Agronomía Costarricense ISSN Impreso: 0377-9424 ISSN electrónico: 2215-2202

OAI: https://www.revistas.ucr.ac.cr/index.php/agrocost/oai
Caracterización y evaluación de PGPRs sobre el crecimiento de plántulas de <i>Dioscorea rotundata</i> in vitro
PDF
HTML
EPUB

Palabras clave

Azotobacter
Bacillus
Pseudomonas
Auxine
Biofertilizers.
Azotobacter
Bacillus
Pseudomonas
Auxina
biofertilizantes. Keywords
Auxine
Biofertilizers.

Cómo citar

Sánchez López, D. B., & Pérez Pazos, J. V. (2018). Caracterización y evaluación de PGPRs sobre el crecimiento de plántulas de <i>Dioscorea rotundata</i> in vitro. Agronomía Costarricense, 42(2). https://doi.org/10.15517/rac.v42i2.33780

Resumen

El objetivo de esta investigación fue aislar y caracterizar rizobacterias promotoras de crecimiento vegetal (PGPRs, por sus siglas en inglés) nativas de la rizosfera en cultivos de Dioscorea rotundata de zonas productoras representativas del Caribe Colombiano como Montes de María, Sabanas Colinadas, Valle del Sinú. Además, evaluar el efecto de la inoculación de estas, a nivel de invernadero, sobre el crecimiento de plántulas in vitro de Dioscorea rotundata. Se determinaron características de promoción de crecimiento vegetal in vitro mediante la producción de auxinas por el método colorimétrico de Salkowsky y solubilización de fósforo. Las cepas fueron probadas a nivel invernadero en plántulas in vitro de Dioscorea rotundata, en las que se determinó variables de altura, longitud radicular, peso seco parte aérea y peso seco radicular. Todas las cepas presentaron la capacidad de producir auxinas y solubilizar fósforo. Se evidenció en invernadero un efecto positivo en los parámetros de crecimiento de plántulas después de 60 días de siembra, la mayoría de las cepas por zona generaron incrementos, principalmente en el peso seco radicular de las plántulas de Dioscorea rotundata, en comparación con el control sin inocular, destacándose Enterobacter cloacae DSC6 con un incremento significativo (p≤0,05) de 147%, Azotobacter vinelandii DVS9 con un 126%, Azotobacter vinelandii DCR11 con un 108% (p≤0,05), Brevibacillus laterosporus DSC19 con un 96%, Bacillus subtilis DSC82 con un 88% (p≤0,05), Azotobacter vinelandii DSC72 con un 54% y Pseudomonas denitrificans DVS10 con un 48%. Los resultados sugirieron que los microorganismos aislados de la rizosfera tienen potencial como biofertilizantes.
https://doi.org/10.15517/rac.v42i2.33780
PDF
HTML
EPUB

Citas

Abbasdokht, H; Gholami, A. 2010. The effect of seed inoculation (Pseudomonas putida + Bacillus lentus) and different levels of fertilizers on yield and yield components of wheat (Triticumaestivum L.) cultivars. World Academy of Science Engineering and Technology 68:979-983.

Achari, GA; Ramesh, R. 2014. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. International journal of microbiology (14):1-14.

Ahemad, M; Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University- Science 26(1):1-20.

Arcos, J; Zúñiga, D. 2016. Rizobacterias promotoras de crecimiento de plantas con capacidad para mejorar la productividad en papa. Revista Latinoamericana de la Papa 20(1):18-31.

Banerjee, S; Palit, R; Sengupta; C, Standing, D. 2010. Stress induced phosphate solubilization by Arthrobactersp. and Bacillus sp. Isolated from tomato rhizosphere. Australian Journal of crop science 4(6):378-383.

Barua, S; Tripathi, S; Chakraborty, A; Ghosh, S; Chakrabarti, K. 2012. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils. Microbiological research 167(2):95-102.

