Caribe colombiano: Sabanas de Sucre y Valle del Sinú en Córdoba. Revista Ciencia y Agricultura, 16(3), 17-34. https://doi.org/10.19053/01228420.v16.n3.2019.9514
Mendonça, R. S., Navia, D., Diniz, I. R., & Flechtmann, C. H. W. (2011). South American spider mites: new hosts and localities. Journal of Insect Science, 11(1), Article 121. https://doi.org/10.1673/031.011.12101
Mesa, N. C. (1999). Acaros de importancia agrícola en Colombia. Revista Facultad Nacional de Agronomía, 52(1), 321–363.
Migeon, A., & Dorkeld, F. (2018, October 9). Spider mites Web: a comprehensive database for the Tetranychidae. In M. Sabelis, & J. Bruin (Eds.), Trends in Acarology (pp. 557-560). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9837-5_96
Mitchell, C., Brennan, R. M., Graham, J., & Karley, A. J. (2016). Plant Defense against Herbivorous Pests: Exploiting Resistance and Tolerance Traits for Sustainable Crop Protection. Frontiers in Plant Science, 7, Article 1132. https://doi.org/10.3389/fpls.2016.01132
Moreno-Moran, M., & Burbano-Figueroa, O. (2019). Field resistance of advanced breeding lines of upland cotton to ramulosis caused by Colletotrichum gossypii var. cephalosporioides. Crop Protection, 122, 49–56. https://doi.org/10.1016/j.cropro.2019.04.008
Nair, S., Braman, S. K., & Knauft, D. A. (2012). Resistance mechanisms in Pieris taxa (Ericaceae) to Stephanitis takeyai (Hemiptera: Tingidae). Environmental Entomology, 41(5), 1153–1162. https://doi.org/10.1603/EN11323
Nauen, R., Slater, R., Sparks, T. C., Elbert, A., & Mccaffery, A. (2019). IRAC: Insecticide Resistance and Mode-of-action Classification of Insecticides. In P. Jeschke, M. Witschel, W. Krämer, & U. Schirmer (Eds.), Modern crop protection compounds (pp. 995–1012). Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527699261.ch28
Panda, N., & Khush, G. S. (1995). Host plant resistance to insects. CAB International.
Peterson, R. K. D., Varella, A. C., & Higley, L. G. (2017). Tolerance: the forgotten child of plant resistance. PeerJ, 5, e3934. https://doi.org/10.7717/peerj.3934
Red de información y comunicación del sector Agropecuario Colombiano. (2020). Reporte:Área, Producción y Rendimiento Nacional por Cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Reddy, G. (2001). Comparative effectiveness of an integrated pest management system and other control tactics for managing the spider mite Tetranychus ludeni (Acari: Tetranychidae) on eggplant. Experimental & Applied Acarology, 25(12), 985–992. https://doi.org/10.1023/A:1020661215827
Reddy, G., & Baskaran, P. (1991). Biology and varietal preference of Tetranychus ludeni Zacher (Acari: Tetranychidae) on four varieties of eggplant, Solanum melongena. Mysore Journal of Agricultural Science, 25, 331–334.
Reddy, G., & Baskaran, P. (2006). Damage potential of the spider mite Tetranychus ludeni (Acari: Tetranychidae) on four varieties of eggplant. International Journal of Tropical Insect Science, 26(01), 48-56. https://doi.org/10.1079/IJT2006102
Regal, P. J. (1982). Pollination by Wind and Animals: Ecology of Geographic Patterns. Annual Review of Ecology and Systematics, 13(1), 497–524. https://doi.org/10.1146/annurev.es.13.110182.002433
Sinniah, G. D., Wasantha Kumara, K. L., Karunajeewa, D. G. N. P., & Ranatunga, M. A. B. (2016). Development of an
assessment key and techniques for field screening of tea (Camellia sinensis L.) cultivars for resistance to blister blight. Crop Protection, 79, 143–149. https://doi.org/10.1016/j.cropro.2015.10.017
Smith, C. M. (Ed.). (2005a). Plant resistance to arthropods. Springer, Verlag. https://doi.org/10.1007/1-4020-3702-3
Smith, C. M. (Ed.). (2005b). Plant resistance to arthropods. Springer, Verlag. https://doi.org/10.1007/1-4020-3702-3
Smith, C. M., & Chuang, W. P. (2014). Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Management Science, 70(4), 528–540. https://doi.org/10.1002/ps.3689
Sperotto, R. A., Buffon, G., Schwambach, J., & Ricachenevsky, F. K. (2018). Crops responses to mite infestation: it’s time to look at plant tolerance to meet the farmers’ needs. Frontiers in Plant Science, 9, Article 556. https://doi.org/10.3389/fpls.2018.00556
Stout, M. J. (2013). Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Science, 20(3), 263–272. https://doi.org/10.1111/1744-7917.12011
Stout, M., & Davis, J. (2009). Keys to the increased use of host plant resistance in integrated pest management. In R. Peshin, & A. K. Dhawan (Eds.), Integrated Pest Management: Innovation-Development Process (pp. 163–181). Springer, Netherlands. https://doi.org/10.1007/978-1-4020-8992-3_7
Taher, D., Rakha, M., Ramasamy, S., Solberg, S., & Schafleitner, R. (2019). Sources of Resistance for Two-spotted Spider Mite (Tetranychus urticae) in Scarlet (Solanum aethiopicum L.) and Gboma (S. macrocarpon L.) Eggplant Germplasms. HortScience, 54(2), 240–245. https://doi.org/10.21273/HORTSCI13669-18
Tapia-Coronado, J. J., Cadena-Torres, J., Correa-Álvarez, E. M., Jiménez-Mass, N. C., Rodríguez-Pinto, M. del V., Tamayo-Molano, P. J., & Arias-Bonilla, H. (2015). Modelo tecnológico del cultivo de berenjena para la región Caribe. Corporación Colombiana de Investigación Agropecuaria.
Tatis, H. A., Ayala, C. C., & Camacho, M. E. (2009). Caracterización de la morfología floral de dos cultivares de berenjena (Solanum melongena L.) (Solanaceae). Revista Facultad Nacional de Agronomía Medellín, 62(2), 5125-5134.
Vacante, V. (Ed.). (2009). Citrus mites: identification, bionomy and control. CAB International. https://doi.org/10.1079/9781845934989.0000
Willocquet, L., Lore, J. S., Srinivasachary, S., & Savary, S. (2011). Quantification of the components of resistance to rice sheath blight using a detached tiller test under controlled conditions. Plant Disease, 95(12), 1507–1515. https://doi.org/10.1094/PDIS-01-11-0051
Willocquet, L., Savary, S., & Yuen, J. (2017). Multiscale phenotyping and decision strategies in breeding for resistance. Trends in Plant Science, 22(5), 420–432. https://doi.org/10.1016/j.tplants.2017.01.009
Wiseman, B. R. (1994). Plant resistance to insects in integrated pest management. Plant Disease, 78(9), 927. https://doi.org/10.1094/PD-78-0927
Yuen, J. E., & Forbes, G. A. (2009). Estimating the level of susceptibility to Phytophthora infestans in potato genotypes. Phytopathology, 99(6), 782–786. https://doi.org/10.1094/PHYTO-99-6-0782
Zogli, P., Pingault, L., Grover, S., & Louis, J. (2020). Ento(o)mics: the intersection of “omic” approaches to decipher plant defense against sap-sucking insect pests. Current Opinion in Plant Biology, 56, 153–161. https://doi.org/10.1016/j.pbi.2020.06.002
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).