Beltrán, PME. 2014. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal Corpoica. Ciencia y Tecnología Agropecuaria 15(1):101-113.

Camelo, M; Vera, SP; Bonilla, RR. 2011. Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Corpoica. Ciencia y Tecnología Agropecuaria12(2):159-166.

Carrillo, A; Puente, M; Castellanos, T; Bashan, Y. 1998. Aplicaciones biotecnológicas de ecología microbiana. Manual de Laboratorio. Pontificia Universidad Javeriana, Santafé de Bogotá, Colombia-Centro de Investigaciones Biológicas del Noroeste. La Paz, Baja California Sur, México. 51 p.

Castillo, G; Altuna, B; Michelena, G; Sánchez-Bravo, J; Acosta, M. 2005. Cuantificación del contenido de ácido indolacético (AIA) en un caldo de fermentación microbiana. In Anales de Biología 27:137-142.

Clavijo, C; Chipana, V; Centeno, J; Zúñiga, D; Guillén, C. 2012. Aislamiento, caracterización e identificación de bacterias diazotróficas de la rizósfera del cultivo de Olea europea” olivo” en Tacna Perú. Ecología Aplicada 11(2):89-102.

Dahllof, I; Baillie, H; Kjelleberg, S. 2000. rpoB-Based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Applied and Environmental Microbiology 66(8):3376-3380.

Diep, CN; Hieu, TN. 2013. Phosphate and potassium solubilizing bacteria from weathered materials of denatured rock mountain, Ha Tien, Kiên Giang province Vietnam. American Journal of Life Sciences 1(3):88-92.

Ecundayo, EA; Ogonnusi, TA; Ogunmefun, OO; Alegbe, MO; Oso, AO. 2016. Screening of soil isolates from soil samples for solubilization of inorganic phosphate. International research of journal of biological science 5(8):1-6.

Edgar, RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32(5):1792-1797.

Egamberdiyeva, D. 2005. Plant-growth-promoting rhizobacteria isolated from a Calcisol in a semi-arid region of Uzbekistan: biochemical characterization and effectiveness. Journal of Plant Nutrition and Soil Science 168(1):94-99.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4):783-791.

Fenglerowa, W. 1965. Simple method for counting Azotobacter in soil samples. Acta Microbiológica Polonica 14(2):203-206.

Fiske, C; Subbarow, Y. 1925. The colorimetric determination of phosphorus. Journal of Biological Chemistry 66:375-400.

Glickman, E; Dessaux, Y. 1995. A critical examination of the specificity of the salkowsky reagent for indolic compounds produced by phytopathogenic bacteria. Applied Environmental Microbiolgy 61(2):793-796.

Gomes, EA; Silva, UDC; Marriel, IE; De Oliveira, CA; Lana, UGDP. 2014. Rock phosphate solubilizing microorganisms isolated from maize rhizosphere soil. Revista brasileira de Milho e Sorgo 13(1):69-81.

Gopinath, GR; Chase, HR; Gangiredla, J; Eshwar, A; Jang, H; Patel, I; Yoo, Y. 2018. Genomic characterization of malonate positive Cronobacter sakazakii serotype O: 2, sequence type 64 strains, isolated from clinical food, and environment samples. Gut pathogens 10(1):1-11.

Gulati, A; Rahi, P; Vyas, P. 2008. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Current microbiology 56(1):73-79.

Ibrahim, M; Yamin, M; Sarwar, G; Anayat, A; Habib, F; Ullah, S. 2011. Tillage and farm manure affect root growth and nutrient uptake of wheat and rice under semi-arid conditions. Applied Geochemistry 26:194-197.

Khalifa, AY; Alsyeeh, AM; Almalki, MA; Saleh, FA. 2016. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi journal of biological sciences 23(1):79-86.

King, E; Ward, M; Raney, D. 1954. Two simple media for the demonstration of pyocyanin and fluoresce J. Journal of Laboratory and Clinical Medicine 44:301-307.

Kumar, NP; Audipudi, V. 2015. Exploration of a novel plant growth promoting bacteria Stenotrophomonas maltophilia AVP27 isolated from the chilli rhizosphere soil. International Journal of Engineering Research and General Science 3:265-276.

Kumar, S; Stecher G; Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.Molecular Biology and Evolution 33(7):1870-1874.

Lara, C; Oviedo, L; Betancur, C. 2014. Bacterias nativas con potencial en la producción de ácido indol acético para mejorar los pastos. Zootecnia tropical 29(2):187-194.

Liba, CM; Ferrara, FIS; Manfio, GP; Fantinatti-Garboggini, F; Albuquerque, RC; Pavan, C; Barbosa, HR. 2006. Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. Journal of applied microbiology 101(5):1076-1086.

Malik, DK; Sindhu, SS. 2011. Production of indole acetic acid by Pseudomonas sp. effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiology and Molecular Biology of Plants 17(1):25-32.

Marquina, EM; Ramírez, Y; Castro, Y. 2018. Efecto de bacterias rizosféricas en la germinación y crecimiento del pimentón Capsicum annuum L. Var. cacique gigante. Bioagro 30(1):3-16.

Marroquín, NG; Rodríguez, SLB; Gutiérrez, YAP; Hurtado, GB. 2016. Caracterización molecular de Colletotrichum gloeosporioides aislado de plantas de ñame de la Costa Atlántica Colombiana utilizando la técnica “DNA Amplification Fingerprinting (DAF)”. Revista Colombiana de Biotecnología 18(1):95-103.

Martínez-Viveros, O; Jorquera, MA; Crowley, DE; Gajardo, G; Mora, ML. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of soil science and plant nutrition 10(3):293-319.

Mehnaz, S; Baig, DN; Lazarovits, G. 2010. Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J. Microbiol. Biotechnol 20(12):1614-1623.

Méndez, YP; Palencia, JL; Hernández, KP; Hernández, EJ; Beltrán, JD. 2013. Reaction of yam genotypes (Dioscorea spp.) to anthracnose (Colletotrichum gloeosporioides). Revista Temas Agrarios 18(1):34-40.

Mendes, LW; Kuramae, EE; Navarrete, AA; Van Veen, JA; Tsai, SM. 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. The ISME Journal 8(8):1577-1587.

Naqqash, T; Hameed, S; Imran, A; Hanif, MK; Majeed, A; Van Elsas, JD. 2016. Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Frontiers in plant science 7:1-12.

Nemergut, DR; Schmidt, SK; Fukami, T; O’Neill, SP; Bilinski, TM; Stanish, LF; Knelman, JE; Darcy, JL; Lynch, RC; Wickey, P; Ferrenberg, S. 2013. Patterns and processes of microbial community assembly. Microbiology and Molecular Biology Reviews 77(3):342-356.

Patten, CL; Glick, BR. 1996. Bacterial biosynthesis of Indole-3-acetic acid (review). Canadian Journal of Microbiology 42:207-220.

Pérez-Pazos, JV; Sánchez-López, DB. 2017. Characterization and effect of Azotobacter, Azospirillum and Pseudomonas associated with Ipomoea Batatas of Colombian Caribbean. Revista Colombiana de Biotecnología 19(2):35-46.

Persing, DH; Tenover, FC; Hayden, RT; Ieven, M; Miller, MB; Nolte, FS;… Belkum, AV. 2016. Molecular microbiology: diagnostic principles and practice (3 eds.). American Society for Microbiology (ASM), Washington, USA. Cabi. 825 p.

Pinzón, Y; Bustamante, S; Buitrago, G. 2013. Diagnóstico molecular diferencial Colletotrichum gloeosporioides y Fusarium oxysporum en ñame (Dioscorea sp.). Revista Colombiana de Biotecnología 17(1):52-60.

Quintero, I; Polo, J; Jarma, A; Espitia, A. 2003. Enraizamiento in vitro de Dioscoreas sp. Revista Colombiana de Biotecnología 5(2):51-56.

Restrepo-Franco, GM; Marulanda-Moreno, S; de la Fe-Pérez, Y; Díaz-de la Osa, A; Lucia-Baldani, V; Hernández- Rodríguez, A. 2015. Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. Revista Cenic Ciencias Biológicas 46(1):63-76.

Rives, N; Acebo, Y; Hernández, A. 2007. Bacterias promotoras del crecimiento vegetal en el cultivo del arroz (Oryza sativa L.). Perspectivas de su uso en Cuba Cultivos Tropicales 28(2):29-38.

Roy, M; Saha, S; Das, J. 2017. Synergetic effect of different free-living diazotrophic bacteria, P–solubilizing bacteria and Rhizobium on growth of Oryza sativa L. (cv. NDR–359). Indian Journal of Agricultural Research 51(3):221-226.

Saitou, N; Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4):406-425.

Sánchez, D; Gómez, R; Garrido, M; Bonilla, R. 2012. Inoculación con bacterias promotoras de crecimiento vegetal en tomate bajo condiciones de invernadero. Revista Mexicana De Ciencias Agrícolas 3(7):1401- 1415.

Selvakumar, G; Reetha, S; Thamizhiniyan, P. 2012. Response of biofertilizers on growth, yield attributes and associated protein profiling changes of blackgram (Vigna mungo L. Hepper). World Applied Sciences Journal 16(10):1368-1374.

Shank, E; Klepac, V; Collado, L; Powers, G; Losick, R; Kolter, R. 2011. Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. PNAS 108(48):1236-1243.

Soler, AJ; Gilchrist, E; Pérez, NJC. 2012. Evaluation of microorganisms with potential for plant growth promotion and biological control of Spongospora subterranea. Revista Colombiana de Biotecnología 14(1):157-170.

Swain, MR; Laxminarayana, K; Ray, RC. 2012. Phosphorus solubilization by thermotolerant Bacillus subtilis isolated from cow dung microflora. Agricultural Research 1(3):273-279.

Swain, MR; Naskar, SK; Ray, RC. 2007. Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Polish Journal of Microbiology 56(2):103-110.

Tahir, M; Sarwar, MA. 2013. Plant growth promoting rhizobacteria (PGPR): A budding complement of synthetic fertilizers for improving crop production. Pakistan Journal of Life and Social Sciences 11:1-7.

Tamura, K; Nei, M; Kumar, S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101(30):11030-11035.

Vazallo, SN; Ramírez, LT; Carranza, LT; García, BZ; Bernilla, BS. 2013. Efecto de la inoculación de Rhizobium etli y Trichoderma viride sobre el crecimiento aéreo y radicular de Capsicum annum var. longum. Revista Rebiolest 1(1):11-21.

Vega, MEG. 2012. Revisión bibliográfica el ñame (Dioscorea spp.). Características, usos y valor medicinal. aspectos de importancia en el desarrollo de su cultivo. Cultivos Tropicales 33(4):5-15.

Walpola, BC; Arunakumara, K. 2015. Assessment of phosphate solubilization and indole acetic acid production in plant growth promoting bacteria isolated from green house soils of gonju-gun, South Korea. Tropical Agricultural Research and Extension 18(1):31-39.

Wang, XL; Cui, WJ; Feng, XY; Zhong, ZM; Li, Y; Chen, WX; Tian, CF. 2018. Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: A strong selection of facultative microsymbionts. Soil Biology and Biochemistry 116:340-350.

Xiao, CQ; Chi, RA; He, H; Zhang, WX. 2009. Characterization of tricalcium phosphate solubilization by Stenotrophomonas maltophilia YC isolated from phosphate mines. Journal of Central South University of Technology 16(4):581-587.

Comentarios

Descargas

Los datos de descargas todavía no están disponibles.